

PERFECT MAPS IN COMPACT (COUNTABLY COMPACT) SPACES

G.L. GARG and ASHA GOEL

Department of Mathematics
Punjabi University
Patiala-147 002, India

(Received January 23, 1993 and in revised form May 23, 1993)

ABSTRACT. In this paper, among other results, characterizations of perfect maps in compact Hausdorff(Fréchet, countably compact,Hausdorff) spaces are obtained

KEY WORDS AND PHRASES. Perfect,compact, countably compact,continuous,countably compact preserving, compact preserving,closed, compact fibers,Fréchet space,k- space,closed graph.

1992 AMS SUBJECT CLASSIFICATION CODES. 54C05, 54C10, 54C25, 54D30

1. INTRODUCTION.

Throughout, by a space we shall mean a Hausdorff topological space. No map is assumed to be continuous or onto unless mentioned explicitly, $\text{cl}(A)$ will denote the closure of the subset A in the space X . A map $f: X \rightarrow Y$ is said to be countably compact (compact[1] or proper in the terminology of Liden[2]) if inverse image of each countably compact (compact) set is countably compact (compact) f is said to be countably compact preserving(compact preserving[3] or compact in the terminology of Liden[2]) if image of each countably compact(compact) set is countably compact(compact). f is said to be perfect [2] if it is continuous,closed, and has compact fibers $f^{-1}(y)$, $y \in Y$. X is said to be a Fréchet space if for each subset A of X , $x \in \text{cl}(A)$ implies there exists a sequence $\{x_n\}$ in A converging to x X is said to be a k-space if O is open (equivalently:closed) in X whenever $O \cap K$ is open(closed) in K for every compact subset K of X Every Fréchet space as well as every locally compact space is a k- space.

The study of perfect maps and their properties can be found in Liden[2], Vainstein[4], Mishenko[5], Kljusin[6], Borges[7], Bourbaki[8], Fedorcuk[9], Burke[10], Mancuso[11], Gao[12], Salmon[13], Arkhangel'skii & Ponmarev[14], Ormotsadge[15], Daniels[16], Matveev[17], Frolík[18], Lin[19], Mihai[20] and Dugundji[21], to cite only a few.

In the present paper, among other results, characterizations of perfect maps in compact(countably compact) spaces are obtained.Examples are given to show that the condition ' Fréchet' on the domain and range spaces in our theorem 3.3 cannot be replaced by the weaker condition of 'k-space'.

2. PROPOSITIONS.

PROPOSITION 2.1. Let $f: X \rightarrow Y$ be countably compact preserving(in particular,continuous), where X is countably

compact and Y is a Fréchet space. Then f is closed.

PROOF. The proof is the same as that of Theorem 16.19 of Thron[22].

PROPOSITION 2.2. Let $f:X \rightarrow Y$ be closed with compact (countably compact) fibers, where X, Y are arbitrary. Then f is compact (countably compact).

PROOF. For the compact version, see Theorem 3 of Liden[2]. His proof is valid for the non surjective case too. The proof of the other part is similar.

PROPOSITION 2.3. Let $f:X \rightarrow Y$ be countably compact, where X is a Fréchet space and Y is countably compact. Then f is continuous.

PROOF. Let F be a closed subset of Y . Then F is countably compact. Since f is countably compact, $f^{-1}(F)$ is countably compact and so closed subset of X , by Theorem 3.6 of Dugundji[21]. Hence f is continuous.

Combining propositions 2.2 and 2.3, we get the following:

PROPOSITION 2.4. Let $f:X \rightarrow Y$ be closed with countably compact fibers, where X is a Fréchet space and Y is countably compact. Then f is continuous.

COROLLARY 2.5. Let $f:X \rightarrow Y$ be a closed injection (bijection), where X is a Fréchet space and Y is countably compact. Then f is an embedding (homeomorphism).

PROPOSITION 2.6. For any space X , let $f:X \rightarrow Y$ be compact, where Y is a k -space. Then f is closed.

PROOF. For proof, see Theorem 2 of Liden[2]. His proof is valid for the non surjective case too.

PROPOSITION 2.7. For any space Y , let $f:X \rightarrow Y$ be compact preserving with closed fibers, where X is a k -space. Then f is continuous.

PROOF. For proof, see Theorem 4 of Liden[2]. His proof is valid for the non surjective case too.

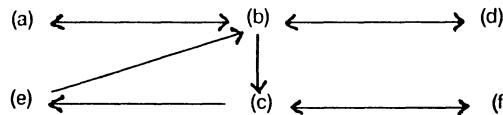
3. THEOREMS.

The following theorems 3.1 and 3.3 give characterizations of perfect maps in compact and countably compact spaces, respectively.

THEOREM 3.1. Let $f:X \rightarrow Y$ be any map, where X, Y are compact spaces. Then the following are equivalent.

- (a) f is perfect.
- (b) f is continuous.
- (c) f is closed with closed fibers.
- (d) f has closed graph.
- (e) f is compact.
- (f) f is compact preserving with closed fibers.

PROOF. Using proposition 2.2 above, and Theorem 1.1.10 of Hamlett and Herrington [23], the proof follows easily from the following diagram.



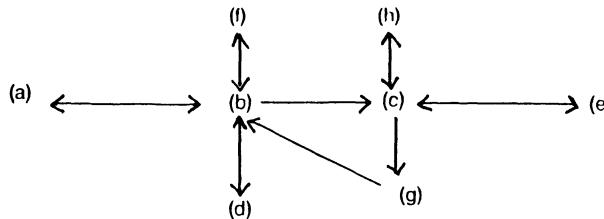
COROLLARY 3.2. Let $f:X \rightarrow Y$ be any injection (bijection), where X, Y are compact spaces. Then the following are equivalent.

- (a) f is an embedding(homeomorphism).
- (b) f is continuous.
- (c) f is closed(or open).
- (d) f has closed graph.
- (e) f is compact.
- (f) f is compact preserving.

THEOREM 3.3. Let $f:X \rightarrow Y$ be any map with compact fibers, where X, Y are Fréchet, countably compact spaces. Then the following are equivalent.

- (a) f is perfect.
- (b) f is continuous.
- (c) f is closed.
- (d) f has closed graph.
- (e) f is compact.
- (f) f is compact preserving.
- (g) f is countably compact.
- (h) f is countably compact preserving.

PROOF. Using Theorem 5 of Piotrowski[24] and the above propositions 2.1 to 2.7, the proof follows easily from the following diagram.



COROLLARY 3.4. Let $f:X \rightarrow Y$ be any injection(bijection), where X, Y are Fréchet, countably compact spaces. Then the following are equivalent.

- (a) f is an embedding(homeomorphism).
- (b) f is continuous.
- (c) f is closed(or open).
- (d) f has closed graph.
- (e) f is compact.
- (f) f is compact preserving.
- (g) f is countably compact.
- (h) f is countably compact preserving

NOTE 1. Theorem 3.3 and corollary 3.4 do not hold even for compact spaces X and Y which are non-Fréchet, as the following example shows.

EXAMPLE 3.5. Let $X = Y = [0, \Omega]$ be the ordinal space, where Ω is the first uncountable ordinal. Then the bijection

$f: X \rightarrow Y$ which is identity on $(0, \Omega)$, $f(\Omega) = 0$, and $f(0) = \Omega$, is countably compact as well as countably compact preserving but does not satisfy any of the conditions (a) to (f) of theorem 3.3 and corollary 3.4.

NOTE 2. Example 3.6 below shows that the condition 'Fréchet' on any of the spaces X and Y in theorem 3.3 cannot be replaced by 'k-space'.

EXAMPLE 3.6 The inclusion map $i: [0, \Omega] \rightarrow [0, \Omega]$ is continuous but not closed. Here the domain space is Fréchet, T_2 , countably compact, and the range is compact, T_2 . Also the function $f: [0, \Omega] \rightarrow [0, \Omega]$ which is identity on $[0, \Omega)$ and $f(\Omega) = 0$, is closed but not continuous. Here the domain space is compact, T_2 and the range is Fréchet, T_2 , and countably compact.

ACKNOWLEDGEMENT. The authors are grateful to the referee for useful suggestions.

REFERENCES

- HALFAR, E. Compact mappings, Proc. Amer. Math. Soc. 8(1957), 828-830.
- LIDEN, N. K-spaces, their anti-spaces, and related mappings, Pacific J. Math. 59(1975), 505-514.
- HALFAR, E. Condition implying continuity of functions, Proc. Amer. Math. Soc. 11(1960), 688-691.
- VAINSTEIN, I.A. On closed mappings of metric spaces, Dokl. Akad. Nauk SSSR (N.S.) 57 (1947), 319-321.
- MISHENKO, A.S. Examples of irreducible perfect mappings of non normal spaces onto normal spaces, Uspekhi Mat. Nauk 18 (1963), 181-182.
- KLJUSIN, V. Perfect mappings of paracompact spaces, Soviet Math. Dokl. 5 (1964), 1583-1586.
- BORGES, C.J.R. On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- BOURBAKI, N. General topology part-I. Addison-Wesley Publishing Company, 1966.
- FEDORUK, V.V. Irreducible perfect mappings and generalized proximities, Mat. Sbornik 76 (1968), 513-536.
- BURKE, D.K. On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
- MANCUSO, V.J. Inverse images and first countability, General Topology And Appl. 2 (1972), 29-44.
- GAO, G. Paracompactness and perfect mappings, Acta Math. Sinica 23 (1980), 794-796.
- SALMON, R.D. Perfect mappings and singular sets, Kyungpook Math. J. 21 (1981), 75-85.
- ARKHANGEL'SKII, A.V. & PONOMAREV, V.I. Fundamentals of general topology: Problems and Exercises, Hindustan Publishing Corporation(India) Delhi, 1984.
- ORMOTSADGE, R.N. Perfect mappings, Soobshch Akad Nauk Gruzin SSSR 119 (1985), 25-28.
- DANIELS, P. Perfect pre-images of collectionwise normal spaces, Proc. Amer. Math. Soc. 97 (1986), 177-183.
- MATVEEV, V.A. Perfect irreducible pre-images of topological spaces, Vestnik Moskov. Univ. Ser I, Mat. Mekh (1988), 80-82.
- FROLIK, Z. Refinements of perfect maps onto metric spaces and an application to Čech-analytic spaces, Topology Appl. 33 (1989), 77-84.
- LIN, S. Perfect pre-images of some generalized metrizable spaces, Questions Answers Gen. Topology 7 (1989), 23-30.
- MIHAI, C. When closed maps are proper or continuous, Demonstratio Math. 22 (1989), 229-233.
- DUGUNDJI, J. Topology, Prentice-Hall of India Private Limited, New Delhi, 1975.
- THRON, W.J. Topological structures, Holt, Rinehart and Winston, 1966.
- HAMLETT, T.R. & HERRINGTON, L.L. The closed graph and p-closed graph properties in general topology, Amer. Math. Soc. Providence Rhode Island, 1981.
- PIOTROWSKI, Z. & SZYMANSKI, A. Closed graph theorem topological approach, Rendiconti Del Circolo Matematico Di Palermo Serie II, 37 (1988), 88-99.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru