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1. INTRODUCTION.
Throughout, by a space we shall mean a Hausdorff topological space. No map is assumed to be
continuous or onto unless mentioned explicitly,cl(A) will denote the closure of the subset A in the space X. A map

f:X- Y is said to be countably compact (compact[1] or proper in the terminology of Liden[2]) if inverse image

of each countably compact (compact) set is countably compact (compact) f is said to be countably compact

preserving(compact preserving[3] or compact in the terminology of Liden[2] ) if image of each countably

compact(compact) set is countably compact(compact). fis said to be perfect [2] if it is continuous,closed, and
has compact fibers f l(y). y € Y. Xis said to be a Fréchet space if for each subset A of X, x € cl(A) implies there
exists a sequence {xn} in A converging to x X is said to be a k-space if O is open (equivalently:closed) in X
whenever O N K is open(closed) in K for every compact subset K of X Every Fréchet space as well as every
locally compact space is a k- space.

The study of perfect maps and their properties can be found in Liden|2], Vainstein[4], Mishenkol5],
Kljusin[6], Borges[7], Bourbaki[8], Fedorcuk[9], Burke[10], Mancuso([11], Gao[12], Salmon|[13], Arkhangel'skii &
Ponmarev[14], Ormotsadge|[15], Daniels[16], Matveev[17], Frolik[18], Lin[19], Mihai[20] and Dugundiji[21], to cite
only a few.

In the present paper, among other results, characterizations of perfect maps in compact(countably
compact) spaces are obtained.Examples are given to show that the condition * Fréchet’ on the domain and range
spaces in our theorem 3 3 cannot be replaced by the weaker condition of 'k-space’.

2. PROPOSITIONS.
PROPOSITION 2.1. Let f X- Y be countably compact preserving(in particular,continuous), where X is countably
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compactand Yisa Fréchet space Then fis closed.

PROQOF. The proof is the same as that of Theorem 16.19 of Thron[22].

PROPOSITION 2.2. Let f:X-Y be closed with compact (countably compact) fibers,where X,Y are arbitrary. Thenfis
compact ( countably compact).

PROOF. For the compact version, see Theorem 3 of Liden[2].His proof is valid for the non surjective case too. The
proof of the other part is similar.

PROPOSITION 2.3. Letf:X~Y be countably compact, where X is a Fréchet space and Y is countably compact. Then
{ is continuous.

PROOF. Let F be a closed subset of Y. Then F is countably compact. Since fis countably compact,f 1(F) is countably
compact and so closed subset of X, by Theorem 3.6 of Dugundji[21]. Hence f is continuous.

Combining propositions 2.2 and 2.3, we get the following:

PROPOSITION 2.4. Let f:X- Y be closed with countably compact fibers, where X Is a Fréchet space and Y is
countably compact. Then f is continuous.

COROLLARY 2.5.Letf:X-» Y bea closed injection(bijection), where Xis a Fréchet space and Y is countably compact.
Then f is an embedding(homeomorphism).

PROPOSITION 2.6. For any space X, let f:X-Y be compact, where Y is a k-space. Then f is closed.

PROQF. For proof, see Theorem 2 of Liden[2].His proof is valid for the non surjective case too.

PROPQSITION 2.7. For any space Y, let :X-Y be compact preserving with closed fibers, where X is a k-space. Then
fis continuous.

PROOF. For proof, see Theorem 4 of Liden[2]. His proof is valid for the non surjective case too.

3. THEOREMS.
The following theorems 3.1 and 3.3 give characterizations of perfect maps in compact and countably
compact spaces, respectively.
THEOREM 3.1. Let f:X~ Y be any map, where X,Y are compact spaces. Then the following are equivalent.
(a) fis perfect.
(b) f is continuous.
(c) fis closed with closed fibers.
(d) f has closed graph.
(e) fis compact.
(f) f is compact preserving with closed fibers.
PROOF. Using proposition 2.2 above, and Theorem 1.1.10 of Hamlett and Herrington (23], the proof follows easily
from the following diagram.

(a) & 5. (0) ¢ > @

@ e——— e 3 ()

COROLLARY 3.2. Let f:X-Y be any injection (bijection), where X,Y are compact spaces.Then the following are

equivalent.
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(a) f Is an embedding(homeomorphism).

(b) f is continuous.

(c) fis closed(or open).

(d) f has closed graph.

(e) tis compact.

(f) f is compact preserving.

THEOREM 3.3. Letf:X-Y be any map with compact fibers, where X, Y are Fréchet,countably compact spaces. Then
the following are equivalent.

(a) tis perfect.

(b) f is continuous.

(c) fis closed.

(d) f has closed graph.

(e) fis compact.

(f) f is compact preserving.

(g) f is countably compact.

(h) tis countably compact preserving.

PROOF. Using Theorem 5 of Piotrowski[24] and the above propositions 2.1 to 2.7, the proof follows easily from the
following diagram.

() )
@ e s >0 e——3 )

e (@
COROLLARY 3.4.Let f:X-+Y be any injection(bijection), where X,Y are Fréchet, countably compact spaces. Then the
following are equivalent.
(a) f is an embedding(homeomorphism).
(b) f is continuous.
(c) fis closed(or open).A
(d) f has closed graph.
(e) fis compact.
(f) f is compact preserving.
(g) fis countably compact.
(h) fis countably compact preserving
NOTE 1.Theorem 3.3 and corollary 3.4 donot hold even for compact spaces X and Y which are non-Fréchet, as the
following example shows.
EXAMPLE 3.5. Let X=Y =[0,Q] be the ordinal space, where Q is the first uncountable ordinal. Then the bijection
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f ¥ Y which is identity on(0,22 ), ({2 ) =0,and f(0) =Q , is countably compact as well as countably compact
preserving but does not satisfy any of the conditions (a) to (f) of theorein 3 3 and corollary 3.4.

NOTE 2. Example 3 6 below shows that the condition ‘Fréchet’ on any of the spaces X and Y in theorem 3.3 cannot
be replaced by 'k- space’.

EXAMPLE 3 6 The inclusionmapi [0,Q ) —[o, Q] is continuous but not closed. Here the domain space is Fréchet,
T2 ,countably compact, and the range is compact, T2. Also the function f:[0,Q ]-» [0, Q) which is identity on [0,Q2)
and f(Q) =0, is closed but not continuous. Here the domain space is compact, T2 and the range is Fréchet, T2, and

countably compact.
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