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ABSTRACT. 1In this paper, we continue the study of quasi-complemented
algebras and complemented algebras. The former are generalizations of the
latter and were introduced in [4] and studied in [4] and [11]. Some re-

sults are proved.
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1. INTRODUCTION.

Quasi-complemented algebras, which are generalizations of complemented
algebras, were introduced in [4] and studied in [4] and [11]. 1In this paper,
we continue the study of these two classes of algebras.

In Section 3, we introduce the concept of continuous quasi-complementor

on a semi-simple annihilator Banach algebra. This is similar to the concept
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of continuous complementor given by Alexander in [1]. Let A be a simple
annihilator Banach algebra such that x e clA(xA) for all x in A, If A
is infinite dimensional, we show that every quasi-complementor on A 1is con-
tinuous. This result is not true if A 1is finite dimensional. In this case,
we obtain that a quasi-complementor q on A 1is continuous if and only if
the set Eq of all gq-projections is closed and bounded in A. By using these
results, we give a characterization of continuous quasi-complementors (Theorem
3.4).

Section 4 is devoted to the study of uniformly continuous quasi-complemen-
tors. Let A be a semi-simple annihilator Banach algebra in which x € clA(xA)
for all x in A and q a quasi-complementor on A. Suppose that A has no
minimal left ideals of dimension less than three. Then we show that A 1is a
dense subalgebra of some dual B*-algebra B and rRY = L(R)*/\ A for all closed
right ideals R of A. Also every continuous complementor on A 1is uniformly

continuous.

2. NOTATION AND PRELIMINARIES.

For any subset S in an algebra A, let EA(S) and rA(S) denote the
left and right annihilators of S in A, respectively. Let A be a Banach
algebra. Then A 1is called an annihilator algebra, if for every closed left
ideal J and for every closed right ideal R, we have rA(J) = (0) 1if and
only if J = A and EA(R) = (0) if and only if R = A, If lA(rA(J)) =7
and rA(lA(R)) =R, then A 1is called a dual algebra.

Let A be a Banach algebra which is a subalgebra of a Banach algebra B.
For each subset S of A, cl(S) (resp. clA(S)) will denote the closure of
S in B (resp. A). Also 2(S) and r(S) (resp. EA(S) and rA(S)) de-
note the left and right annihilators of S in B (resp. A). We write

| for the norm on A and for the norm on B.
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Let A be a Banach algebra and let Lr be the set of all closed right
ideals in A. Following [4], we shall say that A 1is a (right) quasi-comple-
mented algebra if there exists a mapping q : R ~» RY of Lr into itself
having the following properties:

RN RY = (0) Rel) ; (2.1)
®Hd =g Rel); (2.2)
. q q

if Rl_‘_) R2, then RZD R1 (Rl’ R2 € Lr)° (2.3)

The mapping q 1is called a (right) quasi-complementor on A. We know

that R + RV 1is always dense in A, AY = (0) and (0)q = A (see [4]).

Hence RY = (0) if and only if R = A.

A quasi-complemented algebra A 1is called a (right) complemented algebra
if it satisfies:

R+RY =2 (Rel). (2.4)

In this case, the mapping q 1is called a (right) complementor on A
(see [6, p. 651, Definition 1]).

Let A be a semi-simple Banach algebra with a quasi-complementor q. A
minimal idempotent f in A 1is called a gq-projection if (fA)q = (1 - £)A.
The set of all g-projection in A 1is denoted by Eq. By Lemma 3.1 in [11],
every non-zero right ideal of A contains a gq-projection.

In this paper, all algebras and linear spaces under consideration are over
the complex field. Definitions not explicitly given are taken from Rickart's
book [5].

We end the section with two new examples of complemented and quasi-comple-
mented algebras.

EXAMPLE 1. Let A be a dual B*-algebra and ¢ a symmetric norming function.

(0)
®

Then the algebra A given in [10, p. 293] is a complemented algebra with

the complementor q : R + ¢ (0)(R)*. (Theorem 3.4 in [11]).
A
¢
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EXAMPLE 2. Let G be an infinite compact group with the Haar measure and A
the algebra of all continuous functions on G, normed by the maximum of the
absolute value and Ll(G) the group algebra. It is well known that A and
Ll(G) are dual A*-algebras which are not two-sided ideals of their completions
in an auxiliary norm. It is easy to see that the mapping q : R > lA(R)*

(resp. R > 1 )(R)*) is a quasi-complementor on A (resp. Ll(G)). However,

Ll(G

by Theorem 3.4 in [11], q 4is not a complementor.

3. CONTINUOUS QUASI-COMPLEMENTORS.

Let A be a semi-simple annihilator Banach algebra with a quasi-comple-

mentor q and MA the set of all minimal right ideals of A. For each

R e MA’ by Lemma 3.1 in [11], R = fA for some g-projection f in A. There-
fore, R + RY = A + (1 - f)A. Let PR be the projection on R along RS,
Then PR is continuous.

DEFINITION. Suppose a € A with anA € MA (n=0,1, 2, ...). A quasi-

complementor q on A 1is®*said to be continuous if whenever a converges to

converges to Pa A uniformly on any minimal left ideal of A.
0

REMARK. This is similar to the definition of continuous complementor intro-

ao, then Pa A
n

duced by Alexander (see [1, p. 387, Definition]).
Let A be a semi-simple annihilator quasi-complemented Banach algebra

such that x € clA(xA) for all x in A and {IA : X e A} the family of
q
all minimal closed two-sided ideals of A. Define q, by R A Rq/\ I}

for all closed right ideals R of IX' Then by [4, p. 144, Theorem 3.6] A

is the direct topological sum of {Ik : A e A} and q, is a quasi-comple-

mentor on IA' Let HA be a minimal left ideal of IA' Then HA is a

Hilbert space under some equivalent inner product norm by [4, p. 145, Lemma 4.2].

Let BA be the algebra of all completely continuous linear operators on HA'
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Then by the proof of [4, p. 146, Theorem 4.3], IA is a dense subalgebra of

B such that ||-|| majorizes [¢] on I By the proof of [8, p. 442,

A
Lemma 5.1], BA and IA have the same socle.
LEMMA 3.1. A quasi-complementor q on A 1is continuous if and only if

each 9, is continuous.

PROOF. Let R eMA with RC I)\ for some )\0 € A. Then R = fA, where
0

f 1is a q-projection in IA . Hence, for all x in A, PR(x) = fx. 1If

0

A # AO’ then IAOIA = (0) and so PR(x) =0 for all x 1in IA‘ Using

this fact and the proof of [1, p. 387, Theorem 2.2], we can show that q is
continuous if and only if each q, is continuous.

The following result is a generalization of [3, p. 471, Theorem 6.8].

LEMMA 3.2. Let A be a simple annihilator Banach algebra in which
X € clA(xA) for all x in A. If A 1is infinite dimensional, then every
quasi-complementor q on A is continuous.

PROOF. Let H be a minimal left ideal of A. As observed before, H 1is
a Hilbert space under some equivalent inner product and A is a dense dual sub-
algebra of B, the algebra of all completely continuous linear operators on H.
Also ||-|| majorizes |-| on A and H is a minimal left ideal of B. Then
by (4, p. 148, Theorem 5.4], q can Se extended to a quasi-complementor p on
B; P = cl([M N A]q) for all closed right ideals M of B. We show that

M = g(M)*. In fact, let S(M) be the smallest closed subspace of H that

contains the range x(H) for all x in M. Since ||+|| and |[-| are equiv-
alent on H, it follows from [4, p. 145, Lemma 4.1] that
SM) =MAH=MI= M/ AN H= MM AH. (3.1)

Therefore, we have

sMP) = MPH = c1(M A AIDH A B = MAAIYA 1 (3.2)
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(see [4, p. 148] for the last equality). By the proof of [4, p. 145, Lemma 4.2],
M/ A= clA((M /) A)HA). Since A is infinite dimensional, by [4, p. 145,

Theorem 4.2 (iii)] and (3.1)

4
sM) = [c1, (SN H = [e1, (N AEA)IIN B

M Al A
Therefore, by (3.2), S(MYL = S(Mp). Hence it follows from [3, p. 464, Lemma
4.,1] and [3, p. 465, Theorem 4.2] that MP = L (M)*., In particular, p 1is con-

tinuous by [1, p. 388, Theorem 2.4].

A -

Hence a >a, in |+| . Let L be a minimal left ideal of A. Then L is

a minimal left ideal of B and ||-|| and

Suppose anA eM, (n=0,1, 2, ...) with a > a; in |

are equivalent on L; also
anA = anB for all n. Let fn be a (unique) gq-projection contained in anA.

Then PanA(x) = fnx for all x in A, Since p is continuous, PanA

~| and hence iﬁ l|-|| . There-

converges to P uniformly on L in
aoA

fore q 1is continuous and this completes the proof.

Let A be a semi-simple annihilator quasi-complemented Banach algebra

such that x ¢ clA(xA) for all x in A which is a dense subalgebra of a

B*-algebra B. Suppose ||+|| majorizes on A. By [8, p. 442, Lemma
5.1], the set E of all hermitian minimal idempotents of B 1is contained
in the socle of A and so EC A. Let Eq be the set of all gq-projections
in A, For each e ¢ E, by [4, p. 149, Lemma 6.4], there exists a unique
element Q(e) € Eq such that Q(e)A = eA; the mapping Q : e - Q(e) 1is a
one - one mapping from E onto Eq and is called the q-derived mapping
(see [3] and [4]).

As shown in [3, p. 475], Lemma 3.2 is not true in general, if the algebra

A is finite dimensional. In this case, we have the following result:
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LEMMA 3.3. Let A be a simple finite dimensional annihilator Banach
algebra with a quasi-complementor q and Eq the set of all gq-projections
in A. Then q 1is continuous if and only if Eq is a closed and bounded
subset of A.

PROOF. By [4, p. 143, Corollary 3.2], q is a complementor on A. Let H
be a minimal left ideal of A. Then H 1is a Hilbert space and A can be
taken as the B*-algebra of all linear operators on H. Let Q be the
q-derived mapping. By [1, p. 388, Theorem 2.4], Q is continuous if and only
if q 1is continuous. Now Lemma 3.3 follows from Lemma 4.1 in [11].

We have the main result of this section.

THEOREM 3.4. Let A be a semi-simple annihilator quasi-complemented
Banach algebra such that x ¢ clA(xA) for all x in A and let
A,={rehA:1 is finite dimensional}. Then a quasi-complementor q on A

0 A

is continuous if and only if Eg is closed and bounded for each A € A where

0,
E: is the set of all q-projections in IA’
PROOF. This follows from Lemma 3.1, 3.2 and 3.3.

4, UNIFORMLY CONTINUOUS QUASI-COMPLEMENTORS.

In this section, we assume that A 1is a semi-simple annihilator Banach
algebra with a quasi-complementor q such that x € clA(xA) for all x 1in

A. Once again, MA will be the set of all minimal right ideals of A and

Eq the set of all g-projections in A. Also let I., H “and B, be

PRI LI A

as in §3. The norm on BA is denoted by

DEFINITION. A quasi-complementor q on A 1is said to be uniformly con-
tinuous if {PfA t fe Eq} is closed and bounded with respect to [IPfA|l,
the operator bound norm of PfA'

REMARK. A uniformly continuous quasi-complementor q 1s continuous. 1In

fact, by Theorem 3.4, we can assume that A is simple and finite dimensional.



314 P. WONG

Let H be a minimal left ideal of A. By the proof of Lemma 3.3, A can be
taken as the B*-algebra of all linear operators on H. Then by [7, p. 259,
Theorem 4], Eq is bounded. Since ||f|| = sup{||fh|| : h e H and ||n|| < 1},
we have ||PfA|| = ||£]| for all f ¢ Eq. It follows now that Eq is closed.
Hence by Theorem 3.4, q 1is continuous.

If u and v are elements of a Hilbert space H, u @ v will denote the
operator on H defined by the relation UJé§ v)(h) = (h, v)u for all h in H.
THEOREM 4.1. Let A be a semi-simple annihilator Banach algebra with a

uniformly continuous quasi-complementor q in which x € clA(xA) for all x
in A. Suppose that A has no minimal left ideals of dimension less than
three. Then A 1is a dense subalgebra of some dual B*-algebra B and
RY = L(R)* M\ A for all closed right ideals R of A.
PROOF. We know that q 1s continuous and so is q, (A e A). By [4, p. 148,

If H is

Theorem 5.41], qk induces a quasi-complementor p, on BX' A

finite dimensional, then by [4, p. 143, Corollary 3.2], q, is a complementor

P

and so by the proof of Theorem 4.3 in [11], Py has the form JXA = Q(JX)*

for all closed right ideals JA in BA‘ If Hl is infinite dimensional, this

is also true by the proof of Lemma 3.2.
We show that there exists a constant M such that

|In]] < |n] < M||n]| (he H, A e A). (4.1)

A’
We follow the argument in [1, p. 393, Lemma 4.3]. It can be assumed that

nll < Inl £2721In]]  (emn, ren. (4.2)

A’
Suppose (4.1) does not hold. Then there exists X, in Hn such that

lenll =1 and lxn| = kn > n. By (4.2), we can find z, in H such that
[lz_ || =1, |z_| < V2. Write z_=ax +x' with a_€eC, x' € H
n n' — n n'n n n n n

-1
and (xn, x;) =0. Put y_= kn X + x; and fn = (yn!D yn)/(yn, yn). Then

n

f € E and
n q
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a8 0 ) [ )]
X

||anA(Xn)I| = G, vy) n

(yn s yn) n
Hence {||Pf Al[} is unbounded and this contradicts the uniform continuity of
n

q. Therefore (4.1) holds. Now by using the argument in Theorem 4.3, in [11],
we can complete the proof.

Theorem 4.1 shows that there is essentially one type of uniformly con-
tinuous quasi-complementors on A.

The following result generalizes [4, p. 153, Theorem 7.6].

COROLLARY 4.2, Let A and B be as in Theorem 4.1. Then q is a comple-
mentor on A if and only if A 1is a left ideal of B.

PROOF. This follows from Theorem 4.1 and Theorem 3.4 in [11].

On the other hand, if q is a complementor, then we have:

THEOREM 4.3. Let A be a semi-simple annihilator Banach algebra such that
A has no minimal left ideal of dimension less than three. Then every con-
tinuous complementor q on A 1is uniformly continuous.

PROOF. By [6, p. 655, Theorem 4], A is the direct topological sum of its

minimal closed two-sided ideals {I, : A € A} each of which is a complemented

A
and dual algebra. Let qy HX and Bx be as before and . the norm on BA'
By [1, p. 390, Theorem 3.2], q, induces a complementor p, on BA and by
[1, p. 391, Theorem 3.3], P, has the form Jix= Q(JA)* for all closed right
ideals JA in BA' By [1, p. 393, Lemma 4.3], there exists a constant M such
that
[l < [b] <M[|n]] (heH,  eh. (4.3)

Let B be the B*(«)-sum of {BA : X e A}, Then B 1is a dual B*-algebra and
Eq coincides with the set of all hermitian minimal idempotents in B. Since
A is a left ideal of B, it is well-known that there exists a constant k

such that ||ba|| < k|b] ||a|]| for all b in B and a in A. Then



316 P. WONG

llpfA(x)H = ||£x|| < k|£] ||x|| = k||x|| for all x in A and f in E -

fA

{Pf A} be a Cauchy sequence, where fn € Eq' We show that, for m and n
n

Hence {P : f e Eq} is bounded. It remains to show that it is closed. Let

large enough, fm and fn are contained in the same minimal closed two-
sided ideal. Suppose this is not so. Then there exists some minimal closed

two-sided ideal I of A such that f €I, but f ¢ I. . Let H
An n An m An Xn

be the minimal left ideal in I, . Since |fn| =1, we can choose hn € HA

n n

such that lfnhnl > 1/2 with |hn| = 1. Since fmI)\n = (0), by (4.3) we have

[fh - fh | <M|fh -£fh ||
nn mn — nn m n

A

1/2 < |£ h |
nn

IA

MHPfA-Pf AH |hn| =M”PfA_Pf All'
n m n m

But {Pf A} is a Cauchy sequence; a contradiction. Therefore, we can assume
n

that fm and fn belong to the same IX . Hence,
n

|fn - fm[ sup {l(fn - fm)hl :heH and [n| < 1}

n

A

MPe 5 - Pyl
n m

by

and so {fn} is a Cauchy sequence in |- Since Eq is closed in

.

Theorem 4.2, in [11], fn > f in for some f in Eq' Since

12y = P 001] = e - exl| < xle, — el ]|

for all x in A, anA - PfA and so {PfA : fe Eq} is closed. This

completes the proof.
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