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1. INTRODUCTION.

Our notation and terminology will agree with that of [4]. If A is a non-empty subset of a poset
(X, <), we denote by i(A) (respectively, d(4)) the increasing (respectively, decreasing) hull of A,
defined by i(A) = {z € X : a < z for some a € A}. A set A is said to be increasing (respectively,
decreasing) if A = i(A) (respectively, A = d(A)); A is convex if A = i(4) N d(4).

We define an ordered topological space (or, for brevity, space) to be a triple (X, <, T), where
(X, <) is a poset and T is a convez topology (i.e., a topology with a subbase consisting of increasing
and decreasing open sets). We will usually write X rather than (X, <, T) when no ambiguity will
result. '

A space X is Ty-ordered if i(z) and d(z) are closed for all z € X; X is T;-ordered if the order
relation is closed in X x X. If X is normally ordered (in the sense of Nachbin, [5]) and T;-ordered,
then X is said to be Ty-ordered. A space which is T;-ordered and totally ordered is called a
totally ordered space. We use the term real ordered space to describe a totally ordered space where
underlying poset is the set of real numbers with their usual order (but not necessarily the usual
topology). A product of two real ordered spaces is called an ordered plane.

Starting with a subset A of a space X, let I(A) be the closed, increasing hull of A (i.e., the
smallest closed, increasing set containing A); the closed, decreasing hull D(A) is defined dually. A
is defined to be a c-set if A = I(A) N D(A). A space X is called a c-space (see [4]) if, for every c-set
A, i(A) and d(A) are both closed sets.
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Each completely-regular-ordered space X (as defined in [5]) allows T;-ordered compactifications,
the largest of which is the Nachbin (or Stone-Cech-ordered) compactification (see [1], [5]). In 1976,
Choe and Park introduced the Wallman-ordered compactification of an arbitrary T}-ordered space
X, and it was shown in 1985 (see [3]) that woX and §oX are equivalent if and only if X is a Ty-
ordered c-space. In this note, we show that an ordered plane is always T, ordered, and is a c-space
if and only if it has one of four topologies. This gives necessary and sufficient conditions for 8o P
and woP to coincide for an ordered plane P.

2. ORDERED PLANES.

In a real ordered space X = (R, T), every point has a neighborhood base of convex sets. Then
for any z € X, basic neighborhoods are of exactly one of the following four types: (z — €,z +
€),[z,z + €),(z — &,z],{z}. Of course, different points in X may have different types of basic
neighborhoods. Four well-known topologies on R are designated as follows: (1) T, is the usual
topology on R with basic neighborhoods (z — €,z + €) at every point z € R; (2) T is the discrete
topology; (3) T, is the left-Sorgenfrey topology, with basic neighborhoods [z,z + €) at every point
z; (4) T, is the right-Sorgenfrey topology, with basic neighborhoods (z — ¢, z] at every point z.

THEOREM 1. Let P = X xY be an ordered plane. P is a c-space iff P has one of the following
topologies: (1) Tu x T, (2) Tax T, 3) T x T, (4) Tr x Te.

PROOF. Assume that P has one of the four specified topologies. In Theorem 3.1, [4], it is
proved that P, equipped with T, X T, is a c-space. It is obvious that any poset with the discrete
topology is a c-space. Next, assume that P has the topology T, x T,. Suppose A is closed and
convex in P; we will show by contradiction that i(A) is also closed.

If 1(A) is not closed, then there is (Zo, o) € cli(A) (the closure of {(A4)) such that (zo,yo) € t(A).
Let (zn,yn) be a sequence in i(A) converging to (zo,y0). Since (zo,v0) & #(A), 4 N d(zo,¥0) = 0.
By assumption, all basic neighborhoods of (zo, yo) are subsets of S = {(z,y) : z > zo,¥ < w0}, and
we assume without loss of generality that (z.,y,) € S, for all n. Indeed, since (zo,y0) & t(4), we
can assume that (zn,y.) € So = {(z,v) : £ > Zo,y < yo} for all n.

Let (an,bn) be a sequence in A such that (an, b,) < (zn,yn), for all n; it follows that (an,b,) € So
for all n. Since zo < a, < z, for all n, (a.)T,-converges to zo. Furthermore (b,) has either an
increasing or a decreasing subsequence; we consider both cases.

CASE 1. (b,) has an increasing subsequence (b,,). Since (b,,) is bounded above by yo and
increasing, it must T,-converge to some bo. Then (an,,bn,) converges to (zo,bo), and the latter
point is in A (since A is closed). But by < yo implies (zo,y0) € 1(A4), a contradiction.

CASE 2. (b,) has a decreasing subsequence (b,,). Let (a,.,"_) be a decreasing subsequence of
(any); if @} = an,; and b} = by, , then (a},b}) is a decreasing subsequence of (an,b,). For arbitrary
J, we have (a},b}) < (a},b]) < (a},d)), and since A is convex, (a},b}) € A for all . Thus the
sequence (aj,b)) converges to (zo,b}), and (zo,b}) € A since A is closed. Also, b} < yn,, < yo; thus
(zo, o) € ¢(A), a contradiction.

We conclude that every point in cli(a) is also in i(A4), so i(A) is closed. A dual argument shows
that d(A) is closed. Similar arguments apply if P has the topology T, x T,. Thus the proof is
complete in one direction.

To prove the converse, observe that if P is not equipped with one of the four specified topologies,
then some point (zo,y0) in P has basic neighborhoods of one of the following twelve types: (1)
(zo—¢, Zo+€) X {y0}; (2) [Zo, Zo+€) X {o}; (3) [Zo, Zo+€) X 40, Yo+€); (4) (zo—e€, Zo+€) X [yo, Yo +€); (5)
{zo}x (y0—¢, w]; (6) {zo} x(vo—¢, yo+¢); (7) (zo—¢, o] X (o —¢, wo]; (8) (zo—e, Zo] X (yo—¢, yote€); (9)
(zo—¢, 20| X {y0}; (10) (zo—¢, Zo+€) X (vo—¢, yol; (11) {z0} *[v0, Yo+€); (12) [z0, Zo+€) X (yo—€, yo-+e).

First assume there is a point (zo,yo) with basic neighborhoods of one of the types (1), (2), (3),
or (4). Let A = {(z,y) : z= —y,z > 79}. One may verify that for any of these four neighborhood
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types, d(A) = D(A),I(A) = i(A)U{(zo,¥) : ¥ > yo}, and A = I(A)N D(A). Thus A is a c-set, and
since #(A) is not closed, P is not a c-space.

Next assume there is a point (zo,yo) with basic neighborhoods of one of the types (5), (6), (7),
or (8). Let A be defined as in the preceding paragraph. One can verify that i(4) = I(4),D(A4) =
d(A) U {(z,y0) : = < 2o}, and A = I(A) N D(A). Thus A is a c-set and A is not closed, so P is not
a c-space.

Finally, suppose there is a point (zo, yo) with basic neighborhoods of one of types (9), (10), (11),
or (12). Let B = {(z,y) : z = —y and y > yo}. One can verify that B is a c-set. If the basic
neighborhoods at (zo, yo) are of type (9) or (10), then I(B) = i(B) and D(B) # d(B). If the basic
neighborhoods at (zo, yo) are of type (11) or (12), then D(B) = d(B) and I(B) # i(B).

Thus for any topology on P other than the four specified, P fails to be a c-space, and the proof
is complete. 1

THEOREM 2. Every ordered plane is Ty-ordered.

PROOF. Let P = X x Y be an ordered plane. Let A be a closed, increasing subset of X x Y
and let B be a closed, decreasing subset of X x Y such that AN B = 0. The method of proof is to
construct for each z € A and y € B, an open, increasing neighborhood N,,(z) of = and an open,
decreasing neighborhood M., (y) of y such that N, (z) N B =0 and M,,(y) N A = 0. We thex show
that N, (z) "\M,,(y) =0, forallz€ Aand y € B. Thusif U = UseaNep(z) and V = UyesMey (v),
then U is open, increasing, V is open, decreasing, ACU,BCV,and UNV =40.

Let z = (z,,1;) € A; the set N,(z) is defined for four different cases, where € > 0 is arbitrary.

CASE 1: [z;,00) is open in X, [z2,00) is open in Y.

Let N(z) = [z1,00) X [Z2,00). (Note that in this case, N¢(z) is the same set for all € > 0.

CASE 2: [z;,00) open in X, [z2,00) not open in Y.

Let N¢(z) = [z1,00) X (z2 — €, 00).

CASE 3: [z;,00) not open in X, [z;,00) open in Y.

Let N,(z) = (z; — &,00) X [z2,00).

CASE 4: [z;,00) not open in X, [z3,00) not open in Y.

Let N,(z) = (z1 — €,00) X (z2 — €, 00).

CLAIM 1: For each z € A, there is €, such that N,, " B = 0.

PROOF. In Case 1, N, C A, for all ¢, so €; may be chosen arbitrarily. In Case 2, since B is
closed, there is some ¢, such that ({z,} X (z2 — €., 22]) N B = 0. Let this €, (or any smaller one)
be chosen. In Case 3, there likewise exists €, such that ((z; — €., z1];times{z2}) N B = 0, again
let this €, be chosen. In Case 4, there exists €, such that ((z; — €;,21] X (z2 — €:,22]) N B = §;
let this €, be chosen. It remains to show that in every case, N,, N B = ). Case 1 is trivial since
N,, C A. Assume Case 2, and let z = (21,2;) € N,, N B. Then z, < 2, and z; — € < 2; < z2. Since
B is decreasing, (z,,2;) € BN {z1} X (22 — €2, 2] = 0, a contradiction. Similar arguments apply in
Cases 3 and 4.

Let y = (y1,¥2) € B; we again consider four similar cases in defining M, (y).
CASE a: (—o0,y;] open in X, (—co,y;) open in Y.

Let M, (z) = (—o0, 1] X (—00,y3].

CASE b: (—o0,y1] open in X, (—o0,yz| not open in Y.

Let M,(y) = (—o0,y1] X (—00,y2 +€).

CASE c: (—o0,y1] not open in X, (—00,y2] open in Y.

Let M, (y) = (—oo,y1 +€) X (—00,ya].

CASE d: (—o0,y1] not open in X, (—oc0,y;] not open in Y.

Let M,(y) = (—oo0,y1 + €) X (—o0,y2 + €).
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CLAIM 2: For each y € B, there is ¢, > 0 such that N, N A = 0.

PROOF. (similar to Claim 1)

CLAIM 3: For eachz € Aand y € B, Ny (z) N M%(y) =0.

PROOF. There are sixteen cases here to consider, but some are trivial. In particular, Cases
la, 1b, 1c, 1d, 2a, 3a, and 4a are all trivial since in each of these Cases, either N?(:t:) C Aor
M a9 (v) C B. Here, for example, is another case.

CASE 2b: Suppose z € Neg(z) N M:zl(y). Then z; < 2y S ypand 22 — % < 2 < y2 + L.
First, suppose €. < ¢,. Note that (y1,z;) € A4, and z; — 2 < %,z — y2 < % imply that

22—y < $+ % < ¢, Thus (y1,2:) € AN M, (y), which is a contradiction. Next, suppose
gy < &;. Then (z3,1;) € B, and again z; — y» < 4 + %e,. Therefore, (z,,y;) € B N N,,(z), again
a contradiction. We conclude that Ne (z) N M. u (v) =0.

Case 3c will be very similar to 2b. There remain seven cases: 2c, 2d, 3b, 3d, 4b, 4c, 4d; the
details are repetitious and will be omitted. 1

COROLLARY. If P is an ordered plane, then woP = [y P iff P has one of the four topoloties
of Theorem 1.

We conclude with an example which shows that a product of subspaces of R with the topologics
inherited from T, is not necessarily a c-space.

EXAMPLE. Let X be the set of rational numbers with the usual topology; let Y be R with
the usual topology. Let a be an irrational number; let b be a rational number. Let (a,) be an
increasing sequence of rational numbers converging to a in Y. Let (b,) be a decreasing sequence
of real numbers converging to b in Y which is not eventually constant. Then {(an,bs) : n € N} is
a c-set in X x Y. Let r be a rational number greater than a; then (r,4) & {(A) but (r,b) € I(A).
This shows that X x Y is not a ¢-space. |

It is natural to ask whether the preceding results generalize to an ordered product ¥ = X, x
X; x +-+ X X,,, where each X; is a real ordered space. Obviously, 5Y and woY coincide if Y is
discrete. However, it is shown in [4] that Y and woY are not equivalent if Y is equipped with the
usual topology of n-dimensional Euclidean space for n > 3. Whether there exist any non-discrete
topologies for Y (n > 3) such that 8,Y = weY is not presently known.
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