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ABSTRACT. In this note, the authors obtain a generalization of the integral inequality
of Bihari [1] to a nonlinear inequality in two independent variables. With the aid
of this inequality a bound for the solution of a nonlinear partial differential

equation is established.
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1. INTRODUCTION.

In the qualitative analysis of differential equations integral inequalities play
a vital role [2]. An inequality due to Gronwall continues to draw the attention of
mathematicians because of its usefulness. The nonlinear generalization of this
inequality due to Bihari [1] is as follows:

LEMMA 1. Let Y(x), F(x) be positive continuous functions in a = x £ b and

K 2 0, M 2 0o, further W(u) a non-negative non-decreasing continuous function for

u 2 o. Then the inequality
X
Y(x) SK+ M [ F(t) W(Y(t))dt (a = x 5b)
a
implies the inequality
-1 X .
Y(x) £ G (G(K) + M S F(t) dt) (asxsbsb)
a
where
Yoo ae
G(u) = S —— (uo > 0, u 2 o).
U, w(t)

This inequality has been further generalized in several directions by Beesack [3].

It has been recently established that the inequalities of this type in two and
more independent variables can be profitably employed in the analysis of partial
differential equations [4, and references listed therein]. An interesting inequality
by Wendroff given without proof in [5] is as follows:
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LEMMA 2. Let J={x|osxsX<w}and K={y|o Sy sY< e}, Further let
U(x,y) be a scalar, non-negative continuous function defined on J x K, then for

any arbitrary non-negative constants a, b and c, the integral inequality
3 y
U(x,y) Sc+a J U(s,y)ds +b [ U(x,t)dt
o o

implies that U(x,y) £ c exp(ax + by + abxy).
The proof of this inequality can be constructed by observing that U = P, where

P(x,y) satisfies the equation

X y
P(x,y) =c +a [ P(s,y)ds + b [ P(x,t)dt.
o o

Observe that P(x,0) = c exp(ax) and P(o,y) = c exp(by). Now assuming
P(x,y) = exp(ax + by)q(x,y), one can determine the inequality satisfied by q(x,y)
which results into the given conclusion.

Lemma 2, in view of Lemma 1, suggests that it is possible to consider a nonlinear
generalization of the Wendroff's inequality. We do this in the present paper and
further show by an example that the generalization of this kind is truely beneficial
in the study of some nonlinear partial differential equations.

é. NOTATION.

Let R denote the real line. For any rectangle J x K we define the following
classes of functions:

(i) C+ (JxK) = the space of continuous functions

u: JxK > ]{F
(ii) CI(IU) = the space of non-decreasing, non-negative, submultiplicative,
continuous functions on ]ir.
(iii) 02(133 = the space of non-decreasing, non-negative, continuous functions on
R and such that for 8y € Cz(Rf) and for any real-valued
function h(x,y), (x,y) € J x K,

8,(u(x,y)) “Gey)
h(x,y) s gZ(h(x,y))’ h(x,y) 21, (2.1)
Further, we define
G, (u) = }1 de (u 20, u, > 0). (2.2)
1 uo gi(t) ’ ’ o

Let Gi_1 be the inverse of Gi’ i=1,2.

3. MAIN RESULT.
THEOREM 3.1. Assume that
(a) u(x,y) € C+(J x K),

() g @ €c (K),
(©) gy €c, (R,

(d) there exists a ug > o such that gl(u) > o and gz(u) > o for
u 2 u - Then for any arbitrary non-negative constants a, b and ¢, with ¢ 2 1,

the inequality
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X y
u(x,y) Sc+a f gl(u(s,y) ds+ b [ gz(u(x,t))dt, (0$x=5 X,05y5Y) (3.1)
o o
implies, on a nonempty rectangle, the inequality
u(x,y) £ G '1{c (c) +axg, [G, 1, (1) +by) 1¥g, "1 (G, (1)+by) (3.2)
¥ =5k g1 1% & 2 & y)s :
where G (u), i = 1,2, are as defined in (2.2), (0 s x £ X' £ X and o sy =Y £Y).
i
PROOF. We define
X
h(x,y) =c+a [ gl(u(s,y))ds, (x,y) € J x K. (3.3)
o
It is clear that h(x,y) is non-decreasing and h(x,y) 2 1 on J x K.
Inequality (3.1) may be written as
y
u(x,y) € h(x,y) +b [ gz(u(x,t))dt. (3.4)
o

Dividing throughout by h(x,y) and using (2.1) of assumption (c) we have

u(x,z) M u(x,t)
h(x.y) £1+b J-gZ(h(x,t)) dt. (3.5)

For fixed x € J, an application of Lemma 1 yields
u(x,y) € h(x,y).Cz—l(GZ(l) +by), (0SxSX, 05ysY £Y)  (3.6)
Substituting (3.6) in (3.3) and employing submultiplicative property of g we obtain

X
hGoy) S c+a J g (h(s,y))g; (G, (G, (1) + by)) ds. (3.7
o

An application of Lemma 1 again, to (3.7), yields a bound for h(x,y) on a
nonempty rectangle. The desired inequality now follows by substituting the bound for
h(x,y) in (3.6).

REMARK 3.1. In particular, if b = o and gl(u) = u, then the estimate in (3.2)

reduces to

u(x,y) s Gl—1 [Gl(c) + ax].
In view of (2.2), it is clear that for fixed y € K, our estimate further reduces to
u(x,y) £ c exp(ax).

Thus, Gronwall's estimate is included in (3.2).
REMARK 3.2. 1In the case b = o, the estimate in (3.2) reduces to

u(x,y) s cl’l [6,(e) + ax g (1]

for each y € K, o £ x £ X' £ X, which is a Bihari-like estimate.
Further, if in (3.1), a = o, then for fixed x € J,

y
u(x,y) Sc+b [ gz(u(x,t))dt
o
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implies

y
ulky) oy 4y fgz(Lz’El)dt .,y eK.

C
o

A

An application of Lemma 1 yields

uG6y) £ e 6,7 [6,(1) + byl

(x € J is fixed, o <y < Y' £Y)

This estimate is the same as that obtained from (3.2) with a = o.

REMARK 3.3. Let gi(u) =u, i = 1,2. Then
G.(u) = log - , u20, u >o0, i=1,2.
i uo o

Clearly

n

-1 .
Gi (v) = ug exp(v), i 1,2.

Hence the estimate (3.2) reduces to

< _C. _1_ + . __l_
u(x,y) < u_ exp [log u + ax u, exp(log u by) ] u exp (log w + by)

< ¢ exp [ax exp(by) + by]

= ¢ exp [ax + by + abxy + higher order terms] .

This estimate is obviously not as sharp as the one obtained in Lemma 2.
4. AN APPLICATION.
Consider the characteristic initial value problem for the nonlinear partial

differential equation

(0o <x<X, o0<y<Y) (4.1)

satisfying the initial values
u(x,0) = u(o,y) = u(o,0) =c 2 1. (4.2)

Under the condition (4.2) equation (4.1) can be reformulated in terms of the

integral equation

x x
u(x,y) = ¢ - 1 s ua+1(s,o)ds -b s eu(o’t)dt
a+l
o o
y y
+ =i s ua+1(s,y)ds +b eu(x’t)dt. (4.3)
o o

Therefore, using the initial - data, we obtain the inequality

l X
luGe,y)| s k+ 5 é’ Ju(s,y)|

atl
where k = (|c| + 121____§_+ belclY).

a+l

y
a+1dS +b f elu(x’t)ldt,

o
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The present inequality is equivalent to (3.1). A direct application of Theorem
3.1 yields

-1 X -1 a+l -1
Jutx,y)I < Gl [Gl(k) + 5 [02 (Cz(l) + by)] ] Gy (Gz(l) + by)
where
u u
- N SRR SN S O - 14 = -u _ u
Gl(u) = [ ] dp 3 [ 2 A 1, and CZ(U) =7 . dp = -[e e o].
o p u u o e
o
Therefore,
-1 _ -a . =1/a -1 _ -u_ -1
Gl (v) = [uo - av ] and 62 (v) = loge [e o-v ] .
Hence,
lu(x,y)| < {k2 - f%% [log(e-1 - by)-1 ]a+l }-l/a . log(e_1 - by)—l‘

This provides a pointwise estimate for solutions of the given equation (4.1).
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