

NONLINEAR VOLTERRA DIFFERENCE EQUATIONS IN SPACE l^p

MICHAEL I. GIL' AND RIGOBERTO MEDINA

Received 4 December 2003

We consider a class of vector nonlinear discrete-time Volterra equations in space l^p and derive estimates for the norms of solutions. These estimates give us explicit stability conditions, which allow us to avoid finding Lyapunov functionals.

1. Introduction and statement of the main result

Volterra difference equations arise in the mathematical modeling of some real phenomena, and also in numerical schemes for solving differential and integral equations (cf. [7, 8] and the references therein).

One of the basic methods in the theory of stability and boundedness of Volterra difference equations is the direct Lyapunov method (see [1, 3, 4] and the references therein). But finding the Lyapunov functionals for Volterra difference equations is a difficult mathematical problem.

In this paper, we derive estimates for the c_0 - and l^p -norms of solutions for a class of vector Volterra difference equations. These estimates give us explicit stability conditions. To establish the solution estimates, we will interpret the Volterra equations with matrix kernels as operator equations in appropriate spaces. Such an approach for Volterra difference equations has been used by Kolmanovskii and Myshkis [7], Kolmanovskii et al. [8], Kwapisz [9], Medina [10, 11], and Gil' and Medina [6]. Under some restriction, our results generalize the main results from [6, 8, 11].

Let \mathbb{C}^n be an n -dimensional complex Euclidean space with the Euclidean norm $\|\cdot\|_{\mathbb{C}^n}$. For a positive $r \leq \infty$, put

$$\omega_r = \{h \in \mathbb{C}^n : \|\cdot\|_{\mathbb{C}^n} \leq r\}. \quad (1.1)$$

As usual, $c_0 = c_0(\mathbb{C}^n)$ is the Banach space of sequences of vectors from \mathbb{C}^n equipped with the norm

$$\|h\|_{c_0} = \sup_k \|h_k\|_{\mathbb{C}^n} \quad (h = (h_k)_{k=1}^{\infty} \in c_0, h_k \in \mathbb{C}^n, k = 1, 2, \dots) \quad (1.2)$$

and $l^p = l^p(\mathbb{C}^n)$ ($1 < p < \infty$) is the Banach space of sequences of vectors from \mathbb{C}^n equipped with the norm

$$\|h\|_{l^p} = \left[\sum_{k=1}^{\infty} \|h_k\|_{\mathbb{C}^n}^p \right]^{1/p}, \quad (h = (h_k)_{k=1}^{\infty} \in l^p, h_k \in \mathbb{C}^n, k = 1, 2, \dots). \quad (1.3)$$

Let

$$a_{jk}(h_1, \dots, h_{j-1}) \quad (h_1, \dots, h_{j-1} \in \omega_r; k < j, j = 1, 2, \dots) \quad (1.4)$$

be $n \times n$ matrices dependent on $j - 1$ arguments. Consider the equation

$$x_j = G_j(x_1, \dots, x_{j-1}) + \sum_{k=1}^{j-1} a_{jk}(x_1, \dots, x_{j-1}) x_k \quad (j = 1, 2, \dots), \quad (1.5)$$

where the mappings $G_j : \mathbb{C}^{(j-1)n} \rightarrow \mathbb{C}^n$ have the properties

$$f_j := \sup_{h_1, \dots, h_{j-1} \in \omega_r} \|G_j(h_1, \dots, h_{j-1})\|_{\mathbb{C}^n} < \infty \quad (j = 1, 2, \dots). \quad (1.6)$$

Moreover, $G_1 \in \mathbb{C}^n$ is given and

$$f := \{f_1, f_2, \dots\} \in l^p(\mathbb{C}). \quad (1.7)$$

In addition, it is assumed that

$$v_{jk} = \sup_{h_1, \dots, h_{j-1}} \|a_{jk}\|_{\mathbb{C}^n} < \infty \quad (k < j, j = 1, 2, \dots), \quad (1.8)$$

$$N_p(V) := \left[\sum_{j=1}^{\infty} \left(\sum_{k=1}^{j-1} v_{jk}^{p'} \right)^{p/p'} \right]^{1/p} < \infty \quad (1.9)$$

with

$$\frac{1}{p'} + \frac{1}{p} = 1. \quad (1.10)$$

To formulate the result, denote

$$m_p(V) = \sum_{k=0}^{\infty} \frac{N_p^k(V)}{\sqrt[p]{k!}},$$

$$Q_p(V) = \sup_{j=1,2,\dots} \left[\sum_{k=1}^{j-1} v_{jk}^{p'} \right]^{1/p'}. \quad (1.11)$$

Now we are in a position to formulate the main result of the paper.

THEOREM 1.1. *Let conditions (1.7) and (1.9) hold. Then a solution $x = (x_1, x_2, \dots)$ of (1.5) satisfies the inequalities*

$$\|x\|_{l^p} \leq m_p(V) \|f\|_{l^p},$$

$$\|x\|_{c_0} \leq \|f\|_{c_0} + Q_p(V) m_p(V) \|f\|_{l^p}, \quad (1.12)$$

provided

$$\|f\|_{c_0} + m_p(V) Q_p(V) \|f\|_{l^p} < r. \quad (1.13)$$

Note that due to the Hölder inequality,

$$m_p(V) = \sum_{k=0}^{\infty} \frac{a^k N_p^k(V)}{a^k \sqrt[p]{k!}} \leq \left[\sum_{k=0}^{\infty} a^{kp'} \right]^{1/p'} \left[\sum_{k=0}^{\infty} \frac{N_p^{pk}(V)}{a^{kp} k!} \right]^{1/p} \quad (1.14)$$

for any positive $a < 1$. So

$$m_p(V) \leq (1 - a^{p'})^{-1/p'} \exp \left[\frac{N_p^p(V)}{p a^p} \right]. \quad (1.15)$$

In particular, taking

$$a = \sqrt[p]{\frac{1}{p}}, \quad (1.16)$$

we have

$$m_p(V) \leq b_p \exp [N_p^p(V)], \quad (1.17)$$

where

$$b_p = \left(1 - \frac{1}{p^{p'/p}} \right)^{-1/p'}. \quad (1.18)$$

2. Proof of Theorem 1.1

First, assume that $r = \infty$. Then conditions (1.7) and (1.9) imply

$$\|x_j\|_{\mathbb{C}^n} \leq f_j + \sum_{k=1}^{j-1} v_{jk} \|x_k\|_{\mathbb{C}^n} \quad (j = 1, 2, \dots). \quad (2.1)$$

Define on $l^p = l^p(\mathbb{R})$ the operator V by

$$[Vh]_j = \sum_{k=1}^{j-1} h_k. \quad (2.2)$$

Here, $[h]_j$ means the j th coordinate of the element $h \in l^p(\mathbb{R})$. The operator V is a quasinilpotent one. So, due to the well-known lemma from the book by Dalec'kii and Krein (see [2, Lemma 3.2.1]) (the comparison principle),

$$\|x_j\|_{\mathbb{C}^n} \leq y_j, \quad (2.3)$$

where y_j is a solution of the equation

$$y_j = f_j + \sum_{k=1}^{j-1} v_{jk} y_k \quad (j = 1, 2, \dots). \quad (2.4)$$

Rewrite this equation as

$$y = f + Vy. \quad (2.5)$$

LEMMA 2.1. *Let conditions (1.7) and (1.9) hold. Then a solution y of (2.5) satisfies the inequality*

$$\|y\|_{l^p} \leq m_p(V) \|f\|_{l^p}. \quad (2.6)$$

Proof. Rewrite (2.5) as

$$y = (I - V)^{-1} f. \quad (2.7)$$

By [5, Lemma 4.3],

$$\|V^k\|_{l^p} \leq \frac{N_p^k(V)}{\sqrt[k]{k!}}. \quad (2.8)$$

Since

$$(I - V)^{-1} = \sum_{k=0}^{\infty} V^k, \quad (2.9)$$

we have

$$\|(I - V)^{-1}\|_p \leq m_p(V), \quad (2.10)$$

concluding the proof. \square

LEMMA 2.2. *Let conditions (1.7) and (1.9) hold. Then a solution y of (2.5) satisfies the inequality*

$$\|y\|_{c_0} \leq \|f\|_{c_0} + m_p(V)\|f\|_{l^p}. \quad (2.11)$$

Proof. From (2.5) it follows that

$$\|y\|_{c_0} \leq \|f\|_{c_0} + \|V y\|_{c_0}. \quad (2.12)$$

But due to Hölder's inequality

$$\|V y\|_{c_0} \leq \sup_{j=1,2,\dots} \left[\sum_{k=1}^{j-1} v_{jk}^{p'} \right]^{1/p'} \|y\|_{l^p} = Q_p(V) \|y\|_{l^p}, \quad (2.13)$$

now (2.12) and Lemma 2.1 yield

$$\|y\|_{c_0} \leq \|f\|_{c_0} + Q_p(V) \|y\|_{l^p} \leq \|f\|_{c_0} + Q_p(V) m_p(V) \|f\|_{l^p} \quad (2.14)$$

as claimed. \square

Proof of Theorem 1.1. If $r = \infty$, then the required result follows from Lemmas 2.1 and 2.2. Let now $r < \infty$. By a simple application of the Urysohn lemma and Lemma 2.2, we get the required result. \square

Acknowledgment

This research was supported by Kamea fund of Israel and by Fondecyt (Chile) under Grant no. 1.030.460.

References

- [1] M. R. Crisci, V. B. Kolmanovskii, E. Russo, and A. Vecchio, *Stability of continuous and discrete Volterra integro-differential equations by Liapunov approach*, J. Integral Equations Appl. **7** (1995), no. 4, 393–411.
- [2] J. L. Dalec'kii and M. G. Krein, *Stability of Solutions of Differential Equations in Banach Space*, American Mathematical Society, Rhode Island, 1974.
- [3] S. N. Elaydi, *An Introduction to Difference Equations*, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1996.
- [4] S. N. Elaydi and S. Murakami, *Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type*, J. Differ. Equations Appl. **2** (1996), no. 4, 401–410.
- [5] M. I. Gil', *Invertibility and spectrum of Hille-Tamarkin matrices*, Math. Nachr. **244** (2002), 78–88.
- [6] M. I. Gil' and R. Medina, *Boundedness of solutions of matrix nonlinear Volterra difference equations*, Discrete Dyn. Nat. Soc. **7** (2002), no. 1, 19–22.

- [7] V. B. Kolmanovskii and A. D. Myshkis, *Stability in the first approximation of some Volterra difference equations*, J. Differ. Equations Appl. **3** (1998), no. 5-6, 563–569.
- [8] V. B. Kolmanovskii, A. D. Myshkis, and J.-P. Richard, *Estimate of solutions for some Volterra difference equations*, Nonlinear Anal. Ser. A: Theory Methods **40** (2000), no. 1–8, 345–363.
- [9] M. Kwapisz, *On l^p solutions of discrete Volterra equations*, Aequationes Math. **43** (1992), no. 2-3, 191–197.
- [10] R. Medina, *Solvability of discrete Volterra equations in weighted spaces*, Dynam. Systems Appl. **5** (1996), no. 3, 407–421.
- [11] ———, *Stability results for nonlinear difference equations*, Nonlinear Stud. **6** (1999), no. 1, 73–83.

Michael I. Gil': Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

E-mail address: gilmi@cs.bgu.ac.il

Rigoberto Medina: Departamento de Ciencias Exactas, Universidad de Los Lagos, Casilla 933, Osorno, Chile

E-mail address: rmedina@ulagos.cl

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru