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ABSTRACT. A study is made of the Lamb plane problem in a thermo-elastic micropolar
medium with the effect of stretch. The problem is solved for an arbitrary, normal
load distribution by using the double Fourier transform. The displacement components,
force stress, couple stress, vector first moment and the temperature field are deter-
mined for a half space subjected to an arbitrary normal load. Two special cases of a
horizontal force and a torque which are oscillating with a frequency » have been
investigated. It is shown that results of this analysis reduce to those without
stretch.
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1.  INTRODUCTION.

Eringen and Suhubi [1] have developed a general theory of linear and nonlinear
micro-elastic continua. This theory contains the Cosserat continuum and the interme-
diate couple stress theories as special cases. In a subsequent paper [2], Eringen
recapitulated his work and renamed his theory as micropolar elasticity. The
micropolar theory essentially deals with such materials whose constituents are
dumbbell type molecules and are allowed to rotate independently without stretch.
Later on, Eringen [3-4] extended his work to include the effect of axial stretch
during the rotation of molecules and developed theories for both micropolar elastic
solids with stretch and micropolar fluids with stretch. The mechanical model
underlying the theory of micropolar elastic solids with stretch can be envisioned as
an elastic medium composed of a large number of short springs. These springs possess
average inertia and can deform in axial directions.
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Lamb's problem [5] has been investigated extensively by several researchers in
different elastic media with various kinds of loading. In particular, Nowacki and
Nowacki [6] have studied the Lamb problem in micropolar elastic media. Recently,
Chadha [7] has investigated the same problem in micropolar elastic media, and dis-
cussed wave propagation in a semi-infinite micropolar elastic solid due to loading at
the plane boundary of semi-half space. Acharya and Sengupta (8] have recently studied
Lamb's problem in a thermo-elastic medium under the influence of temperature. They
have examined the longitudinal and transverse thermo-elastic wave propagation in a
micropolar semi-infinite space bounded by a plane in which a normal loading is ap-
plied.

In spite of these studies, no attention is given to Lamb's problem in
thermo-micropolar elastic half-space with stretch. The main purpose of this paper is
to investigate the problem with the assumption that the heat is radiated from the free
plane boundary surface of the semi-infinite space and the maximum temperature differ-
ence across the surface is always small. The displacement components, force stress,
couple stress, vector first moment and the temperature field are determined for the
half-space subjected to an arbitrary normal load. Two special cases of a horizontal
force and a torque which are harmonic in time have been discussed. The problem is
solved by the double Fourier transform method.

2.  THE FORMULATION OF THE PROBLEM AND THE BOUNDARY CONDITIONS

We consider a homogeneous micropolar elastic semi-infinite space with stretch

under the influence of temperature. We assume that there is a uniform stretch in the

x-direction only and a loading g(x,t) normal to the free boundary surface z = 0.
Further, we assume that the micropolar semi-space is free to exchange heat within the
region z > 0; and prior to the appearance of any disturbance, both media are évery-
where at the constant absolute temperature To.

We consider the two-dimensional problem so that the displacement and rotation
are independent of the y coordinate. Thus we may write u = (ul, 0, u3) and
w = (0, o 0). The displacements are related to the displacement potentials
¢(x, z, t) and ¢(x, z, t) as follows:

-9 , 9y - 9% _ 3y
Uy T ax t oz U3 %37 7 3x (2.1ab)
so that
u au
e = v2¢, vzw = 331-- 573 (2.2ab)
where ’ ) ) au
2.3 .2 it S|
V- = ;2-""3—2—2- and e = 3x + 3z ° (2.3ab)

We follow Eringen [4] and Nowacki [9] to write down the basic field equations in
a thermo-micropolar elastic solid medium with stretch and without body forces and body
moments. These field equations are

2
37u
(u+a)\72 u+ (Mu-a) grad divu+ 2 arotw - vgrad 6 =p —2-—, (2.4)
a3t
2 %
(v+e)V" w + (y+B-e) grad divue -4 cw+2arotu=J —5 (2.5)
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where X, u, o, B, v, €, as Mg
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(2.6)

are material constants, p 1is the density of the

material, J is the rotational inertia, v = (3A+2u) ap, oy is the coefficient of
linear expansion of the solid, ©6 = T—TO = absolute temperature minus the initial

absolute temperature To‘
Using the values of u and w in equations (2.4)-(2.6) we get

2
dw 3 u
2 de 2 96 _ 1
(bt0) 7% up + Ouma) g - 2 ggm - Vg =P o7
2
W 3%u
2 de 2 96 _ 3
(b4) 720y + (huma) g7 ¢ 20 g™ -V g7 = 0
2 Bul 8u3 32(.02
(v4e) 77 0y - Bow, + 23 = = 5) =) s
2
2 J 3°¢
a V¢ -nod = .
0 0 ? atl

(2.7)

(2.8)

(2.9)

(2.10)

The temperature field o(x,z,t) satisfies Fourier's Law of heat conduction,

which in the present case can be written as

2
2, _ 376 3 2
kV"8 -Dc-a—t?"' To\)-—at (V @),

(2.11)

where « s thermal conductivity and C 1is the specific heat at constant strain.

Using (2.1ab)-(2.3ab) and (2.11) in equations (2.7)-(2.10), we obtain
(2oL 2 5y g =0
:fatz

(7% - L 2ye - r 2 (v = 0,
c, 9t
3
2
2 1 3
(V0 - % =¥ - pu, = 0,
c2 atZ 2
2
2 2 1 3t 2, .
(V0 - Y] - ey s VY = 0,
Cy 9t
2
d
(72 -2 - L2000,
Cg at
where
20
2 _M2u 2 _wta 2 _K 2 _yte 2_"0
G =5 Q= 5375 %™ T %77

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17abcde)
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2 _ 4o 2 _ "o _ 2o Y ”
VTR Y2 Ta0 P T e 4T (2.18abcd)
Tv
- - 20
r = - s = m, (2.198‘))

We next eliminate ¢ or © from equations (2.12)-(2.13), and ¥ or wy from
(2.14)-(2.15) to obtain the following partial differential equations:

2
£} 9 29 2
[(v2 LIty PR ](a»,e) -0, (2.20)
1 3
2 2
(02 - L2y 42 L 2y s B (v, = 0, (2.21)
o ot Cq at

where 12 = qr, CZ = ps.

Following Eringen [4] and Nowacki [9] the stress tensor %34 and the couple

stress tensor ”ji are given by
o5 = (J\uk’k-ve)«sij + (u-a)(ui’j + uj".) + 2&(ui’j - Ekjiwk)’ (2.22)
i T 8, ki LI Bwk,k Gij + (y-e)wj,_i + (y+e)w1. ) (2.23)

_ 1
Bj = oy ‘b’j tx Bo ekj‘i RT (2.24)

where €Ki is unit antisymmetric tensor, Bj is the vector first moment and
i,j,k=1,2,3. These expressions in the present case reduce to the form

033 = 2u (g% - g—)z(%’-z) + 98 ¢ - ve, (2.25)
o3, = u[z %i%? + :—} - %} +a(PPy - 2y, (2.26)
ug, = (v4e) :; -8, 3, (2.27)
By o ae soa¥. (2.28)

3.  BOUNDARY CONDITIONS.
In view of the normal loading of magnitude g(x,t) applied on z =0, the

boundary conditions are given by
033 = - g(x,t), 9gp = 0, Mgy = 0, By = 0, at z = 0. (3.1abed)

In view of the assumption that the temperature difference across the free surface
is always small, the 1linearized form of the radiation condition is valid on the

boundary z =0 so that
Bene=0 on z = 0. (3.2)

Further, if we assume that the loading function g(x,t) is bounded and finite on

z =0, then ¢, v, 6, w, and ¢ vanish at infinity.
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4. SOLUTION OF THE PROBLEM.
We solve the above equations (2.16), (2.20) and (2.21) by using the double

Fourier transform defined as follows:

Flkazan) = &= 070 f(xzat) o () gyt (4.1)
where the inverse transform is given by
f(x,2,8) = = _J7S" Flk,zon) e Txnt) gygn, (4.2)
Thus the equations reduce to the form
2 2
d 2y d 2v(7 =
(== - A - 2;)(6,8) =0, (4.3)
a2’ V? 2
2 2
d 2yd 2v(= =
(F5 - A3 (= - 1) (¥w,) =0, (4.4)
a2l ¥ gf AR
2
d 2
( - x)e =0, (4.5)
d? 8
where
2 .
2 .
xi + Ag = (2k© - 3? - l%-— intl), (4.6)
c C
1 3
2 .2 _ ol 2vin 2y .o 2.2
A1A2=(—2--k)(—2--k)-1mk), (4.7)
[d c
1 3
2 2
2 _ 2 n n 2 2
A3 + A4 = (2k" - i -?'+ Yl- k%), (4.8)
2 2
Y L I (4.9)
<, Ca
2_.2.,.2 nf
A = k™ +v5 - = (4.10)
‘s

In view of the boundary conditions at infinity, the bounded solutions of (4.3)-
(4.5) assume the form

-Alz -Azz
$ = Ae + Be s (4.11)
_ -Alz -Azz
8 =Ae + B.,e s (4.12)
1 1
A,z -,z
F=C 3 +pe ¥, (4.13)
“A,2Z =X,z
B,=Ce ° 40V, (4.14)
-XSZ
$=Ee . (4.15)
where
A1 = alA, B1 = azB, C1 = G3C, D1 = u4D, (4.16abcd)
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and

0|

2
0+ 2B, for ge1.2.
“
o - ) (4.17ab)
(24 - K2y, for j=3,4.
372

o=

It is assumed that Re(AJ) >0, j=1,2,3,4,5.
Applying the Fourier transform (4.1) to (3.labcd)-(3.2) and using (2.25)-(2.28),
it turns out that

2- - 2 o
e A R e k) § - v = - 3 (kun), (4.18)
A Y4 z
(kY + 0 piy G0y 4 m(“26 - K% -25,) = 0 (4.19)
A A o 4 ol T '
dﬁé _
(v4e) 2 + 8,k & = 0, (4.20)
ao%-%iﬁok 5, = 0, (4.21)
g.g.+ ho=0, (4.22)

where g(k,n) 1is the double Fourier transform of g(x,t).
Substitution of (4.11) - (4.15) into (4.18) - (4.22) yields

qlA + qu + Q3c + Q4D = - glk,n), (4.23)
PiA + poB + P3C + gD = 0, (4.24)
r3C + r4D + rSE =0, (4.25)
t3C + t4D + t5E =0, (4.26)
s;A +s,8=0, (4.27)
where
[y 2 2 L 1
qj = lj (A + 2“) - k™x - ij), J = 1,2,
(4.28ab)
=21 ukk», j = 3:4)
L J e
py = [-21 wkaj, i=1,2,)
(4.29ab)
u(k? + AJ?) + a(k?- K2 - 2a5), 3 =38,
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ry = (y+e) aj)‘j’ j = 3,4,
. ) (4.30ab)
-180k, J = 59
, = . - Ly i = 1,2, 4.31
S (AJ h) o5 J ( )
.= [i . i = 3,4, 4,32ab
t; iBok o 3 ( ab)
3a0Xj, j=5.
Solving equations (4.23)-(4.27) for A,B,C,D and E we obtain
b - b - b3
A=:=9 (ksn), B = 1= 9(k;n), € = 2= g(k,n). (4.33abc)
by _ By _
D =+ glk,n), E = 5= g(k,n), (4.34ab)
where
A= ml(p3m5 - q3m4) - mz(p4m5 - q4m4), (4.35)
by = 52(p3m1 - p4m2), by = sl(p4m2 - p3m1), (4.36ab)
by = MMy, By = -MyMy, Ag = Mamy, (4.37abc)
and
m = (r4t5 - r5t4), m, = (r3t5 - r5t3), my = (r3t4 - r4t3), (4.38abc)
my = (slp2 - szpl), mg = (slq2 - squ). (4.39ab)
Using the Fourier inverse transformation (4.2) in (4.11) - (4.15) we obtain
A,z A,z
e A aR (TR T yeri (kX + ) ggq, (4.40)
-\Z =AnZ :
b =g T (aghe U waBe yemTkx + gy, (4.41)
“AqZ “ApZ s
borgh e T e Merillr ") gkdn, (4.42)
~AqyZ “ApZ .
=g ST (agle Tt e A%y kx + nt) gy, (4.43)
“AeZ
o =g mmEe O e R gy, (4.44)

Thus, using (4.40)-(4.44) we can obtain the displacement components, force stress,
couple stress tensor, vector first moments, and the temperature field in the integral

form
o o * - -1
ul = - -2-11? _wf_mf u]_(z’karl) 9 (kaﬂ)e 1(kX * nt)dkdn, (4'45)
1 © o * - -9
Uy = - g 7T u(zkon) § (ke (R g, (4.46)

1 o o * - -1
b= o LT wy(zakem) § (ke TR F g, (4.47)
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o

o * - -3 +
033 = me L " 0y (zkun) § (kyn)e KX T ntgean,

Ty A e
931” ?%‘ LT ogl (z,k,n) § (kon)e (KX F ntgygn
bgp T m e ST wglzakan) § (kn)e K ntgean
By - T ey(zkon) § (knen (KX ntgeqn
°= ?%'-w TLT 6 (z.ksn) § (kyme TRX * nb)gqr
where
W (zkon) = - ik (Ale'klZ N Aze'*zz) . A3A3e'*3Z N A4A4e'k4z 1.
ug (z,k,n) = % [AlAle-xlz + AzAze-A z. 1k(A3e-x z + bge
~A,Z

=X,z
Wy (z,k,n) = %-[03A3e toagl,e ],

4]

s

-,z
)
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1.

023 (z,k,n) = %»[{(A + zu)xf -k - val}Ale-Alz

+ {(x+ 2u)xg - kzx - vaz}Aze-Azz

29 uk (A3A3e-k3Z + A4A4e-x4z)],
O;I(Z,k,n) = —i— [21uk(x1A1e-Alz + b, e-xzz)

+ {u(k2 + )\g) + a()\g -kl - 2::13)}A3e-)‘3Z

R CTUGY S I eV S 2a4)}A4e-A4z ],
Wpplzkon) = 1 [(y+e)(A3a3A3e-A3z + a4A4A4e-A4Z) -iBOkAse-ASZ
B; (z,k,n) = % [isok (oz3A3e_A3Z + u4A4e-l4Z) + 3a0A5Ase-Asz
6 (z,k,n) = %-[ alAle-A .. mzAze-A ’ ].

5.  PARTICULAR CASES:

1,
1,

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.58)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(i) We consider a time periodic concentrated force acting at the origin in the

direction of x-axis so that the loading function assumes the form

glx,t) = Fa(x) e @k,

(5.1)

where F is the magnitude of the force, §(x) is the Dirac function of distribution and

w s the frequency.
The double Fourier transform of g(x,t) is
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g (k,n) = g% L _efowFé(x)e'T“’te1(kX+"t)dxdt,

- B ity
V‘z‘"s

= /(2x) Fs(n-w).
Thus from (4.45)-(4.60) with (5.2), we obtain

—' © * -.
u = - F_e mt_mf [ul(z’k’“)]nm e KX g,
V(Z'IT;
F -jut e ¥ -ikx
u, = - e 17 [ug(z,kom)] _ e dk,
3 - 3 n=w
e
_ F-iet o * -ikx
vt e T luplzoken)] e” Tk,
F o -iwt = * -ikx
= k,n)] e dk,
033 e -oof [033(29 >N n=w
e
F LR T} AR I -ikx
Oaq = e f [0 (z,k n)] _ e dk,
31 VeDl -e 31V =y
m
F o -iet o * -1kx
‘-l32 = e _wf [u32(2,k,n)]n=w e dk,
V(Z‘l’li
1 F o -dewt = * -ikx
83 = e - _3‘ - e _mf [B3(Z:ksn)]n=w e dk)
o = et 7 [ (zkon)] L, T Mk
sz‘nj

(5.

(5.

(5.

(5.

(5.

(5

(5.

If we neglect the stretch effect, we recover the corresponding expressions for

displacements, stresses, and the temperature field in the forrv

-iwt .
Ul = - .F_e__ -mf"" [MI(Z,k,T\)] _ e—1kxdk’
v t?ﬂj nTw
-iwt .
uy = - LS Myzkan] e 1KXqy,
V\Zﬂ;
-iwt :
wp = gz kon)] e M,
/‘(‘2_)'“ n
-t .
033 = e 7 My(zkom)] T KRk,
/'(T‘)‘_n n
-iwt s
o3 = Fe v Ms(z,km)] 2 e K%,
V'?W’ n=e
-iwt :
ogp = - B s My (zkom)] T KRk,
oOn n=e
_FeTiet . -ikx
o= LE— 17 My(z.kon)] e ak,

(5.

(5.

(5.

(5.
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2)

.3)

.4)

5)

7)

8)

.9)

10)

the

.11)

.12)

13)

14)

15)

16)

.17)
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where
-\, Z -2 -AqZ -\, Z
1 . * * * * T
M, (z,k,n) = Z; [1k(A1e L 85e )+ Aqbqe Ea Agbqe 1, (5.18)
-\, 2 -A,Z =X,2 =A 2
\ 1 * * . * 3 * 4
My(z,k,n) = Z;- ESTSEC + 20, e - ik (85 + b, e ), (5.19)
-AyZ =A,Z
1 * A3 * M
M3(Zak,n) = ?' [a3A3 e + a4A4 e ], (5.20)
“-ApZ
_ 1 2 2 * 2
My(z,k,n) = A—* [(+2u)a] - k5 - va 1, e
- Az
+ {(r+ Zu))\g - k2/\ - vuz} A; e 2
) * ~MaZ . M2
- 21uk(A3A3e 3 Agby € 4 1, (5.21)
) x "Mz « =Mz
Ms(z,k,n) = %; [21uk()\1A1 e + Ab, e 2 )
-A,z
+ {u(k2+ Ag) + a()\g- kz- 2a3)}A;e 3
2, 2 2 .2 * A2
+{ulk® ag) + a(hg- k5= 204)3n4e 1, (5.22)
1 * ')\ Z * ")\ Z
M(zikon) = 3% [(v + e)agug a3 e 2+ 2y apage © ) 1, (5.23)
« N2 x A2
M-,(Z,k,n) = -i—*- [ ahg e + ayb, € 1, (5.24)
and
*
A= (P3r4 - P4Y‘3)(52q1 - 51q2) - (Q3"4“ Q4r3)(52p1' Slpz); (5.25)
*
& = - 52(p3r4 - p4r3), (5.26)
*
by = sl(p3r4- p4r3), (5.27)
*
by = - r4(slp2 - szpl), (5.28)
*
by = r3(slp2 - SZPI) . (5.29)

These results agree with those obtained by Acharya and Sengupta [8].
(i1) In this case we consider a torque with its axis parallel to the z-axis so that
g(x,t) can be written as .
a(x,t) = G[&(x-a)-8(x+a)]e” 10t (5.30)
where G is the magnitude of the force.
The double Fourier transformation of (5.30) gives

§lkan) = & o Ts(x-a)-8(xea) et (KXHt)miut

oo’

dxdt,

2i /{27) G sin (ka)s(n-w). (5.31)
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Then from (4.45) - (4,60) with (5.31), we obtain

uy = -6 7 M T [W](z,k,n) ] sin(ka)e K ak, (5.32)
uy = - i6 /2/7)e '1”t S [u3 z,k,n) ] n= Jsin(ka)e 1kxdk, (5.33)
w, = i6 /(27w)e’iwfwfw [m;(z,k,n) ]n=wsin(ka)e'ikxdk, (5.34)
. e ' .
o35 = 16 TZMe ™t s [o35(z,k,m) ] _ sin(ka)e” Kak, (5.35)
-1 © * -3
o950 = 16 /(2/m)e “"EQI [o5,(z,k,n) ]n%sin(ka)e kX4, (5.36)
uyp = - 16 (2/m)e Tut o [u32(z k) 1. sin(ka)e"""dk, (5.37)
8, = - 18 q7me Ut 7 (8] (z.kom) ], sin(ka)e” Mk, (5.38)
. -jwt e % : -ikx
8 = iG /{2/n)e 6 (z,km) ]nzws1n(ka)e dk. (5.39)

In the absence of the stretch effect, we obtain the corresponding expressions for the
displacements, stresses and the temperature field in the form

up = - 16 et Dy (z,kon) 1 sin(ka)e” ¥k, (5.40)
Uy = - 16 TZMe Wt 7 y(z,kon) ] sin(ka)e ¥k, (5.41)
wp = 16 I My(z,k,n) 1 sin(ka)e™ Kak, (5.42)
055 = 16 »/(2—/?)e“""t_ﬂf° My(z,km) ], _ sin(ka)e™ *¥ak, (5.43)
03, = Z7me 91" Mglzkon) 1, sin(ka)e™ ¥ ak, (5.44)
bap = - 16 TZMeET 7 [Me(z,k,m) ]n=msin(ka)e“'k"dk, (5.45)
o = a6 TEme Vg7 M (z.k,m) 1 sin(ka)e” Fak. (5.46)

These results also agree with the corresponding results without stretch.
6.  CONCLUSION.

The displacement field, force stress, couple stress, temperature field and vector
first moment have been obtained. It is noted that the displacement field, force
stress, couple stress and temperature field involve the parameters @y By and o of
the micropolar elastic media with stretch. In addition to the displacements, force
stress, couple stress, and temperature field, vector first moment Bj has been deter-
mined which vanishes in the case of thermo-micropolar elasticity. Some numerical
calculation for specific models of physical interest will be carried out and will be
communicated in a subsequent paper.
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