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The second-order symmetric Sturm-Liouville differential expressions 11, T2,...,Tn
with real coefficients are considered on the interval I = (a,b), —o <a <b < . It
is shown that the characterization of singular selfadjoint boundary conditions in-
volves the sesquilinear form associated with the product of Sturm-Liouville differ-
ential expressions and elements of the maximal domain of the product operators,
and it is an exact parallel of the regular case. This characterization is an exten-
sion of those obtained by Everitt and Zettl (1977), Hinton, Krall, and Shaw (1987),
Ibrahim (1999), Krall and Zettl (1988), Lee (1975/1976), and Naimark (1968).
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1. Introduction. In [10], Krall and Zettl considered the Sturm-Liouville dif-
ferential expression

Tlyl=[-(py') +qy] onl=(ab), —o<a<b <o, (1.1)

with real-valued Lebesgue measurable functions p and g assumed to satisfy
the following basic conditions:

p~1,4 € Lioe (D), (1.2)

and proved that the characterization of the singular selfadjoint boundary con-
ditions is identical to that in the regular case provided that y and py’ are
replaced by certain Wronskians involving y and two linearly independent so-
lutions of T[y] = 0.

The relationship between the deficiency index of a symmetric differential
expression (1.1) and its powers T2, T3, ... has recently been studied by Chaud-
huri and Everitt [1], and the relationship between the number of linearly in-
dependent L2(0, ) solutions of the equations T;j[] = 0 and of the product
equations (T;T2---Tyn)y = 0 has been investigated by Everitt and Zettl [4].
These results are an extension of those recently obtained in [3, 15, 16, 18] for
the special case T; = T for j =1,...,n, and T is a real second-order symmetric
differential expression.
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Our objective in this paper is to show that the characterization of the sin-
gular selfadjoint boundary conditions is identical to that in the regular case
provided that v and its quasiderivatives are replaced by sesquilinear forms as-
sociated with the product of Sturm-Liouville differential expressions, involv-
ing y and elements of the maximal domain of the product operators. This
characterization is an extension of those by Everitt and Zettl [4] and those in
[5,6,7,10,11,12,13].

In the regular case, these conditions can be interpreted as linear combina-
tions of the values of the unknown function y and its quasiderivatives at the
endpoints a and b.

In the singular case, these conditions are given in terms of sesquilinear
forms involving y and linearly independent solutions of the product equation
(T1T2- - - Ty)y = 0 given by Everitt and Zettl in [4].

2. Preliminaries. We begin with a brief summary of adjoint pairs of opera-
tors and products operators (a full treatment may be found in [2, Chapter III]
and [3, 4, 5, 7, 8, 9]).

The domain and range of a linear operator T acting in a Hilbert space H will
be denoted by D(T) and R(T), respectively, and N (T) will denote its null space.
The nullity of T, written nul(T), is the dimension of N(T), and the deficiency
of T, written def(T), is the codimension of R(T) in H; thus, if T is densely
defined and R(T) is closed, then def(T) = nul(T*). The Fredholm domain of T
is (in the notation of [2]) the open subset A3(T) of C consisting of those values
A € C which are such that T — AI is a Fredholm operator. Thus, A € A3(T) if
and only if (T —AI) has a closed range and finite nullity and deficiency, I being
the identity operator on H. The index of (T — AI) is the number ind(T —AI) =
nul(T —AI) —def (T — AI), this being defined for A € A3(T).

A closed operator A in a Hilbert space H has property (C) if it has a closed
range and A = 0 is not an eigenvalue; that is, there is some positive number »
such that ||Ax|| = r||x]|| for all x € D(A).

Note that property (C) is equivalent to A = 0, being a regular type point of
A. This, in turn, is equivalent to the existence of A~! as a bounded operator
on the range of A (which need not be all of H).

Given two operators A and B, both acting in a Hilbert space H, we wish to
consider the product operator AB. This is defined as follows:

D(AB)={xeD(A)|Bx€D(A)}, (AB)x =A(Bx), VxeD(AB). (2.1)

It may happen in general that D(AB) contains only the null element of H.
However, in the case of many differential operators, the domains of the product
will be dense in H.

The next result gives conditions under which the deficiency of a product is
the sum of the deficiencies of the factors.
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LEMMA 2.1 (cf. [4, Theorem A] and [16]). Let A and B be closed operators
with dense domains in a Hilbert space H. Suppose that A = 0 is a regular type
point for both operators and def A and def B are finite. Then, AB is a closed
operator with dense domain and has A = 0 as a regular type point, and

def AB = def A + defB. (2.2)

Evidently, Lemma 2.1 extends to the product of any finite number of oper-
ators A;,Ap,...,Ay.

Let the interval I have endpointsaand b (—o <a <b < o), andletw :I - R
be a nonnegative weight function with w € L}, (I) and w(x) > 0 (for almost
all x € I). Then, H = L2,(I) denotes the Hilbert function space of equivalence
classes of Lebesgue measurable functions such that [;w|f|?> < ; the inner-
product is defined by

(f,9)1= | weofxIgIdx (fg € LiD). (2.3)
We will consider the Sturm-Liouville differential equation of the form
Tlyl=-(py") +ay =Awy onl, (2.4)

where the real-valued Lebesgue measurable functions p, g, and w from I into R
are satisfying conditions (1.2), which are taken to hold throughout this paper.
Under these assumptions, T is interpreted as a quasidifferential expression, u
is a solution of (2.4) if u and pu’ are in ACy,¢(a, b), the space of functions which
are absolutely continuous on compact subsets of (a,b), and (2.4) is satisfied
almost everywhere on (a,b). Also, pu’ = u!!l is called the quasi-derivative
of u.

Equation (2.4) is said to be regular at the left endpoint a € R if, for all
X € (a,b),

aeR; plaqwel'laX]; (2.5)

otherwise, (2.4) is said to be singular at a. If (2.4) is regular at both endpoints
a and b, then it is said to be regular; in this case we have

a,beR; plqwell(a,b). (2.6)

We will be concerned with the second-order symmetric differential expres-
sion on I and when both endpoints a and b may be either regular or singular
endpoints of (2.4). Note that, in view of (1.2), an endpoint of I is regular for
(2.4) if and only if it is regular for the equation

T [z]=Awz (AeC)onl, (2.7)
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where T7 is the formal, or Lagrangian, adjoint of T given by
T[z]=-(pz') +qz onl. (2.8)
The maximal domain D(T), defined by
D(t):={f:f,pf € ACwc (D), w'T[f1 €L} (a,b)}, (2.9)
is a subspace of L2, (a,b). The maximal operator T(T) is defined by
T(n)y:=w'tly] (yeD(T). (2.10)
It is well known that D(T) is dense in L2, (a,b), see [7, 8, 9, 10].
In the regular problem, the minimal operator To(T) is the restriction of
w~1T[u] to the subspace
Do(T):={y:yeD(1), y" Ua)=y"H(b)=0,r=1,2}. (2.11)
The subspace Dy (1) is dense and closed in qu(a,b), see [2,13,17].
In the singular problem, we first introduce the operator T;(T), T, (T) being
the restriction of w~!7[-] to the subspace
Do(T):={y:y €D(T), suppy C (a,b)}. (2.12)
This operator is densely defined and closable in Lﬁ, (a,b), and we defined the
minimal operator To(T) to be its closure (see [2, 13] and [17, Section 5]). We
denote the domain of Ty (T) by Do(T). It can be shown that

y€Dy(t) =y a)=0, (r=1,2), (2.13)

whenever we assume a to be aregular endpoint and b to be a singular endpoint.
For f,g € D(7) and «, 8 € I, Green’s formula is given by

Jf {Tf1g - frlgltdx = [f,91(B) ~[f,9]1(c0), (2.14)
where
Lf,91:= fg"' = f"g, f.g€ D(1). (2.15)
For f,g € D(T), the limits limy_,+ [ f,g](x) and limg_;,- [ f,g]1(B) exist and
are finite. These are denoted by [f,g](a) and [f,g](b), respectively.

For f,g € ACioc(a,b), let

W(f,g)=fprg —grf'. (2.16)
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Choose two solutions 6 and ¢ of T[u] = 0 satisfying
W(,p)(x)=1 Vxel (2.17)

Clearly such 0 and ¢ exist, that is, they can be determined by the initial con-
ditions 9(c) =1, (p0')(c) =1, ¢p(c) =0, (pd')(c) =1 forall cin I.
Note that the sesquilinear form [ f,g] in (2.15) can be written as

Lf.g]=fprad —grf =(39.rg") (g _01> (pj},). (2.18)

From (2.16) and (2.17), we get

0 -1y _ (0 -1 0 o 0 -1\[/06 po\(0 -1 (2.19)
1 0) \1 o0/)\por pop'J\1 0)\¢p pop'/\1 0)
and hence the sesquilinear form in (2.18) can also be written as

ral-wiowen (] ) (Vi)

=W(g,P)W(f,0)-W(@g,0W(f, ) (2.20)

(W) W)
‘det<w<g,e> w<g,¢>)’

see [7, 10].

LEMMA 2.2. If, for sum Ag € C, there are two linearly independent solutions
of T[v]=2Aowy in L% (a,b), then all solutions of T[y] = Awy are in L (a,b)
for all A € C, see [2, Chapter 3] for more details.

THEOREM 2.3 (cf. [2, Theorem 3.10.1]). Let f € L} .(a,b), and suppose that
conditions (1.2) are satisfied. Then, given any complex numbers cy and c; and
any xo € (a,b), there exists a unique solution of T[¢p] = f in (a,b) which satis-
fies ¢ (x0) = co and ™M (x¢) = c;.

A simple consequence of Theorem 2.3 is that the solutions of (2.4) form
a two-dimensional vector space over C. If (xp, ;) and (Bo,B1) are linearly
independent vectors in C2, then the solutions ¢ (-,A) and ¢2(-,A) of (2.4),
which satisfy ¢ (x0,A) = &, pH (x0,A) = &1, P2 (x0,A) = Bo and 5 (x0,A) =
B1 for some x( € (a,b), form a basis for the space of the solutions of (2.4).

Note that an important distinction between a regular endpoint and a singular
endpoint is the fact that, at a regular endpoint X, all initial-value problems
P (x0,A) = co, M (xp,A) = ¢; and co,c; € C have unique solutions. This is not
true when X is a singular endpoint (see [2, 9]).

In the case that a and b are singular endpoints, and for any « and S in the
open interval (a,b) and any A € C, conditions (1.2) imply that any solution ¢
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of (2.4) is in L2, (a,b), (see [9, 10, 14]). However, it is possible that such a ¢
does not belong to L2, (a,b). If ¢ is in L2 (a,b), for some B € (a,b), then this
is true for all B in (a,b). If all solutions of (2.4) are in L2, (a, B), for some B in
(a,b), then we say that 7[-] is in the limit-circle case at a, or, simply, that a is
LC. Otherwise, T[-] is in the limit-point case at a or a is LP. Similarly, b is LC
means that all solutions of (2.4) are in L'fu (x,b), a < « < b. This classification
is independent of A in (2.4), (see [7, 10, 13, 18]). Otherwise, b is LP. The limit-
point, limit-circle terms are used for historical reasons.

The classification of the selfadjoint extensions of Ty (T) depends, in an es-
sential way, on the deficiency index of Ty (7). We briefly recall the definition of
this notion for abstract symmetric operators in a separable Hilbert space.

A linear operator A from a Hilbert space H into H is said to be symmetric if
its domain D(A) is dense in H and (Af,g) = (f,Ag) for all f,g € D(A). Any
such operator has associated with it a pair (d*,d ), where each of d*, d~ is a
nonnegative or +o. The extended integers are called the deficiency indices of
A, and we have the following.

For A € C, the set of complex numbers, let Ry denote the range of To(T) —Al,
Nj =Ry and let

N*=N;, N =N, i=+v-1, (2.21)

d* = dimension of N* and d~ = dimension of N~. The spaces N* and N~ are
called the deficiency spaces of To(T), and d* and d~ are called the deficiency
indices of To(T). These are related to (2.4) as follows:

Ny =1{f e DT (O] HTF(D]f = [T(DO]f =w ' t[f1=Af} (2.22)

Thus, N* and N~ consist of the solutions of (2.4) which lie in the space H =
qu (I) for A = +i and A = —1i, respectively. Hence, d* and d~ are the number
of linearly independent solutions of (2.4) which are in the space H for A = +i
and A = —1i, respectively. It is clear for a symmetric differential operator Ty (T)
that

0<d"=d <2 (2.23)

We denote the common value by d and call d the deficiency index of T on I.
From the above discussion, we see that there are only three possibilities for d:
d=0,1,2.

Note that, in the literature, the maximal and minimal deficiency cases are
often referred to as the limit-circle and limit-point cases. Strictly, these latter
terms are only suitable for the now classical second-order differential expres-
sions; in this case the terminology was originally introduced by Hermann Weyl.
The term limit-point does give an acceptable description of the minimal defi-
ciency case for real, and hence even-order, symmetric expressions.

Now, we recall the following results.
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For any A € C\R and for a symmetric differential operator To(T), we, from
the general theory, have

D(T)=Do(T)+N*t+N", (2.24)

where Dy (T), N*, and N~ are linearly independent subspaces and the sum is
direct (which we indicate with the symbol +), see [2, 5, 7, 13].

Any selfadjoint extension S of the symmetric differential operator Ty (T)
satisfies

TO(T)CS=S*CTJ(T) (2.25)
and hence is completely determined by specifying its domain D(S),
D[To(T)] € D(S) C D[T§ (T)]. (2.26)

This can be proved using formula (2.23) (see [1, 2, 5, 7, 13]).

THEOREM 2.4. The operator Ty(T) is a closed symmetric operator from H
into H and

Ty (T) =T(7), T*(1) =To(T), Do(T) = domain of T*(1). (2.27)

PROOF. See [7,10] and [13, Section 17.4]. O
Some of the basic facts are summarized in the following theorem.

THEOREM 2.5 (cf. [10, Proposition 1]). () Do(T) = {f € D(7) : [f,g](b) —
[f,gl(a)=0 forallg € D(T)}.

(b) If T[-] is in the limit-point case at an endpoint c, then [ f,g]1(c) = 0 for all
f,g€DIT(T)],c=aorc=h.

(¢) If an endpoint c is regular, then, for any solution u, u and u'*l are con-
tinuous at c.

(d) If a and b are both regular endpoints, then, for any «, B, y, and 6 in C,
there exists a function f in D(T) such that

fla)=«,  fNa) =5,

fy=y, [ =s. (228
(e) If a is regular and b is singular, then a function f from D[T(T)] is in
DI[Ty(7)] if and only if the following conditions are satisfied:
(i) f(a)=0and f1'(a) =0,
(i) [f,g1(b) =0 forall f,g € DT(T).
The analogous results hold when a is singular and b is regular, see also[6, 9, 10].
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LEMMA 2.6 (cf. [7] and [10, Lemma 2]). Given «, B, y, and é in C, then there
existsa¥Y e D[T(t)]\D[Ty(T)] such that

W(¥,0)(a) = «, W(¥,¢)(a) =B,

2.29
WOL,0)(b) =y, W(E,$)(b) = (2.29)

Furthermore, ¥ can be taken to be a linear combination of 0 and ¢ near each
endpoint.

3. Some technical lemmas. The proof of general theorem will be based on
the results in this section. We start by listing some properties and results of
Sturm-Liouville differential expressions Ti,T2,..., Ty, each of order two. For
proofs, the reader is referred to [4, 7, 8, 9, 15, 16, 18].

(T1+T2)+=T1++T2+, G
(i) =157, (AT)" =AT* for A a complex number. '

A consequence of properties (3.1) is that if 7" = T then P(7)* = P(T") for
P any polynomial with complex coefficients. Also, we note that the leading
coefficients of a product is the product of the leading coefficients. Hence, the
product of regular differential expressions is regular.

LEMMA 3.1 (cf. [4, Theorem 1]). Suppose that T; is a regular differential
expression on the interval [a,b] such that the minimal operator To(T;) has
property (C) for j =1,2,...,n. Then,

(i) the product operator H?:I[TO(TJ')] is closed and have dense domain,
property (C), and

def[}‘[ (T, }: > def[To(15)] (3.2)

(ii) the operators To(T1To - - - Ty) and ]_[ 1[To(Tj)] are notequal in general,
that is,

n
[To(T172- [To(T;)] (3.3)
]:1

For symmetric differential operator Ty (T;), which satisfies property (C), and
by (2.23), (3.2) is constant on [0,2n]. In the problem with one singular endpoint,
this constant is in [n,2n], while in the regular problem, it is equal to 2n, see [2].
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LEMMA 3.2 (cf. [4, Theorem 2]). Let T1,T>,..., T, be regular differential ex-
pressions on [a,b]. Suppose that Ty (Tj) satisfies property (C) for j =1,2,...,n.
Then,

n
To(Tsz- . -Tn) = HT()(TJ') (3.4)
j=1
if and only if the following partial-separation condition is satisfied:

{f <] qu (a,b), f[s_l] € ACjpcla,b),

where s is the order of product expression (T Tz -« - Ty)

(3.5)
and (T172---Ty) " f € L% (a,b), together imply that

k
(1—[ (T‘,-*))fequ(a,b), k= 1,...,n—1}.
j=1

Therefore, (3.4) and (3.5) are equivalent.
We will say that the product (T, T - - - Ty,) is a partially separated expression
in L2, (a,b) whenever property (3.5) holds.

LEMMA 3.3. Let Tj be a regular differential expression on [a,b] for j =
1,...,n. If all the solutions of the differential equation (t;)u = 0 and (T}')Z =0
onla,b]areinl? (a,b) forj=1,...,n, then all the solutions of (T T2+ - - Tp) Y =
0and (T1T2---Ty)tz=0areinL? (a,b).

PROOF. Let 2 = order of T, for j = 1,...,n. Then, def[Ty(T;)] = 2. Hence,
To(Tj) has property (C). By Lemma 3.1, we have

n
def [To(T1 T2 - - Ty) ] = def [ [ TQ(TJ')] =2n = order of (T1T2---Ty). (3.6)
j=1

Thus, def[To(T1T2 - - - Ty)] = order of (1172 --Ty,), and, consequently, all
the solutions of (]_[;‘:1 T;)y =0arein L2, (a,b); we refer to [4] for more details.
O

The special case of Lemma 3.3 when 7; = 7 for j = 1,2,...,n and 7 is sym-
metric was established in [16]. In this case, it is easy to see that the con-
verse also holds. If all the solutions of Ty = 0 are in L2 (a,b), then all the
solutions of Ty = 0 must be in L (a,b). In general, if all the solutions of
(T1T2+++-Tp)y = 0 are in L2, (a,b), then all the solutions of T, = 0 are in
L2 (a,b) since these also are solutions of (71T ---T,)y = 0. If all the solu-
tions of the adjoints equation (T, T2+ - - T,)*z = 0 are also in L2 (0,b), then it
follows similarly that all the solutions of T; z = 0 are in LZ (a,b). So, for n = 2
in particular, we have established the following corollary.
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COROLLARY 3.4. Suppose that 11, T», and T, T are all regular symmetric
expressions on [a,b). Then, the product is in the maximal deficiency case at b
if and only if both T and T, are in the maximal deficiency case at b (i.e., if T,
and T, are in the classical limit-circle case at b, then the fourth-order expression
T1 T2 is in the limit-circle case at b; that is, d* = d~ = 4); see [4, Corollary 2] for
more details.

In connection with the application of Lemma 3.1 to get information about
the deficiency indices of symmetric differential expressions, we note that the
product of symmetric expressions is not symmetric in general. However, any
power of a symmetric expression is symmetric and so is called symmetric such
as T1T»T1, T1 T2 T3T2 Ty, and so forth, of symmetric expressions are symmetric.

REMARK 3.5. In the case of product operators, the sesquilinear (bilinear)
form [f,g] can be written similar to that in (2.15) and (2.20) as follows: for
f,ge€D(TiT2- - Ty),

n
_ z (_1)(k—1) (f[k—l]g[Zn—k] _f[Zn—k]g[k—l]) (x)

1---ly[znil])JZHXZn(flf[l]r"'!f[zn_l])T(X)

G, 011,[G, 21, [G bon]) Jonson (L b1, Lfsbalsees [ an]) ' (20),
3.7)

T for transposed matrix, where f[2n-kl k =1 ... 2n, are the quasiderivatives
of f, Jonxon = ((=1)" 0y on+1-5) (1 <7v,s <2n) and ¢, Po,..., P2y, are linearly
independent solutions of the equation [IT}_, (7;) Ju = 0. We refer to [7, 10, 11]
for more details.

The next result is a straightforward extension of [13, Section 18.1, Theorem
4], see also [2, 6, 7].

THEOREM 3.6. If the operator S with D(S) is a selfadjoint extension of the
minimal operator To(T1To -+ - Tn) = H?ZI[TO(TJ-)] with def[]_[;‘:1 To(Tj)l=de
[0,2n], then there exist Y,...,¥; in D(S) C D[T(T1T2---Ty)] satisfying the
following conditions:

(i) Yi,...,¥Y, are linearly independent modulo D[To(T1T2---Tyn)]1;
(ii) the sesquilinear form

¥, %" =0, jk=1,..,d; (3.8)
(iii) D(S) consists precisely of those v in D[T (T, T2 - - - T,)] which satisfy

[v,¥]2=0, j=1,...,d. (3.9)
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Conversely, given¥1,...,Y; in D[T (T, T2 - - - T,) ] Which satisfy (i) and (ii), the
set D(S) defined by (iii) is a selfadjoint domain.

PROOF. The proof is entirely similar to that in [13, Theorem 18.1.4] and
therefore omitted. O

REMARK 3.7. Itis well known from Naimark [13] that no boundary condition
is needed for a limit-point endpoint in order to get a selfadjoint realization of
H;‘:l (Tj)u = 0.1If both endpoints are LP, then no boundary conditions are nec-
essary and hence the minimal (maximal) operator associated with H;‘:l (1) in
L2 (a,b) is itself selfadjoint and has no proper selfadjoint extensions (restric-
tions). On the other hand, a boundary condition is needed for each limit-circle
endpoint.

The selfadjoint extensions are determined by boundary conditions imposed
at the endpoints of the interval I. The type of these boundary conditions de-
pends on the nature of the problem in the interval I.

THEOREM 3.8. Let T1,T2,...,Tn be a regular symmetric differential ex-
pressions on [a,b], then the domain D(S) of selfadjoint extension S of
To(T1T2- - Tp) = [1j=1[To(T;)] with def[[]7_, To(T;)] = 2n is the set of func-
tions y € D[T(T,T2 - - - T)] Which are such that

MY(a)+NY(b) =0, (3.10)

where
M = (k) <jk<ons N =(Bik)i<jr<on (3.11)
are 2n x 2n matrices over C, Y (+) = (y,yM ... y2n=IWT () T for transposed

matrix, and xjx and Bjx are complex numbers satisfying
MJM* = NJN*, Jonson = (=1)" 8y 2n..ox1-5s (1 <7,5 <2n). (3.12)

Conversely, if S is a selfadjoint extension of To(T T2 - - - Ty), then there exist
2n x 2n matrices M and N over C such that conditions (3.10) and (3.12) are
satisfied and D (S) is the set of functions y € D[T(T,T» - - - T) ] satisfying (3.10).

PROOF. Let the boundary conditions (3.10) and (3.12) be given. By Theorem
2.5, there are functions ¥1,...,¥2, in D[T (1,72 - - - T,) ] which satisfy the con-
ditions

—[2n—k] k wl2n—k]
Y (@) = (-D)%jk, Y¥;

()= (-1)* VB, jk=1,....,2n. (3.13)

Given (3.13), it is not difficult to show that (3.12) and (3.10) can be restated
in forms (3.8) and (3.9), respectively. It then follows from Theorem 3.6 that the
domain determined by (3.10) and (3.12) is the domain of selfadjoint extension
of To(T1 T2+ - Thn).
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Conversely, if S is a selfadjoint extension of Ty (T T2+ - - T ), then, by Theorem
3.6, D(S) is determined by the functions Yi,...,%¥;, in D[T(T;T2- - - T,)] sat-
isfying (3.8) and (3.9). If xjx and Bjx, 1 < j, k < 2n are then defined by (3.13),
it is clear that D(S) is determined by (3.10) and (3.12), see [7, 8, 13] for more
details.

In the following cases, the selfadjoint extension S of Ty (T T2 - - Ty) is de-
termined by boundary conditions in terms of certain Wronskians (sesquilin-
ear forms) involving y and 2n linearly independent solutions of the equation
(l_[;‘:1 T;)u = 0 at the singular endpoints.

CASE (i). Assume that both endpoints a and b are singular LC. By (3.7), (3.8),
and Lemma 2.6, if we put

¥, pxl(@) = (~DFajr, [Yj,pl(@)(b) = (-1)* VB, jk=1,...,2n,
(3.14)
then the boundary conditions of the function y € D[T(T, T2 - - - T,)] have the
same form (3.10), where M, N satisfy (3.11) and (3.12), and Y (-) = ([, P11,
o [V, P2 DTC).

CASE (ii). (a) Assume that the left endpoint a is regular and the right end-
point b is singular LC. Then, the boundary conditions of the functions y
D[T(T11T2---Ty)] in this case are given by (3.10), where

Y(a) = (y,y™M,..., y2n1) (),

Y(b) = (v, 1], [, 2n]) (D),
and the matrices M and N satisfy (3.12).

(b) If the left endpoint a is singular LC and the right endpoint b is regular,
then let

(3.15)

Y@ = ([v, 1], [y, don]) ' (@),

(3.16)
Y(b) = (v,y!,...,y2= (D),

and the rest is the same as in (a).

CASE (iii). Assume that one endpoint is LP endpoint and the other is either
regular or singular LC endpoint, then we have
(a) suppose a is LP. Then, the boundary conditions in this case on the func-
tions y € D[T(T1T2---Ty)] are (3.10) with M = 0O; that is,

NY(b) =0, 3.17)
where

Y(b) = (v,y1,...,y2= 1T (p) if b is regular,

(3.18)
Y(b) = ([y,d)ﬂ,...,[y,<;b2n])T(b), if b is singular and LC;
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(b) if b is LP, then it suffices to reverse the roles of a and b in (a).

CASE (iv). If both endpoints a and b are LP, then no boundary conditions
are necessary, see Remark 3.7. O

4. Discussion. In this section, we show how Cases (i), (i), (iii), and (iv) follow
from the sesquilinear form (3.7), Lemma 2.6, and Theorem 3.6. The cases d = 0,
n, 2n are considered separately.

CASE 1 (d = 0). In this case, both endpoints are LP endpoints and the mini-
mal operator To(T1 T2 - - - T,,) is itself selfadjoint and has no proper selfadjoint
extensions.

CASE 2 (d = n). In this case, one endpoint must be LP and the other either
regular or LC endpoint.

(2a) Assume that a is LP and b is regular. In this case, condition (iii) of
Theorem 3.6 becomes

[, 510 = [y, ¥](b)

n

= 3 () kD [yl gl gy (4)
k=1

=0, j=1,...,n.

If b is regular, then ‘Ifj(b),‘lfl[l](b),...,‘I{,[-Z"’l](b) can take an arbitrary values
and so (3.10) can be rewritten as

NY(b) =0, (4.2)

where N = (Bjk)1<j=n,1<k<2n and Y (b) = (y, ¥, .. y2n=1)T(p).

From Theorem 3.6(i), it follows that not all of ;1,..., ;2 can be zero since
this would imply, by Theorem 3.6, that ¥; € Do(T1T2---Ty) and j = 1,...,n.
condition (ii) becomes

NJonxonN* =0,  Jonxon = (_1)r57,2n---+1—s (1<r,s<2n). (4.3)

Hence, the selfadjoint boundary conditions are of the form (4.2) with real
Bji,...,Bj2n, notall zero j =1,...,n.

We have similar result if a is regular and b is LP.

(2b) Assume that a is LP and b is LC. In this case, condition (iii) becomes
(4.1), which is equivalent to

([?j!(bl]!"'![?jv¢27L])J2n><2ﬂ([y!¢l]l""[yr¢2n])T:Oy jzl,...,n. (44)
Set

(¥, dx](b) = (-1)* VB, j=1,...,m k=1,...,2n. 4.5)
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Then, the selfadjoint boundary conditions (iii) can be expressed as
NY(b) =0, (4.6)

where N = (Bji)1<j<n,1<k<2n and Y (b) = ([, p1],..., [y, P2n]) T (D). Again, by
Theorem 3.6(), Bj1,...,Bj,2n, j = 1,...,n are real and not all zero.
Similarly, for the case when a is LC and b is LP.

REMARK 4.1. Assume that a is LP. Comparing (4.6) with (4.2), note that
when y*-11(p) is replaced by [y, i 1(b), k = 1,...,2n, then the singular case
when b is LC is an exact parallel to the case when b is regular.

CASE 3 (d = 2n). In this case, each endpoint is either regular or LC. By (3.10),
(3.13) and proceeding as in Case 2, we find that condition (iii) is equivalent to
the equations

2n 2n
S oGy pl(@ + > By, dil(b) =0, j=1,...,2n. 4.7)
k=1 k=1

Theorem 3.6(1) guarantees the linear independence of 2n equations in (4.7),
and condition (ii) reduces to the following conditions:

n n
z ®js K, 2n—s+1 — Z o, 2n—s+1 ks
s=1 s=1

(4.8)

M=

n
Bjsﬁk,Zn—m—l - z Bj,Zn—s+1.8k5s Jk=1,...,2n.
s=1

s=1

We refer to [5, 6, 7, 10] for more details.

REMARK 4.2. It remains an open question as to characterize the singular
non selfadjoint boundary conditions provided that y and its quasiderivatives
are replaced by certain Wronskians (sesquilinear form) associated with non-
symmetric differential expressions involving y and elements of the maximal
domain.
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