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ABSTRACT. The principle of optimality of dynamic programming is used to prove three
major inequalities due to Shannon, Renyi and Holder. The inequalities are then used to
obtain some useful results in information theory. In particular measures are obtained to

measure the mutual divergence among two or more probability distributions.
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1. INTRODUCTION

An important problem in business, economic and social sciences is concerned with
measuring differences in specific characteristics of business, economic or social groups.
For example, we may like to compare the balance sheets of m business firms, or economic
development of m nations or the difference in opinions of m directors of a company or the
population compositions of m cities and so on.

Let g;; represent the share of the jth item from the ith group. Thus ¢,; may represent
proportionate contributions of the jth item in the balance sheet of the ith company or it
may represent the population of persons in the jth income group of the ith nation or the
proportionate allotment to the jth item of the budget proposed by the ith director or the
proportionate population of the jth social group in the ith city and so on. Let

Q‘ = (qil)%',)'”)qin); i= 1,2,---,m
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where .
Z'B,‘ =1, ¢;=20
i=1

Given Q1,Q32,**,@m, our problem is to find how different Q;,Q3,--,Qm are. We
can regard Q;,Q3, - *,@m a8 m probability distributions and thus our problem is to find
a measure of mutual divergence between Q1,Q3,"**,Qm.

This measure should have the following properties:

(i) It should depend on Q1,Q3,"**,Qm

(ii) It should be a continuous function of all g¢;;’s

(iii) It should not change when ¢;y,¢:3,:-*,gin are permuted among themselves, pro-

vided the same permutation is used for each of Q1,Q2,"*+,Qm.

(iv) It should be always > 0

(v) It should vanish when @Q; = Q2=+ =Qon
(vi) It should vanish only when @; = Q3=+ = Qm
(vii) It should possibly be a convex function of Q;,Qz, -+, Qm

For two distributions, (m = 2) we have a number of measures of directed divergence
due to Kullback-Leibler, Havrda-Charvat, Renyi, Kapur and others [5]. However, in real
life we are concerned with m(> 2) distributions. We can of course find directed divergence
between every pair of m distributions and then find some sort of an average of these
directed divergences.

However, we shall prefer to have a unified measure depending directly on the m
distributions. We develop such a measure in the present paper.

Since one important condition for the measure is non-negativity and this condition is
expressed as an inquality, an important role is played in the development of our new mea-
sure by the special inequalities due to Shannon, Renyi, Holder and their generalizations.
We give alternate proofs of all these inqualities by using dynamic programming and then

use these inequalities to develop our new measure.

2. DYNAMIC PROGRAMMING AND INEQUALITIES

Kapur [4] used dynamic programming technique of Bellman [2] to show that the
maximum value of 3_7_, p;In p; subject to p1 > 0,pa > 0,0,--+,pn >0, 37, p1 =c is
—cln(c/n) and it arises when p; = p3 = -+ = p, = ¢/n. In particular, when ¢ = 1, we
find that the maximum value of the Shannon’s (7] entropy measure — Y_7_, p; In p; subject
top; >20,p3 20,:++,pn 20,3, p; =1is Inn and arise when all the probabilities are
equal. The result is equivalent to showing that

n
- pilnp;<lnn (2.1)
=1

for all probability distributions.
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The same technique can be used to establish inequalities of the form

=1

> fpia) < Aor Y f(pi,as) 2 B
=1

(2.2)
In the first case, we show that the maximum value of 3_.-_, f(p;,¢:) is A and in the second
case, we show that the minimum value of 3_7_, f(ps,¢s) is B.

Suppose we have to maximize Y .., f(pi,¢;) subject to

n n
P120,p320,:,pn20; ¢120,9320,---,¢0. 20, Y _pi=a,) g =b
i=1 i=1
Let the maximum value be g,(a,b).

(2.3)

We may keep p1,pz,---,Pn fixed‘and vary only ¢1,92,"*,gn subject to 3°7_, ¢; = b,
then the principle of optimality gives

m:

gn(a,b) = 0< q:xS b [f(P1,91) + gn-1(a — p1,b — q1)]

(2.4)

Since p; is fixed, we have to maximize a function of one variable ¢; only. Equation (2.4)

give a recurrence relation which along with the knowledge of f1(a,b) can enable us to
obtain g, (a,b) for all values of n, by proceeding step by step.

The same procedure can be used to find the minimum value.

3. SHANNON'’S INEQUALITY
Here

f(pirgi) =piln B
qs

(3.1)
This is a convex function of ¢; and we seek to determine the minimum value of 37._, f(ps, ¢:)-
We get

a(abp)=al} (3:2)
Using (2.4)
max P a—pn
,0) = In=— —-p1)ln
a1(a.b) Os«nsb[p‘ o Tlemm) 6—«11] (3.3)
= a3
b
Assuming
on(a,b)=aln 3, (34)
(2.4) gives
min P 6—p1
,0) = In=+(a—-p1)ln ]
9n+1(a,b) 0<q1 <b P @ (a—-p1) b-q1 (3.5)
=alnd
b
Hence by mathematical induction we get

n
. 5 a
mmz p.-ln%:alnz
=1

(3.6)
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or

= P a
—_ > — 3.7
E p.lnq. _alnb (3.7)

=1

The minimum value is obtained when

p1 _ P2 Pn _a
— = m et = — = — 3.8
@ 4 b 3.8)
If a = b =1, then we get Shannon’s inequality
Zpgln??_Oand Zp;ln%:Oiﬁ'p;:q;foreachi (3.9)
i=1 : i=1 *
Ifb<a,
Y mh®>amz>o (3.10)
=1 % b
Alternative proofs are given in Aczel and Daroczy [1].
4. RENYDI’S INEQUALITY
Here
1 -a
1(pir i) = —— (PE0i ™ - ps) (4.1)
01(a,5) = ——(a%b'"* ~ a) (4.2)

a-1

f(ps,4:) is a convex function of ¢; and we try to find the minimum value of 3_7_, (ps, ¢:)

min 1 _ 1 -
g = =g EtaT" - p) + ;5@ -p) - 01) 7 - (e - p1)]
S < (4.3)
-~ apl-a _ .
o 1(a. a)
By using mathematical induction, we can show that
1 [& - 1
2 S - Son] 2 v (49
=1 =1
If a = b =1, we get Renyi’s inequality
l ”
pp [ZP&'?.'I_" - 1] 20 (4.5)
i=1

The inequality (4.5) will hold whenever a = b, even if the common value is not unity.

Alternative proofs of this inequality are available in Aczel and Daroczy 1] and Kapur

6].

5. HOLDER’S INEQUALITY

Let f,(M) denote the minimum value of
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(5.1)

where z,'s and y;’s are positive real numbers, z;’s are fixed and y;’s vary subject to

2 y=1%:y; = M, then

f1(M) = M9
M OS]

Now

(AaY (M- Ly, [ (M—z)?
s = (2) + (H22) =>y(z1)—q(zg M- )
-2 -2
=¢"(z1) =4q(g-1) (—zi{ ;M=) )

If ¢(g — 1) > 0, the minimum value of g(z;) occurs when

21 _ M - £33 _ M
zg/q(q-—l) z;/(q-l) zg/(q—l)+zg/(q—l)

and
[9Ce1) i = M/ [0 4 g3/@- 1]
= M'I/ [""1’ +z;]q-l
If
%‘l‘%:l or q—1=q/p,
then
M3
fa(M) = (28 +28)¥P 2 _ Mo
) =+ )

If we assume that f,(M) = M9, then the principle of optimality gives

n q/p . q
_ min 21 (M - z,)?
f'l+1(M)_ ( zf) oszlsM [(21) + (I&+"'+xﬁ+1)qh’

[

= M1?
1/p 1/q
n n n
PBENTES DIEA N DI
=1 =1 1=1

thus if ¢(¢ — 1) > 0,

i
b
~——

2
A
~—
07
&
~———
\
g
[~}

If ¢ > 1, this gives

Using (5.10), we find that the inequality (5.12) holdsif ¢ > 1,p > 1,p™' +¢ 1 =1.

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

Ifg<0,0<p<loro<g<land p<O0andp!+g~!=1, then the inequality in

(5.12) is reversed and we get
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n " 1/p n 1/q
Yomw < (Zzg) (Zy;) . (513)

=1 I=1 J=1

6. A GENERALIZATION OF HOLDER'’S INEQUALITY

Now we consider the minimization of

where z,’s, y;'s, z;’s are all positive real numbers, z,’s and y;,’s are kept fixed and 2,’s
vary subject to
n
dozviz=M (6.2)
=1

If k, (M) is the minimum value of U, then

k(M) = M (6.3)
2 r/p r/a i , r
k(M) = (; ”:) (JZ::I y}) 0 S’:“; M [(;"y;) * (Aiz;zu) ] 64)
r/p r/p o4
B (:z;: z‘}) (Zz: y}) [(”191)'/(""M+'(=1Vz)'/ ("”]

=1
provided r > 1, so that in this case

=1

N N ooy
iz M’ (Z ’:) (Z V}) [(’11!1)'/('-‘) + (zz!n)'/('-l)] (6.5)
>

Similarly when r
n e o rlar =(r-1)
Va2 M (Z z?) (Z y}) [Z(zjy,-)" ("”] (6.6)

=1 =1 =1

Now we consider the case when p> 1,¢> 1,7 > 1,p~ ! + ¢! +r~1 = 1, s0'that

1 1 r-1 r 1 r 1
-4 —-= - -=1
p+q r 01.1'—1;) r—-1¢q
or
1 1 _ ., _r-1 , r-1
p,+q,—-1,p—p — ¢ =9 (6.7)

Again by Holder’s inequality proved in the last section when p’ > 1,¢' > 1

(i "5') " (Zn: v}') " >3 00y

j=1 =1 =1
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" FeT OCs "
2(r=1) 2(r=1)
E u; 7 v; i > E Uy
=1 =1 y=1

" r/p " r/q " r—1
(Zs';) (Zv:) >(sz-" '*‘)
=1 =1 =1

From (6.6) and (6.8), V, > M" or

1/p " 1/q " 1/r "
( z; ) (E V;") (2 ‘?) 2) zivin
J I=1

=1 j=1
whenever (6.7) is satisfied.

or

or

[V]a

1

The method of proof is quite general and (6.9) is easily generalized to give

1/q1 1/qs 1/qm
n n n n
(o) (E2) - (Em)  2eenn
=1 =1

=1 I=1

whenever
n>La>L o gm > L e g =1
Inequality (6.10) can also be written as
a as " A
nyl‘y;"; “Yim < (Zm) (Z wz) (E y,-m)
i=1 j=1 i=1 j=1

whenever
0<ay;<1,0<a3<2,:-:,0<am<lyar+az+---+amp=1.

If y;i’s represent probabilities, we get

29111’,: “Pim S 1
=1

In particular for m = 2, (6.14) gives

n
Zp;q}" <1 whenO<ax<l
=1

(a-1)7* (Zp?q,"" - ) >0

J=1
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(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

Alternative proofs of Holder’s inequality are given in Hardy, Littlewood and Polya [3] and

Marshall and Olkin [7].

7. HOLDER’S GENERALIZED INEQUALITY FOR OTHER VALUES OF
PARAMETERS
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Holder’s generalized inequality (6.10) holds whenever ¢1,92*,qn satisfy (6.11). How-
ever, if (6.11) are not satisfied, the inequality sign in (6.10) may be reversed or no inequality
may hold.

Thus for the special case m = 3 if 0 < r < 1, the inequality sign in (6.5) is reversed.
If one of p or ¢ is negative, then in Holder’s inequality also the sign is reversed so that if

0 <r <1,oneof pand ¢ is negative and p=* + ¢! + r~1 = 1, then

" 1/p n 1/q " 1/r "
(Z ”f) (Z V}) (E ‘?) <D zvsz (1.1)
j=1 j=1 J=1 y=1

while if r > 1,p > 1,¢ > 1 and p~! + ¢~ + r~! = 1, then inequality (6.9) holds. If
p~ 1+ ¢!+ 7= = 1, but neither of the two sets of conditions is satisfied, then neither
(6.9) nor (7.1) may hold. Thus

if p=2,g=4,r =4 (6.9) holds

if p=1/2,¢g=-1/3,r =1/2, (1.1) holds

if p=-2,¢ = —2,r = 1/2, neither (6.9) nor (7.1) holds.

Similarly given ¢1,93,-+,qn We can find whether (8.10) holds or whether (6.10) with

reversed sign of inequality holds or whether neither of these two inequalities holds.

8. APPLICATIONS TO INFORMATION THEORY

From Renyi’s or Holder’s inequality, it follows that

1 N
D,,(P:Q):a—_—l-(gpfq‘ a 1) >0,a#1,a>0 (8.1)
where P = (p1,p3,°*,pn), @ = (91,93,***,¢n) are two probability distributions. Also
Da(P : Q) = 0iff p; = ¢; for each i. In the limiting case when a — 1, this gives

Dy(P:Q) = Zp;ln% 20 (8.2)
i=1 '
Do(P:Q) or Dy(P: Q) can be used as a measure of directed divergence of P from Q.
for these distributions, we similarly have from generalized Holder’s inequality, that

Dap(P:Q:R)= 2+ﬂ3 [Zp:’q.‘ R - 1]20 (8:3)

i=1
whenever 0 < a < 1,08 <1, a+f <1,and it vanishes iff p; = ¢; = r; for each i.
If a = 0, it measures the directed divergence of Q from P
B = 0, it measures the directed divergence of P from R and if
a+ 8 = 1, it measures the directed divergence of P from Q.
Collectively Do (P : @ : R) can be used as a measure of mutal divergence among

three distributions.
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Generalizing we get the measure

DG:-°3."~.¢-(P1 Py Pm)
(8.4)
cpim 1] >
al+a —1 [;p“ pﬂ Pim l] >0

where0 < a; <1,0< a3 <1,::,0< am <1, a; + @3+ ---a,, = 1. By putting some of
g, a2, *,Qm equal to zero, it can also be used to measure all divergences among subsets
of Py,Py,:++,Pp.

for three distributions, Theil [9] had proposed the measure

D(P:Q:R):Zn:p;ln% (8.5)

=1
as a measure of information improvement. However, this can be both negative and

positive. On the other hand our measure (8.3) is always > 0 and can be a more effective

measure of improvement.

The measure (8.3) and (8.4) are also recursive since

DasnPQ: R = s [Satetr = -

s=1

or

(a®+8* = 1)Dasa(P:Q: R)=pigiri™** + pjafr; ="
= (p1+P2)*(q1 + q2)?(r1 + r2)* 7 #
+ (a’ + ﬁ’ - l)Da,p,n-l(Pl)Phps»' **3yPnj

91+ 92,98, *1qn; T1 +'21'3t"')"n)

(8.6)

or
Da,ﬂ,n(Pl,‘ Pnid1 e T, :rn)

= Da,p,n-l(m +P2,P8,° 1 PniQ1 + q2,98,°°*,qn;T1 + 72,78, 00 "'n)

+ (p1 + pa)®(q1 + q2)P (r1 + ra)* 7. ®.7)

’( [ P2 @ [ r ry )
ptpr’mtpi’ it gt it it

9. MEASURE OF SYMMETRIC MUTUAL DIVERGENCE

The measure (8.3) is not symmetric in the sense that

Dap(P:Q:R),Dap(Q:P:R),Dap(P:R:Q)

etc. are not equal unless a = § = 1/3. The measure
9
Dy4(P:Q:R) =7 [ Zp‘/’ 1/3 1/’] (9.1)
=1
is symmetric. Another symmetric measure of mutal divergence is given by
Dap(P:Q:R)+ Daps(P:R:Q)+ Dap(Q:P:R)

(9.2)
+Dap(Q@:R:P)+ Dap(R:Q:P)



606 J.N. KAPUR, V. KUMAR AND U. KUMAR
The corresponding symmetric measure for m distributions will be the sum of m! mutual
divergences.

This is a two-parameter family of measures of mutal symmetric divergences.

The measure (9.2) can be compared with the measure
Da(P:Q)+ Da(Q : P)+ Do(P : R)+ Da(R: P) + Da(Q : R)+ Da(R: Q) (9.3)

which is also a measure of symmetric mutal divergence.

10. CONCLUDING REMARKS

By using dynamic programming, it can be easily shown that the maximum value of
T1,Z3°**Tn Subject to ), +Z3 + -+ 25 =c¢, 71 2 0,--+,zn > 0 is (c/n)" and the
minimum value of z; + z3 + -+ z,, subject to z;z3---z, =1,2; > 0,29 > 0,++,2, >0
is n™/d. From either of these results, the Arithmetic-Geometric-Mean Inequality viz.

Ti+Tat+ 2,
n

> EE e (10.1)

can be deduced. From this inequality, one can obtain Shannon’s and Holder’s inequalities.

One can also prove Renyi’s entropy first by using dvnamic orogramming and then deduce
Shannon’s inequality from it. One can also prove first Holder’s inequality, by using dy-

namic programming and then deduce Renyi’s Shannon’s and AGM inequalities from it.
In a sense all these inequalities are equivalent.

Holder’s, Renyi’s and Shannon’s inequality enable us to get a number of measure of
directd divergence between two given distributions and with the help of these measures
of directed divergence. We can obtain a number of measures of entropy and inaccuracy.

The generalized Holder’s inequality enable us to get a number of measures of mutal

divergence between m(> 2) probability distributions.
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