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We introduce the notions of generalized join-hemimorphism and generalized Bool-
eanrelation as an extension of the notions of join-hemimorphism and Boolean rela-
tion, respectively. We prove a duality between these two notions. We will also define
a generalization of the notion of Boolean algebra with operators by considering a
finite family of Boolean algebras endowed with a generalized join-hemimorphism.
Finally, we define suitable notions of subalgebra, congruences, Boolean equiva-
lence, and open filters.
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1. Introduction. In [4], Halmos generalizes the notion of Boolean homomor-
phism introducing the notion of join-hemimorphism between two Boolean al-
gebras. A join-hemimorphism is a mapping between two Boolean algebras pre-
serving 0 and V. As it is shown by Halmos in [4] and by Wright in [10], there
exists a duality between join-hemimorphism and Boolean relations. On the
other hand, Jonsson and Tarski in [5, 6] introduce the class of Boolean alge-
bras with operators (BAO). They showed that a Boolean algebra endowed with
a family of operators can be represented as a subalgebra of a power algebra
% (X),where the operators of % (X) are defined by means of certain finitary rela-
tions on X. This class of algebras plays a key role in modal logic, and has very
important applications in theoretical computer science (see, e.g., [1, 2]). The
Halmos-Wright duality can be extended to a duality between BAO and Boolean
spaces endowed with a set of finitary relations, which are a generalization of
the Boolean relations. The aim of this paper is the study of an extension of
these dualities.

In Section 2, we recall some notions on Boolean duality. In Section 3, we
define the notion of generalized join-hemimorphism as a mapping between a
finite product of a family of Boolean algebras {B,...,B,} into a Boolean al-
gebras By such that it preserves 0 and Vv in each coordinate. We will prove
that there exists a duality between generalized join-hemimorphism and cer-
tain (n + 1)-ary relations called generalized Boolean relations. This duality
extends the duality given by Halmos and Wright. In Section 4, we define the
generalized modal algebra as a pair ({By, B1,...,Bxn}, ¢), where By, B1,...,B; are
Boolean algebras and ¢ : [[/-;B; — By is a generalized join-hemimorphism.
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In Section 5, we define the notions of generalized subalgebra and generalized
Boolean equivalence and we prove that these notions are duals. Similarly, in
Section 6, we introduce the generalized congruences and generalized open fil-
ters and we will prove that there exists a bijective correspondence between
them.

2. Preliminaries. A topological space is a pair (X,0(X)), or X, for short,
where O(X) is a subset of ?(X) that is closed under finite intersections and
arbitrary unions. The set 0(X) is called the set of open sets of the topological
space. The collection of all closed sets of a topological space (X,0(X)) is de-
noted by 6(X). The set Clop(X) is the set of closed and open sets of (X,0(X)).
A Boolean space (X,0(X)) is a topological space that is compact and totally
disconnected, that is, given distinct points x,y € X, there is a clopen subset U
of X such that x e U and y ¢ U. If (X,0(X)) is a Boolean space, then Clop(X)
is a basis for X and is a Boolean algebra under set-theoretical complement and
intersection. Also, the application

Hyx:X — Ul(Clop(X)), (2.1)

given by Hy(x) = {U € Clop(X) : x € U}, is a bijective and continuous func-
tion. To each Boolean algebra A, we can associate a Boolean space Spec(A)
whose points are the elements of UL(A) with the topology determined by the
clopen basis B4(A) = {Ba(a) :a € A}, where B4 : A — P(UL(A)) is the Stone
mapping defined by

Ba(a) = {P € UL(A):a € P}. (2.2)

By the above considerations, we have that, if X is a Boolean space, then X =
Spec(Clop(X)), and if A is a Boolean algebra, then A = Clop(Spec(A)).

Let B be a Boolean algebra. The filter (ideal) generated by a set H < A will
be denoted by F(H) (I(H)). The lattice of all filters (ideals) of B is denoted by
Fi(A) (Id(A)).

Let Y be a subset of a set X. The theoretical complement of Y is denoted by
Ye=X-Y.

3. Generalized join-hemimorphisms

DEFINITION 3.1. Let By,By,...,B, be Boolean algebras. A generalized join-
hemimorphism is a function ¢ : H?:l B; — By such that
(1) <>(a1,...,ai,l,O,aHl,...,an) = 0,
(2) O(ai,...,ai-1,X vV ¥Y,Qi+1y---,an) = 0(ai,...,ai-1,X,ai+1,---,an) V
O(A1yeeeyAio1,Y Aty An)-
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It is easy to see that each generalized join-hemimorphism h : []~; B; — By
is monotonic in each variable, that is, x,y € B;, x < v, then

O(Ary.., X, an) <0(a1,...,V,...,an). (3.1)

A generalized join-hemimorphism h : [}, B; — By defines a generalized meet-
hemimorphism 0O : [[/~, B; — By as follows:

o(ai,az,...,ay) = =0 (~ay,~az,..., "dy). (3.2)

It is clear that O preserves 1 and A, and is monotonic in each variable.

Let By, By, ...,B, be Boolean algebras and let ¢ : [/~ B; — By be a generalized
join-hemimorphism. Let F = Fy xF> X - - - X F,, where F; is a filter of B;, for
1 < i < n. We consider the set

O(F)={y €By: (Ix; €F;) (0(x1,X2,...,Xn) <¥)}. (3.3)

THEOREM 3.2. Let By, By,...,B, be Boolean algebras and let ¢ : H?:l B; — By
be a generalized join-hemimorphism. Let F; be a proper filter of B;, for1 <i <mn.
Then

(1) ©(F) is a proper filter of Bo,
(2) if P € UL(By) and O(F) c P, then there exist Q;eUlBj),forl<i<n
such that

FicQi, QixQaX--+XQu<c o 1(P). (3.4)

PROOF. (1) Itis easy to take into account that the function ¢ is monotonic
in each variable.
(2) Consider the family

9’1 = {Ql EFi(Bl) ZF1 EQl, O(Ql XF2X' . 'XFn) EP}. (35)

We note that %, + @ because F; € %;. By Zorn’s lemma, there exists a maximal
element Q; in %;. We prove that Q; € UL(B;). Let a € B, and suppose that a,
—a ¢ Q,.Consider the filter F, = F(Q:U{a}) and F.;, = F(Q; U {—a}). Since q;
is maximal in %, then F,, F-, ¢ %;. So, there exist (x1,X2,...,Xn) € F; X F» X
-« XFyand (¥1,V¥2,...,Vn) € Fog XF> X - - - X F,, such that ¢ (x1,x2,...,X,) ¢ P
and ¢ (y1,Y2,...,¥n) ¢ P. Since x; € F; and y; € F-4, then q; Aa < x; and
q> A na < yp, for some q1,q> € Q1. As Q; is a filter of By, g = q1 Aq2 € Q1,
gra <xp,and g A—a <y, and as each F; is a filter, we get z; = x; A y; € Fj,
for i =2,...,n. Then

0(q,z2y.-0,2n) =0(gqA(av-a),za,...,zn)
=0((@rna)v(ar—a),zz,...,zn) (3.6)
=90

(ana,zz,...,zn) VO(qn—a,zs,...,zn) € P.
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If 0(gqrna,zo,...,zy) € P, then

o(gra,za,...,zn) < 0(qLAa,X2,...,Xn) < O(x1,X2,...,Xn) EP, (3.7)

which is a contradiction. If ¢(q A —~a,z>,...,zy) € P, then we deduce that
O(¥V1,¥2,...,Yn) € P, which also is a contradiction. Thus, a € Q; or ~a € Q;.

Suppose that we have determinate ultrafilters Q1,...,Qy in By, ..., By, respec-
tively, such that F; € Q;, for 1 <i <k, and ¢(Q1 X ---XQyX---xF,) € P.
Consider the set

Fre1 = 1Qr+1 € Bry1:Fi € Qi, 0(Qu X+ - XQpre1X -+ - XFy) € P} (3.8)

We note that ¥y, + @ because Fy.1 € Fi.1. By the Zorn’s lemma, there
exists a maximal element Q. in F.1. As in the above case, we can prove
that Qr+1 € UL(Bi1).

Therefore, we have ultrafilters Q,,...,Q, in By, ..., By, respectively, such that
FicQiand ¢(Q1xXQ2X---XQy) < P.Itis easy to check that the last inclusion
implies that Q; X Q2 X - -+ X Q, S O~ 1(P). O

EXAMPLE 3.3. Let Xy,...,X, be sets. Let R c [[,X;. Then, the function
OR:P(Xq) X+ - XP(Xy) — P(Xo), defined by

QR(U1,U2,...,Un) = {X() EX()ZR(X())O(U1><U2><- . -XUn) +* @}, (3.9)

where R(xo) = {(x1,...,Xn) € ]_[{‘:lXi 1 (X0,X1,.-.,Xn) € R}, is a generalized
join-homomorphism.

DEFINITION 3.4. Let Xj,...,X, be Boolean spaces. Consider a relation R <
[T, Xi. Then R is a generalized Boolean relation if
(1) R(x)is aclosed subset in the product topology of X; x - - - X Xj,, for each
x € Xo;
(2) for all U; € Clop(X;), with 1 <i<n, Og(Uy,...,Uy) € Clop(Xp).

We note that if 1 < i < 2, then we have the notion of Boolean relation as
defined in [4].

THEOREM 3.5. Let By, Bi,...,B, be Boolean algebras and let ¢ : ]~ B; —
By be a generalized join-hemimorphism. Then the relation R, < [~ UL(B;),
defined by

(P,Py,...,Py) €ERy = P1 X ---xXPy,c 07 1(P), (3.10)
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is a generalized Boolean relation such that

Br, (O(ar,...,an)) = Or, ((Bs, (@1),...,Br, (an))), (3.11)

for all (ai,...,an) € [T~ Bi.

PROOF. We prove that for P € Ul(By),

Ro(P) =({(Bg, (a1),..., Br, (an))  : 0(ay,...,an) ¢ P}. (3.12)

If (Pl,...,Pn) ER()(P) and

(P1,...,Pp) & () {(Bs (@1),...,Br, (an)) : O(ar,...,an) & P}, (3.13)

then, for some ¢(ai,...,an) € P, we get (Pi,...,Pn) € (Bp,(a1),...,Bs,(an)),
that is, a; € P; for 1 < i < n. It follows that ¢(aq,...,a,) € P, which is a con-
tradiction. The other direction is similar. Thus, R (P) is a closed subset of
H?:l Ul(Bi)-

Equality (3.11) follows by Theorem 3.2. |

We note that the relation Ry = H?:O Ul(B;) defined in Theorem 3.5 also can
be defined using the notion of generalized meet-hemimorphism O in the fol-
lowing way:

(P,Py,...,Py) €ERy = O Y(P) S Py +---+Pp, (3.14)

where Py + - - -+ Py, = {(a1,...,an) €[~ Bi:a; € P;, for some 1 <i<n}.

LEMMA 3.6. Let Xy,...,X;, be Boolean spaces. Consider a relation R <
[Ty Xi. Suppose that for all U; € Clop(X;), with 1 < i <n, Or(Ui,...,Uy) €
Clop(Xy). Then the following conditions are equivalent:

(1) R is a generalized Boolean relation;

(2) if(HxO(Xo),...,HXn (xn)) € Rog, then (xoq,...,xXn) € R.

PROOF. (1)=(2).Suppose that (Hx, (x¢),...,Hx, (xn)) € R¢, and (xo,...,Xn)
¢ R. Since R(xg) is a closed subset of ]_[?:lXi, there exist U; € Clop(X;) such
that R(xo) N (Un,...,U,) = @ and x; € U;. Then, xo ¢ Or((U1,...,Uy)), that is,
(Ui,...,Un) € Hx, (x1) X+ + - XHx, (x5,), which is a contradiction.

(2)=(1). We have to prove that R(x) is a closed subset of Xy x --- x Xj.
Suppose that (x1,...,Xx,) ¢ R(x). Then, (Hy,(x),...,Hx, (xn)) ¢ Ro, that is,
for each 1 < i < n, there exist U; € D; such that R(x) n (Uy,...,Uy) = @ and
x; € U;. Thus, R(x) is a closed subset. O



686 SERGIO CELANI

By the above results, we deduce that there exists a duality between general-
ized Boolean relations and generalized join-hemimorphisms.

THEOREM 3.7. Let Xy,...,X, be Boolean spaces. Let R < H?:O X; be a gen-
eralized Boolean relation. Then the mapping O : Clop(X;) X - - - X Clop(Xy,) —
Clop(Xy), defined as in Example 3.3, is a generalized join-hemimorphism such
that (Hy,(x0),...,Hx, (xn)) € Ro, if and only if (xo,...,xn) € R, for all
(Xo,...,Xn) S H?:()Xi-

PROOF. It is clear that if (xo,...,xn) € R, then (Hy,(X0),...,Hx, (xn)) €
Ro,- The other direction follows by Lemma 3.6. ]

As an application of the above duality, we prove a generalization of the result
that asserts that the Boolean homomorphisms are the minimal elements in the
set of all join-hemimorphisms between two Boolean algebras (see [3]).

Let {B;} = {By,...,By} be a family of Boolean algebras. Let GJH([]/-, Bi,Bo)
be the set of all generalized join-hemimorphisms between H?:l B; and By en-
dowed with the pointwise order. Similarly, let GBR([];-,X;) be the set of all
generalized Boolean relations defined in [}, X; endowed with the pointwise
order. Let 01 and ¢, € GJH(IT{, B;, Bo) and let Ry, and Ro, € GBR(ITi_o UL(B;))
be the associate generalized Boolean relations. It is clear that ¢; < ¢, if and
only if R<>1 < R<>2.

THEOREM 3.8. An element of GBR([[/,X;) is minimal if and only if it is a
continuous function.

PROOE. Let R c []}',X; be a minimal element in GBR([]}L,X;). We prove
that it is a function. Let x € X, and let X,y € [, X; such that X,y € R(x).
Suppose that X # y. Then, x; + y; for some 1 < i < n. Then, there exist
U; € Clop(X;) such that x; € U; and y; ¢ U;. Consider the sequence U=
(X1,-.-,Ui,..., Xn). Then, ¥ € U and vy ¢ U. We define an auxiliary relation
Ry T1ito Xi by

R(x), if x ¢ 0r(U),
Rj(x) = i i (3.15)
R(x)nU, if x € og(U).

We prove that R; is a generalized Boolean relation. It is clear that R;; is closed.
Let V = (Vi,...,Vy) € Clop(X;) X - - - X Clop(Xy,). Then

O, (V) = {x € Xo:Ry(x)nV + O}
={xeXo:xeor(U), RX)NUNV = @}
) ) (3.16)
U{xeXo:x ¢ Or(U), R(x)nV = O}

= QR(UOV) U QR(V) N QR(U)C € Clop (X())
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Thus, R is a generalized Boolean relation. It is clear that R;; C R, that is, R is
not a minimal element in GBR(H{LO Xi), which is a contradiction. Thus, R is a
continuous function.

If R is continuous function, then it is easy to see that R is a minimal element
in GBR([T\-o X;). O

4. Generalized modal algebras. Now we consider a finite family of Boolean
algebras endowed with a generalized join-hemimorphism. This class of struc-
tures is a generalization of the notion of Boolean algebra with operators. In
the sequel, we will write {X;} to denote the family of sets {X;:1 <i <mn}.

DEFINITION 4.1. Let {B;} be a family of Boolean algebras. A generalized
modal algebra is a pair B = ({B;}, <), where ¢ : H{‘:lBi — By is a generalized
Jjoin-hemimorphism.

DEFINITION 4.2. A generalized modal space is a structure ¥ = ({X;},R),
where Xy, X1,...,X, are Boolean spaces and R is generalized Boolean relation.

DEFINITION 4.3. Let B = ({B;j},0p) and A = ({A;},04) be two generalized
modal algebras. A generalized homomorphism between B and A is a finite se-
quence h = (hg,hy,...,hy,) such that

(1) h;:B; — A; is a Boolean homomorphism for each 1 <i <n,
(2) ho(Op(a,...,an)) = Oalhi(ar),...,hn(an)).

We write h: B — A to denote that there exists a generalized homomorphism
h between the generalized modal algebras B and A. We say that a generalized
homomorphism h between two generalized modal algebras A and B is injective
if each Boolean homomorphism h;, 1 < i < n, is injective, and h is surjective
if each h; surjective. Finally, h is a generalized isomorphism if h is bijective
generalized homomorphism.

THEOREM 4.4. Let B = ({B;},90) be a generalized modal algebra. Then the
structure ¥(B) = ({UL(B;)},Ro) is a generalized modal space such that B is
isomorphic to the generalized modal algebra A(%(B)) = ({Clop(UL(B;))},Roy)-

PROOF. Itis clear that R, is a generalized join-hemimorphism. By Theorem
3.5 we have that 8 = (Bg,,Bs,,-..,Bs,) 18 a generalized homomorphism, and
since each B, : B — Clop(Ul(B;)), for 1 < i < n, is a Boolean isomorphism,
then B is an generalized isomorphism. 0

DEFINITION 4.5. Let & = ({X;},R) and 9, = ({Y;},S) be two generalized
modal spaces. A generalized morphism between % and 4 is a sequence f =

(fo,f1,---,fn) such that
(1) fi:Xi—Y; are continuous functions,

(2) if (x0,x1,...,Xn) €R, then (fo(x0), fi(x1),...,fun(xn)) €S,
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(3) if (fo(x0),Y1,...,Yn) €S, then there exist x; € X;, with 1 < i < n, such
that (xo,x1,...,Xn) € R and f;(x;) = y; with 1 <i<n.

We write f : % — 4 to denote that there exists a generalized morphism f
between the generalized modal spaces % and .

PROPOSITION 4.6. Let % = ({X;},R) and 44 = ({Yi},S) be two generalized
modal spaces. If f : F — %4 is a generalized morphism, then the map A(f) :
A(9) — A(F), defined by A(f) = (fy',...,fx}) with f': Clop(Y;) — Clop(X;),
is a generalized homomorphism.

PROOF. It is clear that each map fi‘1 : Clop(Y;) — Clop(X;) is a Boolean
homomorphism. Let U; € Clop(X;), 1 <i < n, and xo € X such that x( €
f(;l(Og(Ul,...,Un)). Then S (fo(x0)) N (Uy,...,Un) = @.1t follows that there ex-
ist y; € Y;,withi =1,...,n, such that (fo(x0),¥1,...,¥n) € S.Since f is a gener-
alized morphism, there exist x; € X;, with i = 1,...,n, such that (x¢,x1,...,X5)
€ R and fi(x;) = v;. So, x; € fi’l(Ui), with 1 <i <n and this implies that

R(x0) N (fi(U1),ees S ' (Un)) #+ D, (4.1)

that is, xo € Or (f7 1 (U),-.., fir (Un)).
The other direction is easy and left to the reader. |

THEOREM 4.7. Let B = ({B;},¢p) and A = ({A;},04) be two generalized
modal algebras and let h = (hy,...,hy) be a generalized homomorphism. Then
the sequence 7 (f) = (hg',...,h;!) is a generalized morphism between the dual
spaces A(F(A)) and A(F(B)).

PROOF. Itis clear that each hi’1 :UL(B;) — UlL(A;) is a continuous function.
We prove conditions (2) and (3) of Definition 4.5.

(2) Let (Py,...,Py) € Ry, and let (ay,...,an) € hy'(Py) x - -+ xh,,' (Py). Since
Px---xP, c 05" (Py),

OA(hl(al),...,hn(an)) = ho(OB(al,...,an)) e Py. 4.2)

S0, (a1,...,an) € Oa(hy*(Py)).
(3) Let (h7(Py),Q1,...,Qn) € Ro,. We prove that

Oa(h1(Q1) X -+ -xXhu(Qn)) < Po. 4.3)
Let g; € Q;, with 1 < i <, such that (h;(q1),...,hn(qn)) ¢ 03" (Py). Then

OA(hl(QI)lyhn(QH)) = hO(QB(qll---sQH)) ¢ Po, (4.4)
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that is, (q1,...,qn) ¢ 05" (hg'(Py)), which is a contradiction. Thus,
Oa(h1(Q1) % ---xhyu(Qn)) € Po. (4.5)
We consider the filter F; = F(h;(Q;)), for 1 <i < n. Then it is clear that
FixFyx---xF, <03 (Py). (4.6)

By Theorem 3.2, there exist ultrafilters P; € Ul(A;), for 1 < i < n, such that
Fic Piand Py x Py x --- X Py, < 031 (Py). Since hi(Q;) € F; < P;, we get Q; =
hil(P),1<i<n. O

We denote by 4.l the class of generalized modal algebras with generalized
homomorphisms and denote by %€ the class of generalized modal spaces
with generalized morphism. By the above results and by the Boolean duality,
we can say that the classes G.ls{ and 9.€ are dually equivalents.

5. Generalized subalgebras. It is known that there exists a duality between
Boolean subalgebras of a Boolean algebra A and equivalence relations defined
on the dual space Ul(A) [7]. The duality is given as follows. Let X be a Boolean
space and let E be an equivalence relation on X. A subset U < X is said to be
E-closed if for any x,y € X, such that (x,y) € F and x € U, then y € U, that s,

Us={yeX:(x,y)€E, xeU} cU. (5.1)

A Boolean equivalence is an equivalence E defined on X such that, for any
x,y € X, if (x,y) ¢ E, there exists an E-closed U € Clop(X) such that x €
U and y ¢ U. The Boolean subalgebra of Clop(X) associated with a Boolean
equivalence E is defined by

B(E) = {U € Clop(X) : Ug = U}. (5.2)

If A is a Boolean algebra and B is a Boolean subalgebra of A, then the relation
E(B) c Ul(A)?, given by

(P,Q) € E(B) = PnB=QnNB, (5.3)

is a Boolean equivalence.

THEOREM 5.1 [7]. Let A be a Boolean algebra. Then there exists a dual order-
isomorphism between Boolean subalgebras of A and Boolean equivalences de-
fined on UL(A).

DEFINITION 5.2. Let B = ({B;}, ¢) be a generalized modal algebra. A subal-
gebra of B is a sequence A = (Ay,...,Ay) such that, foreach 0 <i<mn, A;is a
subalgebra of B;, and for each d € []}L, B;, we get ¢ (d) € By.
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DEFINITION 5.3. Let & = ({X;},R) be a generalized modal spaces. A gen-
eralized Boolean equivalence is a sequence E = (Egy,E1,...,E,) such that, for
each 0 < i < n, E; is a Boolean equivalence of X;, and if (a,b) € Ey and
(a,x1,...,Xn) € R, then there exists (y1,...,Vn) € HLXI', such that (b, yy,...,
Yn) €R and (x4,y;) € Ej, foreach1 <i<n.

THEOREM 5.4. Let B = ({B;},¢) be a generalized modal algebra. Then the
following conditions are equivalent:

(1) A= ({A;},9) is a subalgebra of B;

(2) the sequence E5 = (Ep,,Egp,,...,Ep,) is a generalized Boolean equivalence.

PROOF. (1)=(2). Let A = ({A;}, ) be a subalgebra of B. Let Py,Qqo € UlL(By)
such that Py n Ayg = Qo N Ap and let (Py,Ps,...,P,) € Rg. We consider the set
O(F(PyNA1),...,F(P,NnAy)), where F(P;NA;) is the filter generated by the set
P;nA;. We prove that

O(F(P1NAy),....,F(P,nAy)) € Qp. (5.4)

Let d = (ai,...,ay) witha; e P,nA;,for1 <i<mn.Sinced € Py X---xXP, S
0~1(Py), ¢d € Py. As d € []L; A; and A is a subalgebra of B, then ¢d € Py €
Ay = Qo N Ag. Thus, 0d € Qo and (5.4) is valid. By Theorem 3.2, there exist
ultrafilters Q; € Ul(B;), for 1 < i < n, such that P;nA; = Q; N A;. Therefore,
(Qo0,Q1,...,Qn) ERpand P;iNnA; =QinA;foreach1 <i<n.

(2)=(1). Suppose that E4 = (Eg,,Ep,,...,Es,) is a generalized Boolean equiv-
alence. Let d € [/~ A; and suppose that 0d ¢ Ag. Consider the set in By,

(F(0d)nAp)u{-0d}. (5.5)
This set has the finite intersection property. Suppose the contrary. Then, there
exists x € F(0d) n Ag such that x A =04 = 0. It follows that ¢0ad < x < 04,
that is, x = ¢0d € Ap, which is a contradiction. Thus, the set (5.5) has the finite

intersection property. So, there exists an ultrafilter Py € Ul(By) such that
F(Od)ﬁAQEPo, ﬁOdepo. (5.6)

Consider the set

{Od}up()ﬂA(). (5.7)
This set has the finite intersection property, because in contrary case there
exists p € Pyn Ag such that ¢4 < —p. This implies that —-p € F(0d) N Ay € Py,

which is a contradiction. Thus, there exists Qo € UL(By) such that

dd € Qo, PonAg=QpnNAy. (5.8)



GENERALIZED JOIN-HEMIMORPHISMS ON BOOLEAN ALGEBRAS 691

Since ¢d € Qy, there exists (Qy,...,Qy) € [1i-; UL(B;) such that

(QO!QI!“‘!QTL)ERB! de(Qll'-'!QTl)' (59)

By hypothesis, there exists (Py,...,P;) € Rg(Py) such that P,NnAg = Q;N Ay, for
1 <i < n.Hence, a; € Q; n Ay, we have ¢d € Py, which is a contradiction by
(5.6). Thus, ¢a € Ao. O

6. Generalized congruences. Recall that, given a modal algebra B, there
exists a bijective correspondence between congruences of B and filters F of
B closed under O, that is, Oa € F when a € F (see, e.g., [8, 9]). This class of
filters are called open filters. In this section, we introduce a generalization of
the notion of congruences and open filter.

Let B be a Boolean algebra. Recall that if F is a filter of B, the relation

OF)={(x,¥):Af :xAf=yAf} (6.1)
is a Boolean congruence. On the other hand, if 6 is a Boolean congruence, then
F(0)={x€B:(x,1) €0} (6.2)

is a filter of B such that O(F(0)) = 0 and F(O(F)) = F.
Let B = ({B;}, ¢) be a generalized modal algebra, let F; be afilter of B;, 1 <i <
n,and let Fy +---+F, = {(ay,...,an) € H?:lBi ra; € F;, for some 1 <i<n}.

DEFINITION 6.1. Let B = ({B;}, ¢) be a generalized modal algebra. A gener-
alized modal filter of B is a sequence F = (Fy,F,,...,F,) such that

(1) F;is afilter of B;, 0 <i<mn;

(2) forany d € F1 +---+F,, 0d € F,.

DEFINITION 6.2. Let B = ({B;}, ¢) be a generalized modal algebra. A gener-
alized modal congruence of B is a finite sequence

0= (0o,...,00) (6.3)

such that
(1) 6; is a Boolean congruence of B;, for each 0 <i < n;
(2) if (ai,b;) € 0; with 1 <i < n, then (¢(ai,...,an),0(b1,...,by)) € Oy.

THEOREM 6.3. LetB = ({B;}, ) be a generalized modal algebra. There exists
a bijective correspondence between congruences of B and the generalized modal
filter of B.
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PROOF. Let O = (0y,...,0,,) be a generalized congruence of B. Define the
sequence F(0) = (F(6y),...,F(8,)). Let (ai,asz,...,a,) € F(61) +---+F(0,).
Then there exist some 1 < j < n such that (a;,1) € ;. Since (a;,a;) € 0; for
every 1 <i<n, then

(o(ai,...,aj,...,an),0(as,...,1,...,an)) = (0o(ai,...,aj,...,an),1) € 6o.
(6.4)
Thus, 0(ay,...,a;,...,an) € F(0o).

Let F = (Fy,F1,...,Fy) be a generalized modal filter. Consider the sequence
O0(F) = (0(Fy),...,0(F)). Let (a;,b;) € O(F;), for 1 < i < n. Then, for each
1 < i < n, there exist f; € F; such that a; A fi = b; A fi. We prove that there
exists fy € Fy such that O(ai,...,an) A fo = O(by,...,by) A fo. Suppose the
contrary, that is, for every fy € Fy,

o(ay,...,an) A fo # 0(b1,...,by) A fo. (6.5)
Then there exists Py € UL(Aq) such that
Fo < Py, o(ay,...,an) € Po, a(by,...,by) ¢ Py. (6.6)
So, there exists (Py,...,Py) € Rg(Py) such that
a; ¢ P, V<i<n. (6.7)

Since o(ai,...,an) € Py, thena; € Pj,forsomel < j <n,andas (0,..., fj,...,0)
€ Fy+---+Fy, we get a(0,...,f},...,0) € Fy € Py. It follows that f; € P; and
since aj A fj = bj A fj, bj € Pj, which is a contradiction by (6.7). Thus, there
exists fo € Fy such that o(a,...,an) A fo = 0(by,...,by) A fo. O

REFERENCES

[1] M. M. Bonsangue and M. Z. Kwiatkowska, Re-interpreting the modal u-calculus,
Modal Logic and Process Algebra. A Bisimulation Perspective (Amsterdam,
1994) (A. Ponse, M. de Rijke, and Y. Venema, eds.), CSLI Lecture Notes,
vol. 53, CSLI Publications, California, 1995, pp. 65-83.

[2]  C.Brink and I. M. Rewitzky, Finite-cofinite program relations, Log. J. IGPL 7 (1999),
no. 2, 153-172.

[3] S. Graf, A selection theorem for Boolean correspondences, J. reine angew. Math.
295 (1977), 169-186.

[4]  P.R.Halmos, Algebraic Logic, Chelsea Publishing, New York, 1962.

[5] B. Jénsson and A. Tarski, Boolean algebras with operators. I, Amer. J. Math. 73
(1951), 891-939.

[6] |, Boolean algebras with operators. II, Amer. J. Math. 74 (1952), 127-162.

[7] S. Koppelberg, Topological duality, Handbook of Boolean Algebras. Vol. 1 (J. D.
Monk and R. Bonnet, eds.), North-Holland Publishing, Amsterdam, 1989,
pp- 95-126.

[8] M. Kracht, Tools and Techniques in Modal Logic, Studies in Logic and the Foun-
dations of Mathematics, vol. 142, North-Holland Publishing, Amsterdam,
1999.



GENERALIZED JOIN-HEMIMORPHISMS ON BOOLEAN ALGEBRAS 693

[9] G. Sambin and V. Vaccaro, Topology and duality in modal logic, Ann. Pure Appl.
Logic 37 (1988), no. 3, 249-296.
[10] F. B. Wright, Some remarks on Boolean duality, Portugal. Math. 16 (1957), 109-
117.

Sergio Celani: Departamento de Matematica, Facultad de Ciencias Exactas, Universi-
dad Nacional del Centro, 7000-Tandil, Provincia of Buenos Aires, Argentina
E-mail address: scelani@exa.unicen.edu.ar


mailto:scelani@exa.unicen.edu.ar

Journal of Applied Mathematics and Decision Sciences

Special Issue on

Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in
a single loading unit which uses successive various modes
of transport (road, rail, water) without handling the goods
during mode transfers. Intermodal transport has become
an important policy issue, mainly because it is considered
to be one of the means to lower the congestion caused by
single-mode road transport and to be more environmentally
friendly than the single-mode road transport. Both consider-
ations have been followed by an increase in attention toward
intermodal freight transportation research.

Various intermodal freight transport decision problems
are in demand of mathematical models of supporting them.
As the intermodal transport system is more complex than a
single-mode system, this fact offers interesting and challeng-
ing opportunities to modelers in applied mathematics. This
special issue aims to fill in some gaps in the research agenda
of decision-making in intermodal transport.

The mathematical models may be of the optimization type
or of the evaluation type to gain an insight in intermodal
operations. The mathematical models aim to support deci-
sions on the strategic, tactical, and operational levels. The
decision-makers belong to the various players in the inter-
modal transport world, namely, drayage operators, terminal
operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in
time horizon as in terms of operators are:

e Intermodal terminal design

e Infrastructure network configuration

e Location of terminals

e Cooperation between drayage companies

o Allocation of shippers/receivers to a terminal

e Pricing strategies

e Capacity levels of equipment and labour

e Operational routines and lay-out structure

e Redistribution of load units, railcars, barges, and so
forth

e Scheduling of trips or jobs

e Allocation of capacity to jobs

e Loading orders

e Selection of routing and service

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/jamds/guidelines.html. Prospective
authors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due June 1, 2009

First Round of Reviews | September 1, 2009

Publication Date December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute
(IMOB), Hasselt University, Agoralaan, Building D, 3590
Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational
Research, Statistics and Information for Systems (MOSI),
Transport and Logistics Research Group, Management
School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel,
Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/guidelines.html
http://www.hindawi.com/journals/jamds/guidelines.html
http://mts.hindawi.com/
mailto:Gerrit.Janssens@uhasselt.be
mailto:Cathy.Macharis@vub.ac.be

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

