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dABSTRACT. We consider a differential equation u(t)-Bu(t) f (t), where the functions

u and f mp the real line into a Banach space X and B: X X is a bounded linear

_operator. Assuming that any Stepanov-bounded solution u is Stepanov almost-periodic

wb.en f is Bochner almost-periodic, e establish that any Stepanov-bounded solution u is

Bochner almost-periodic when f is Stepanov almost-periodic. Some examples are given in
d

which the operator B is shown to satisfy our assumption.

KEY }K)RDS AND PHRASES. Bounded linear operator, differential operator, Bohr-

Neuqebauer property, Bochner (Stepanov) almost-periodic function. 1980 AMS SUBJECP

CIASSIFICATION CODE. 34Gxx, 34G10, 34C27.

INTNODUCPION.

Suppose X is a Banach space and J is the interval < t< . A function

LPloc (J;X) with 1 < p < is said to be Stepanov-bounded or sP-bounded on

f S
p sup II f(s)II Pds <

tJ

our first result is as follows.

J if

(1.1)

THBOREM i. Suppose f J X is a continuously differentiable sl-bounded function,

and f’ is an sP-bounded function with 1 _-< p < m. Then, (a) if p i, f is bounded

on J, and (b) if p > I, f is bounded and uniformly continuous on J.

2. POOF OF THEORIM i.

(a) p i. For an arbitrary but fixed

t- i, t] such that

t J, there exists at least one point

f (Tt) inf f(s)
t-l=<s<t

(2.1)

Consequently, e have

f(Tt < t/t-lll f (s)II ds < fll SI, by (I.i).
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Hence, from the sl-boundedness of f’, we obtain

f(t)II llf(Tt) + It f’ (s)ds IITt
--< f(t + It II f’ (s)II ds

t

<= f II SI + II f’ II SI- (2.3)

(b) p > i. By H61der’s inequality, the sP-boundedness of f’ implies the

sl-boundedness of f’. Hence, as shown above, f is bounded on J.
1 + 1

i, we have, again by H61der’sMoreover, for 0 < t2-tI < 1 and

II f(t2)-f(tl) II =II Itl f’ (s) ds II

< (t2_tl)i/q[ Itlt2 II
[ tl+l< (t2_tl) i/q Litl

f’ (s)II Pds ]I/p
f’ (s)II Pds ]i/p

< (t2_tl)I/q II f’ll Sp- (2.4)

Therefore f is uniformly continuous on J, completing the proof of the theorem.

R4ARK. If f J X is a continuously differsntiable sl-almost periodic

function, with f’ being sP-bounded on J (i < p < ), then f is (uniformly) almost-

periodic from J to X (see pp. 3 and 77, Amerio-Prouse [i] for the definitions of

(uniform) almDst-periodicity and sP-almDst periodicity).

PROOF. By Theorem i, f is uniformly continuous on J. Hence, by Tneorem 7,

p. 78, Amerio-Prouse [i], f is (uniformly) almost-periodic from J to Xo

3. MAIN RESULT.

Let B be a bounded linear operator on a Banach space X into itself. Then the
d

differential operator - B is said to have Bohr-Neugebauer property if, for any

(uniformly) almost-periodic X-valued function f, any bounded (on J) solution of

the equation

d
-6 u (t) Bu (t) f (t) on J (3.1)

is (uniformly) almDst-periodic.

Our result is as follows.

dTHEO 2. In a Banach space X, let the differential operator - B be such

that, for any (uniformly) almost-periodic X-valued function f, any sl-bounded
solution of the equation (3.1) is sl-almost periodic. Then, for any sl-almost
periodic continuous X-valued function g, any sl-bounded solution u J X of the

equation

d
u (t) Bu (t) g (t) on J (3.2)

is (uniformly) alnDst-periodic.
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PROOF. Since g is Sl-almost periodic from J to X, it is sl-bounded on J.

Conntly, u’ Bu + g is sl-tund on J ttomc, by ’neorem 1, u is bound6l on J.

tw consider a sequence {n (t)} of non-negative continuous functions onn=l
J such that -In

n (t) 0 for Itl > n-1, I -I n (t) dt i. (3o3)
-n

The convolution of u and n is defined by

(U*n) (t) f u (t-s) n (s) ds I u (s) n (t-s) ds. (3.4)

J J

Then, by (3.2), ws have

(u*n)_ (t)- B (u*n)_ (t)= (g*-)n (t)on J. (3 5)dt

We note that

sup (u*n) (t) II --< suP u (t) II (3.6)
tJ teJ

Fvrther, ws can show that g*n is (uniformly) almDst-periodic from J to X (see the

proof of Theorem 7, p. 78, Amerio-Prouse [i] ).
d

(U*n) (t) is sl-almostTherefore, by our assumption on the operator -- B,

periodic for all n i, 2,

By (3.2), % have the representation

t tu (t)= u (0) + I0 Bu (s) ds + I0 g (s) ds on J.

If t
2

> tl, then
t
2II ftl Bu (s) ds II < II B II- sup II u (t) (t2-tl)-

tJ
t

Hence f0 Bu (s) ds is uniformly continuous on J. Also, by Theorem 8, p. 79, Amerio-
t

Prouse [i], I0 g (s) ds is uniformly continuous on J. Consequently, u is uniformly

continuous on J.

Similarly, from (3.5), it follows that U*n is uniformly continuous on J.

So, by Theorem 7, p. 78, Amerio-Prouse [i], U*n is (uniformly) almost-periodic

for all n i, 2,

Now, by the uniform continuity of u on J, the sequence of convolutions (U*n)
converges to u (t) uniformly on J. Hence u is (uniformly) almost-periodic from

J to X, which completes the proof of the theorem.

(3.7)

(3.8)

(t)

(i) Suppose X is a Hilbert space and B is a self-adjoint bounded linear
d

operator on X into itself. Then w know that the operator B has Bohr-Neugebauer

property (see Zaidman [4]). Given an (uniformly) almost-periodic X-valued function f,

suppose that u is an sl-bounded solution of the equation (3.1). If w replace g

by f in the proof of our Theorem 2, then, by the Bohr-Neugebauer property of the
doperator -- B, it follows that u is (uniformly) almost-periodic from J to X.

d
Thus the operator - B satisfies the hypothesis of Theorem 2.
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(ii) Now suppose X is a separable Hilbert space and B is a completely continuous

normal operator on X into itself. Then, by Theorem 1 of Cooke [3], the operator

dt B has Bohr-Neugebauer property. Consequently, the operator B satisfies

the assumption of Theorem 2.

(iii) Finally, suppose X is a reflexive space and B 0. Then the operator
d
d- has Bohr-Neugebauer property (see Amerio-Prouse [i], D. 55 and Authors’ Remark

don p. 82). Hence the operator -{ satisfies the assumption of Theorem 2t
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