

ON CERTAIN QUASI-COMPLEMENTED AND COMPLEMENTED BANACH ALGEBRAS

PAK-KEN WONG

Department of Mathematics
Seton Hall University
South Orange, New Jersey 07079 U.S.A.

(Received February 27, 1978)

ABSTRACT. In this paper, we continue the study of quasi-complemented algebras and complemented algebras. The former are generalizations of the latter and were introduced in [4] and studied in [4] and [11]. Some results are proved.

KEY WORDS AND PHRASES. Quasi-complemented and complemented Banach algebras.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES.

1. INTRODUCTION.

Quasi-complemented algebras, which are generalizations of complemented algebras, were introduced in [4] and studied in [4] and [11]. In this paper, we continue the study of these two classes of algebras.

In Section 3, we introduce the concept of continuous quasi-complementor on a semi-simple annihilator Banach algebra. This is similar to the concept

of continuous complementor given by Alexander in [1]. Let A be a simple annihilator Banach algebra such that $x \in \text{cl}_A(xA)$ for all x in A . If A is infinite dimensional, we show that every quasi-complementor on A is continuous. This result is not true if A is finite dimensional. In this case, we obtain that a quasi-complementor q on A is continuous if and only if the set E_q of all q -projections is closed and bounded in A . By using these results, we give a characterization of continuous quasi-complementors (Theorem 3.4).

Section 4 is devoted to the study of uniformly continuous quasi-complementors. Let A be a semi-simple annihilator Banach algebra in which $x \in \text{cl}_A(xA)$ for all x in A and q a quasi-complementor on A . Suppose that A has no minimal left ideals of dimension less than three. Then we show that A is a dense subalgebra of some dual B^* -algebra B and $R^q = \ell(R)^* \cap A$ for all closed right ideals R of A . Also every continuous complementor on A is uniformly continuous.

2. NOTATION AND PRELIMINARIES.

For any subset S in an algebra A , let $\ell_A(S)$ and $r_A(S)$ denote the left and right annihilators of S in A , respectively. Let A be a Banach algebra. Then A is called an annihilator algebra, if for every closed left ideal J and for every closed right ideal R , we have $r_A(J) = (0)$ if and only if $J = A$ and $\ell_A(R) = (0)$ if and only if $R = A$. If $\ell_A(r_A(J)) = J$ and $r_A(\ell_A(R)) = R$, then A is called a dual algebra.

Let A be a Banach algebra which is a subalgebra of a Banach algebra B . For each subset S of A , $\text{cl}(S)$ (resp. $\text{cl}_A(S)$) will denote the closure of S in B (resp. A). Also $\ell(S)$ and $r(S)$ (resp. $\ell_A(S)$ and $r_A(S)$) denote the left and right annihilators of S in B (resp. A). We write $||\cdot||$ for the norm on A and $|\cdot|$ for the norm on B .

Let A be a Banach algebra and let L_r be the set of all closed right ideals in A . Following [4], we shall say that A is a (right) quasi-complemented algebra if there exists a mapping $q : R \rightarrow R^q$ of L_r into itself having the following properties:

$$R \cap R^q = \{0\} \quad (R \in L_r); \quad (2.1)$$

$$(R^q)^q = R \quad (R \in L_r); \quad (2.2)$$

$$\text{if } R_1 \supset R_2, \text{ then } R_2^q \supset R_1^q \quad (R_1, R_2 \in L_r). \quad (2.3)$$

The mapping q is called a (right) quasi-complementor on A . We know that $R + R^q$ is always dense in A , $A^q = \{0\}$ and $\{0\}^q = A$ (see [4]). Hence $R^q = \{0\}$ if and only if $R = A$.

A quasi-complemented algebra A is called a (right) complemented algebra if it satisfies:

$$R + R^q = A \quad (R \in L_r). \quad (2.4)$$

In this case, the mapping q is called a (right) complementor on A (see [6, p. 651, Definition 1]).

Let A be a semi-simple Banach algebra with a quasi-complementor q . A minimal idempotent f in A is called a q -projection if $(fA)^q = (1 - f)A$. The set of all q -projection in A is denoted by E_q . By Lemma 3.1 in [11], every non-zero right ideal of A contains a q -projection.

In this paper, all algebras and linear spaces under consideration are over the complex field. Definitions not explicitly given are taken from Rickart's book [5].

We end the section with two new examples of complemented and quasi-complemented algebras.

EXAMPLE 1. Let A be a dual B^* -algebra and Φ a symmetric norming function. Then the algebra $A_\Phi^{(0)}$ given in [10, p. 293] is a complemented algebra with the complementor $q : R \rightarrow {}^l A_\Phi^{(0)}(R)^*$. (Theorem 3.4 in [11]).

EXAMPLE 2. Let G be an infinite compact group with the Haar measure and A the algebra of all continuous functions on G , normed by the maximum of the absolute value and $L_1(G)$ the group algebra. It is well known that A and $L_1(G)$ are dual A^* -algebras which are not two-sided ideals of their completions in an auxiliary norm. It is easy to see that the mapping $q : R \rightarrow \ell_A(R)^*$ (resp. $R \rightarrow \ell_{L_1(G)}(R)^*$) is a quasi-complementor on A (resp. $L_1(G)$). However, by Theorem 3.4 in [11], q is not a complementor.

3. CONTINUOUS QUASI-COMPLEMENTORS.

Let A be a semi-simple annihilator Banach algebra with a quasi-complementor q and M_A the set of all minimal right ideals of A . For each $R \in M_A$, by Lemma 3.1 in [11], $R = fA$ for some q -projection f in A . Therefore, $R + R^q = fA + (1 - f)A$. Let P_R be the projection on R along R^q . Then P_R is continuous.

DEFINITION. Suppose $a_n \in A$ with $a_n A \in M_A$ ($n = 0, 1, 2, \dots$). A quasi-complementor q on A is said to be continuous if whenever a_n converges to a_0 , then $P_{a_n A}$ converges to $P_{a_0 A}$ uniformly on any minimal left ideal of A .

REMARK. This is similar to the definition of continuous complementor introduced by Alexander (see [1, p. 387, Definition]).

Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $x \in \text{cl}_A(xA)$ for all x in A and $\{I_\lambda : \lambda \in \Lambda\}$ the family of all minimal closed two-sided ideals of A . Define q_λ by $R^{q_\lambda} = R^q \cap I_\lambda$ for all closed right ideals R of I_λ . Then by [4, p. 144, Theorem 3.6] A is the direct topological sum of $\{I_\lambda : \lambda \in \Lambda\}$ and q_λ is a quasi-complementor on I_λ . Let H_λ be a minimal left ideal of I_λ . Then H_λ is a Hilbert space under some equivalent inner product norm by [4, p. 145, Lemma 4.2]. Let B_λ be the algebra of all completely continuous linear operators on H_λ .

Then by the proof of [4, p. 146, Theorem 4.3], I_λ is a dense subalgebra of B such that $||\cdot||$ majorizes $|\cdot|$ on I_λ . By the proof of [8, p. 442, Lemma 5.1], B_λ and I_λ have the same socle.

LEMMA 3.1. A quasi-complementor q on A is continuous if and only if each q_λ is continuous.

PROOF. Let $R \in M_A$ with $R \subset I_{\lambda_0}$ for some $\lambda_0 \in \Lambda$. Then $R = fA$, where

f is a q -projection in I_{λ_0} . Hence, for all x in A , $P_R(x) = fx$. If

$\lambda \neq \lambda_0$, then $I_{\lambda_0} I_\lambda = (0)$ and so $P_R(x) = 0$ for all x in I_λ . Using

this fact and the proof of [1, p. 387, Theorem 2.2], we can show that q is continuous if and only if each q_λ is continuous.

The following result is a generalization of [3, p. 471, Theorem 6.8].

LEMMA 3.2. Let A be a simple annihilator Banach algebra in which $x \in \text{cl}_A(xA)$ for all x in A . If A is infinite dimensional, then every quasi-complementor q on A is continuous.

PROOF. Let H be a minimal left ideal of A . As observed before, H is a Hilbert space under some equivalent inner product and A is a dense dual subalgebra of B , the algebra of all completely continuous linear operators on H . Also $||\cdot||$ majorizes $|\cdot|$ on A and H is a minimal left ideal of B . Then by [4, p. 148, Theorem 5.4], q can be extended to a quasi-complementor p on B ; $M^p = \text{cl}([M \cap A]^q)$ for all closed right ideals M of B . We show that $M^p = \lambda(M)^*$. In fact, let $S(M)$ be the smallest closed subspace of H that contains the range $x(H)$ for all x in M . Since $||\cdot||$ and $|\cdot|$ are equivalent on H , it follows from [4, p. 145, Lemma 4.1] that

$$S(M) = M \cap H = MH = (M \cap A) \cap H = (M \cap A)H. \quad (3.1)$$

Therefore, we have

$$S(M^p) = M^p H = \text{cl}([M \cap A]^q) \cap H = [M \cap A]^q \cap H. \quad (3.2)$$

(see [4, p. 148] for the last equality). By the proof of [4, p. 145, Lemma 4.2],

$M \cap A = \text{cl}_A((M \cap A)HA)$. Since A is infinite dimensional, by [4, p. 145,

Theorem 4.2 (iii)] and (3.1)

$$\begin{aligned} S(M)^\perp &= [\text{cl}_A(S(M)A)]^q \cap H = [\text{cl}_A((M \cap A)HA)]^q \cap H \\ &= [M \cap A]^q \cap H. \end{aligned}$$

Therefore, by (3.2), $S(M)^\perp = S(M^P)$. Hence it follows from [3, p. 464, Lemma 4.1] and [3, p. 465, Theorem 4.2] that $M^P = \ell(M)^*$. In particular, p is continuous by [1, p. 388, Theorem 2.4].

Suppose $a_n A \in M_A$ ($n = 0, 1, 2, \dots$) with $a_n \rightarrow a_0$ in $\|\cdot\|$.

Hence $a_n \rightarrow a_0$ in $|\cdot|$. Let L be a minimal left ideal of A . Then L is a minimal left ideal of B and $\|\cdot\|$ and $|\cdot|$ are equivalent on L ; also $a_n A = a_n B$ for all n . Let f_n be a (unique) q -projection contained in $a_n A$. Then $P_{a_n A}(x) = f_n x$ for all x in A . Since p is continuous, $P_{a_n A}$ converges to $P_{a_0 A}$ uniformly on L in $|\cdot|$ and hence in $\|\cdot\|$. Therefore q is continuous and this completes the proof.

Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $x \in \text{cl}_A(xA)$ for all x in A which is a dense subalgebra of a B^* -algebra B . Suppose $\|\cdot\|$ majorizes $|\cdot|$ on A . By [8, p. 442, Lemma 5.1], the set E of all hermitian minimal idempotents of B is contained in the socle of A and so $E \subset A$. Let E_q be the set of all q -projections in A . For each $e \in E$, by [4, p. 149, Lemma 6.4], there exists a unique element $Q(e) \in E_q$ such that $Q(e)A = eA$; the mapping $Q : e \mapsto Q(e)$ is a one-one mapping from E onto E_q and is called the q -derived mapping (see [3] and [4]).

As shown in [3, p. 475], Lemma 3.2 is not true in general, if the algebra A is finite dimensional. In this case, we have the following result:

LEMMA 3.3. Let A be a simple finite dimensional annihilator Banach algebra with a quasi-complementor q and E_q the set of all q -projections in A . Then q is continuous if and only if E_q is a closed and bounded subset of A .

PROOF. By [4, p. 143, Corollary 3.2], q is a complementor on A . Let H be a minimal left ideal of A . Then H is a Hilbert space and A can be taken as the B^* -algebra of all linear operators on H . Let Q be the q -derived mapping. By [1, p. 388, Theorem 2.4], Q is continuous if and only if q is continuous. Now Lemma 3.3 follows from Lemma 4.1 in [11].

We have the main result of this section.

THEOREM 3.4. Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $x \in \text{cl}_A(xA)$ for all x in A and let $\Lambda_0 = \{\lambda \in \Lambda : I_\lambda \text{ is finite dimensional}\}$. Then a quasi-complementor q on A is continuous if and only if E_q^λ is closed and bounded for each $\lambda \in \Lambda_0$, where E_q^λ is the set of all q -projections in I_λ .

PROOF. This follows from Lemma 3.1, 3.2 and 3.3.

4. UNIFORMLY CONTINUOUS QUASI-COMPLEMENTORS.

In this section, we assume that A is a semi-simple annihilator Banach algebra with a quasi-complementor q such that $x \in \text{cl}_A(xA)$ for all x in A . Once again, M_A will be the set of all minimal right ideals of A and E_q the set of all q -projections in A . Also let I_λ , H_λ , q_λ and B_λ be as in §3. The norm on B_λ is denoted by $|\cdot|$.

DEFINITION. A quasi-complementor q on A is said to be uniformly continuous if $\{P_{fA} : f \in E_q\}$ is closed and bounded with respect to $\|P_{fA}\|$, the operator bound norm of P_{fA} .

REMARK. A uniformly continuous quasi-complementor q is continuous. In fact, by Theorem 3.4, we can assume that A is simple and finite dimensional.

Let H be a minimal left ideal of A . By the proof of Lemma 3.3, A can be taken as the B^* -algebra of all linear operators on H . Then by [7, p. 259, Theorem 4], E_q is bounded. Since $\|f\| = \sup\{\|fh\| : h \in H \text{ and } \|h\| \leq 1\}$, we have $\|P_{fA}\| = \|f\|$ for all $f \in E_q$. It follows now that E_q is closed. Hence by Theorem 3.4, q is continuous.

If u and v are elements of a Hilbert space H , $u \otimes v$ will denote the operator on H defined by the relation $(u \otimes v)(h) = (h, v)u$ for all h in H .

THEOREM 4.1. Let A be a semi-simple annihilator Banach algebra with a uniformly continuous quasi-complementor q in which $x \in \text{cl}_A(xA)$ for all x in A . Suppose that A has no minimal left ideals of dimension less than three. Then A is a dense subalgebra of some dual B^* -algebra B and $R^q = \ell(R)^* \cap A$ for all closed right ideals R of A .

PROOF. We know that q is continuous and so is q_λ ($\lambda \in \Lambda$). By [4, p. 148, Theorem 5.4], q_λ induces a quasi-complementor p_λ on B_λ . If H_λ is finite dimensional, then by [4, p. 143, Corollary 3.2], q_λ is a complementor and so by the proof of Theorem 4.3 in [11], p_λ has the form $J_\lambda^{p_\lambda} = \ell(J_\lambda)^*$ for all closed right ideals J_λ in B_λ . If H_λ is infinite dimensional, this is also true by the proof of Lemma 3.2.

We show that there exists a constant M such that

$$\|h\| \leq |h| \leq M\|h\| \quad (h \in H_\lambda, \lambda \in \Lambda). \quad (4.1)$$

We follow the argument in [1, p. 393, Lemma 4.3]. It can be assumed that

$$\|h\| \leq |h| \neq \sqrt{2}\|h\| \quad (h \in H_\lambda, \lambda \in \Lambda). \quad (4.2)$$

Suppose (4.1) does not hold. Then there exists x_n in H_n such that $\|x_n\| = 1$ and $|x_n| = k_n > n$. By (4.2), we can find z_n in H_n such that $\|z_n\| = 1$, $|z_n| \leq \sqrt{2}$. Write $z_n = \alpha_n x_n + x'_n$ with $\alpha_n \in C$, $x'_n \in H_n$ and $(x_n, x'_n) = 0$. Put $y_n = k_n^{-1}x_n + x'_n$ and $f_n = (y_n \otimes y_n)/(y_n, y_n)$. Then $f_n \in E_q$ and

$$||p_{f_n A}(x_n)|| = \left| \left| \frac{y_n \otimes y_n}{(y_n, y_n)} x_n \right| \right| = \frac{|(x_n, y_n)|}{(y_n, y_n)} ||y_n|| \rightarrow \infty.$$

Hence $\{||p_{f_n A}||\}$ is unbounded and this contradicts the uniform continuity of q . Therefore (4.1) holds. Now by using the argument in Theorem 4.3, in [11], we can complete the proof.

Theorem 4.1 shows that there is essentially one type of uniformly continuous quasi-complementors on A .

The following result generalizes [4, p. 153, Theorem 7.6].

COROLLARY 4.2. Let A and B be as in Theorem 4.1. Then q is a complementor on A if and only if A is a left ideal of B .

PROOF. This follows from Theorem 4.1 and Theorem 3.4 in [11].

On the other hand, if q is a complementor, then we have:

THEOREM 4.3. Let A be a semi-simple annihilator Banach algebra such that A has no minimal left ideal of dimension less than three. Then every continuous complementor q on A is uniformly continuous.

PROOF. By [6, p. 655, Theorem 4], A is the direct topological sum of its minimal closed two-sided ideals $\{I_\lambda : \lambda \in \Lambda\}$ each of which is a complemented and dual algebra. Let q_λ , H_λ and B_λ be as before and $|\cdot|$ the norm on B_λ . By [1, p. 390, Theorem 3.2], q_λ induces a complementor p_λ on B_λ and by [1, p. 391, Theorem 3.3], p_λ has the form $p_\lambda = \ell(J_\lambda)^*$ for all closed right ideals J_λ in B_λ . By [1, p. 393, Lemma 4.3], there exists a constant M such that

$$||h|| \leq |h| \leq M ||h|| \quad (h \in H_\lambda, \lambda \in \Lambda). \quad (4.3)$$

Let B be the $B^*(\infty)$ -sum of $\{B_\lambda : \lambda \in \Lambda\}$. Then B is a dual B^* -algebra and E_q coincides with the set of all hermitian minimal idempotents in B . Since A is a left ideal of B , it is well-known that there exists a constant k such that $||ba|| \leq k|b| \leq k||a||$ for all b in B and a in A . Then

$$||P_{fA}(x)|| = ||fx|| \leq k|f| \quad ||x|| = k||x|| \quad \text{for all } x \text{ in } A \text{ and } f \text{ in } E_q.$$

Hence $\{P_{fA} : f \in E_q\}$ is bounded. It remains to show that it is closed. Let $\{P_{f_n A}\}$ be a Cauchy sequence, where $f_n \in E_q$. We show that, for m and n

large enough, f_m and f_n are contained in the same minimal closed two-sided ideal. Suppose this is not so. Then there exists some minimal closed

two-sided ideal I_{λ_n} of A such that $f_n \in I_{\lambda_n}$, but $f_m \notin I_{\lambda_n}$. Let H_{λ_n}

be the minimal left ideal in I_{λ_n} . Since $|f_n| = 1$, we can choose $h_n \in H_{\lambda_n}$

such that $|f_n h_n| > 1/2$ with $|h_n| = 1$. Since $f_m I_{\lambda_n} = (0)$, by (4.3) we have

$$\begin{aligned} 1/2 < |f_n h_n| &= |f_n h_n - f_m h_n| \leq M ||f_n h_n - f_m h_n|| \\ &\leq M ||P_{f_n A} - P_{f_m A}|| |h_n| = M ||P_{f_n A} - P_{f_m A}||. \end{aligned}$$

But $\{P_{f_n A}\}$ is a Cauchy sequence; a contradiction. Therefore, we can assume that f_m and f_n belong to the same I_{λ_n} . Hence,

$$\begin{aligned} |f_n - f_m| &= \sup \{|(f_n - f_m)h| : h \in H_{\lambda_n} \text{ and } |h| \leq 1\} \\ &\leq M ||P_{f_n A} - P_{f_m A}|| \end{aligned}$$

and so $\{f_n\}$ is a Cauchy sequence in $|\cdot|$. Since E_q is closed in $|\cdot|$ by

Theorem 4.2, in [11], $f_n \rightarrow f$ in $|\cdot|$ for some f in E_q . Since

$$||(P_{f_n A} - P_{f A})(x)|| = ||f_n x - fx|| \leq k|f_n - f| \quad ||x||$$

for all x in A , $P_{f_n A} \rightarrow P_{f A}$ and so $\{P_{f A} : f \in E_q\}$ is closed. This

completes the proof.

REFERENCES

1. Alexander, F. E. Representation Theorems for Complemented Algebras, Trans. Amer. Math. Soc. 148 (1970) 385-398.
2. Alexander, F. E. On Complemented and Annihilator Algebras, Glasgow J. Math. 10 (1969) 38-45.
3. Alexander, F. E. and B. J. Tomiuk Complemented B^* -Algebras, Trans. Amer. Math. Soc. 137 (1969) 459-480.
4. Husain, T. and P. K. Wong Quasi-Complemented Algebras, Trans. Amer. Math. Soc. 174 (1972) 141-154.
5. Rickart, C. E. General Theory of Banach Algebras, The University Series in Higher Math., Van Nostrand, Princeton, New Jersey, 1960.
6. Tomiuk, B. J. Structure Theory of Complemented Banach Algebras, Canad. J. Math. 14 (1962) 651-659.
7. Wong, P. K. Continuous Complementors on B^* -Algebras, Pacific J. Math. 33 (1970) 255-260.
8. Wong, P. K. On the Arens Products and Certain Banach Algebras, Trans. Amer. Math. Soc. 180 (1973) 437-448.
9. Wong, P. K. A Note on Annihilator and Complemented Banach Algebras, J. Australian Math. Soc. 18 (1974) 474-481.
10. Wong, P. K. A Minimax Formula for Dual B^* -Algebras, Trans. Amer. Math. Soc. 224 (1976) 281-298.
11. Wong, P. K. Quasi-Complementors and Complementors on Certain Banach Algebras, Proc. Amer. Math. Soc. 65 (1977) 287-292.

Special Issue on Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/bvp/guidelines.html>. Authors should follow the Boundary Value Problems manuscript format described at the journal site <http://www.hindawi.com/journals/bvp/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	May 1, 2009
First Round of Reviews	August 1, 2009
Publication Date	November 1, 2009

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático,
Facultad de Matemáticas, Universidad de Santiago de

Compostela, Santiago de Compostela 15782, Spain;
juanjose.nieto.roig@usc.es

Guest Editor

Donal O'Regan, Department of Mathematics, National
University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie