

ON FIRST-ORDER DIFFERENTIAL OPERATORS WITH BOHR-NEUGEBAUER TYPE PROPERTY

ARIBINDI SATYANARAYAN RAO

Department of Mathematics, Concordia Univ., Montreal, P.Quebec, Canada H3G 1M8

(Received January 1, 1987 and in revised form April 20, 1987)

ABSTRACT. We consider a differential equation $\frac{d}{dt} u(t) - Bu(t) = f(t)$, where the functions u and f map the real line into a Banach space X and $B: X \rightarrow X$ is a bounded linear operator. Assuming that any Stepanov-bounded solution u is Stepanov almost-periodic when f is Bochner almost-periodic, we establish that any Stepanov-bounded solution u is Bochner almost-periodic when f is Stepanov almost-periodic. Some examples are given in which the operator $\frac{d}{dt} - B$ is shown to satisfy our assumption.

KEY WORDS AND PHRASES. Bounded linear operator, differential operator, Bohr-Neugebauer property, Bochner (Stepanov) almost-periodic function. 1980 AMS SUBJECT CLASSIFICATION CODE. 34Gxx, 34G10, 34C27.

1. INTRODUCTION.

Suppose X is a Banach space and J is the interval $-\infty < t < \infty$. A function $f \in L_{loc}^p(J; X)$ with $1 \leq p < \infty$ is said to be Stepanov-bounded or S^p -bounded on J if

$$\|f\|_{S^p} = \sup_{t \in J} \left[\int_t^{t+1} \|f(s)\| ds \right]^{1/p} < \infty. \quad (1.1)$$

Our first result is as follows.

THEOREM 1. Suppose $f: J \rightarrow X$ is a continuously differentiable S^1 -bounded function, and f' is an S^p -bounded function with $1 \leq p < \infty$. Then, (a) if $p = 1$, f is bounded on J , and (b) if $p > 1$, f is bounded and uniformly continuous on J .

2. PROOF OF THEOREM 1.

(a) $p = 1$. For an arbitrary but fixed $t \in J$, there exists at least one point $\tau_t \in [t-1, t]$ such that

$$\|f(\tau_t)\| = \inf_{t-1 \leq s \leq t} \|f(s)\|. \quad (2.1)$$

Consequently, we have

$$\|f(\tau_t)\| \leq \int_{t-1}^t \|f(s)\| ds \leq \|f\|_{S^1}, \text{ by (1.1).} \quad (2.2)$$

Hence, from the S^1 -boundedness of f' , we obtain

$$\begin{aligned}
 \|f(t)\| &= \|f(\tau_t) + \int_{\tau_t}^t f'(s) ds\| \\
 &\leq \|f(\tau_t)\| + \int_{\tau_t}^t \|f'(s)\| ds \\
 &\leq \|f\|_{S^1} + \|f'\|_{S^1}.
 \end{aligned} \tag{2.3}$$

(b) $p > 1$. By Hölder's inequality, the S^p -boundedness of f' implies the S^1 -boundedness of f' . Hence, as shown above, f is bounded on J .

Moreover, for $0 < t_2 - t_1 < 1$ and $\frac{1}{p} + \frac{1}{q} = 1$, we have, again by Hölder's inequality,

$$\begin{aligned}
 \|f(t_2) - f(t_1)\| &= \left\| \int_{t_1}^{t_2} f'(s) ds \right\| \\
 &\leq (t_2 - t_1)^{1/q} \left[\int_{t_1}^{t_2} \|f'(s)\|^p ds \right]^{1/p} \\
 &\leq (t_2 - t_1)^{1/q} \left[\int_{t_1}^{t_1+1} \|f'(s)\|^p ds \right]^{1/p} \\
 &\leq (t_2 - t_1)^{1/q} \|f'\|_{S^p}.
 \end{aligned} \tag{2.4}$$

Therefore f is uniformly continuous on J , completing the proof of the theorem.

REMARK. If $f : J \rightarrow X$ is a continuously differentiable S^1 -almost periodic function, with f' being S^p -bounded on J ($1 < p < \infty$), then f is (uniformly) almost-periodic from J to X (see pp. 3 and 77, Amerio-Prouse [1] for the definitions of (uniform) almost-periodicity and S^p -almost periodicity).

PROOF. By Theorem 1, f is uniformly continuous on J . Hence, by Theorem 7, p. 78, Amerio-Prouse [1], f is (uniformly) almost-periodic from J to X .

3. MAIN RESULT.

Let B be a bounded linear operator on a Banach space X into itself. Then the differential operator $\frac{d}{dt} - B$ is said to have Bohr-Neugebauer property if, for any (uniformly) almost-periodic X -valued function f , any bounded (on J) solution of the equation

$$\frac{d}{dt} u(t) - Bu(t) = f(t) \text{ on } J \tag{3.1}$$

is (uniformly) almost-periodic.

Our result is as follows.

THEOREM 2. In a Banach space X , let the differential operator $\frac{d}{dt} - B$ be such that, for any (uniformly) almost-periodic X -valued function f , any S^1 -bounded solution of the equation (3.1) is S^1 -almost periodic. Then, for any S^1 -almost periodic continuous X -valued function g , any S^1 -bounded solution $u : J \rightarrow X$ of the equation

$$\frac{d}{dt} u(t) - Bu(t) = g(t) \text{ on } J \tag{3.2}$$

is (uniformly) almost-periodic.

PROOF. Since g is S^1 -almost periodic from J to X , it is S^1 -bounded on J . Consequently, $u' = Bu + g$ is S^1 -bounded on J . Hence, by Theorem 1, u is bounded on J .

Now consider a sequence $\{\phi_n(t)\}_{n=1}^{\infty}$ of non-negative continuous functions on J such that

$$\phi_n(t) = 0 \text{ for } |t| \geq n^{-1}, \int_{-n^{-1}}^{n^{-1}} \phi_n(t) dt = 1. \quad (3.3)$$

The convolution of u and ϕ_n is defined by

$$(u * \phi_n)(t) = \int_J u(t-s) \phi_n(s) ds = \int_J u(s) \phi_n(t-s) ds. \quad (3.4)$$

Then, by (3.2), we have

$$\frac{d}{dt} (u * \phi_n)(t) - B(u * \phi_n)(t) = (g * \phi_n)(t) \text{ on } J. \quad (3.5)$$

We note that

$$\sup_{t \in J} \| (u * \phi_n)(t) \| \leq \sup_{t \in J} \| u(t) \| . \quad (3.6)$$

Further, we can show that $g * \phi_n$ is (uniformly) almost-periodic from J to X (see the proof of Theorem 7, p. 78, Amerio-Prouse [1]).

Therefore, by our assumption on the operator $\frac{d}{dt} - B$, $(u * \phi_n)(t)$ is S^1 -almost periodic for all $n = 1, 2, \dots$

By (3.2), we have the representation

$$u(t) = u(0) + \int_0^t Bu(s) ds + \int_0^t g(s) ds \text{ on } J. \quad (3.7)$$

If $t_2 > t_1$, then

$$\| \int_{t_1}^{t_2} Bu(s) ds \| \leq \| B \| \cdot \sup_{t \in J} \| u(t) \| \cdot (t_2 - t_1). \quad (3.8)$$

Hence $\int_0^t Bu(s) ds$ is uniformly continuous on J . Also, by Theorem 8, p. 79, Amerio-Prouse [1], $\int_0^t g(s) ds$ is uniformly continuous on J . Consequently, u is uniformly continuous on J .

Similarly, from (3.5), it follows that $u * \phi_n$ is uniformly continuous on J . So, by Theorem 7, p. 78, Amerio-Prouse [1], $u * \phi_n$ is (uniformly) almost-periodic for all $n = 1, 2, \dots$

Now, by the uniform continuity of u on J , the sequence of convolutions $(u * \phi_n)(t)$ converges to $u(t)$ uniformly on J . Hence u is (uniformly) almost-periodic from J to X , which completes the proof of the theorem.

4. NOTES.

- (i) Suppose X is a Hilbert space and B is a self-adjoint bounded linear operator on X into itself. Then we know that the operator $\frac{d}{dt} - B$ has Bohr-Neugebauer property (see Zaidman [4]). Given an (uniformly) almost-periodic X -valued function f , suppose that u is an S^1 -bounded solution of the equation (3.1). If we replace g by f in the proof of our Theorem 2, then, by the Bohr-Neugebauer property of the operator $\frac{d}{dt} - B$, it follows that u is (uniformly) almost-periodic from J to X . Thus the operator $\frac{d}{dt} - B$ satisfies the hypothesis of Theorem 2.

(iii) Now suppose X is a separable Hilbert space and B is a completely continuous normal operator on X into itself. Then, by Theorem 1 of Cooke [3], the operator $\frac{d}{dt} - B$ has Bohr-Neugebauer property. Consequently, the operator $\frac{d}{dt} - B$ satisfies the assumption of Theorem 2.

(iii) Finally, suppose X is a reflexive space and $B = 0$. Then the operator $\frac{d}{dt}$ has Bohr-Neugebauer property (see Amerio-Prouse [1], p. 55 and Authors' Remark on p. 82). Hence the operator $\frac{d}{dt}$ satisfies the assumption of Theorem 2.

REFERENCES

1. AMERIO, L. and PROUSE, G. Almost periodic functions and functional equations, Van Nostrand Reinhold Company, 1971.
2. BOCHNER, S. and NEUMANN, J.V. On compact solutions of operational-differential equations I, Ann. of Math., 36 (1935), 255-291.
3. COOKE, R. Almost periodicity of bounded and compact solutions of differential equations, Duke Math. J., 36 (1969), 273-276.
4. ZAIDMAN, S. Quasi-periodicità per un'equazione operazionale del primo ordine, Rend. Accad. Naz. dei Lincei, 35 (1963), 152-157.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk