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This paper presents an approach to describe patterns in remote-sensed images utilising
fuzzy logic. The truth of a linguistic proposition such as “Y is F” can be determined for
each pattern characterised by a tuple in the database, where Y is the pattern and F is a
summary that applies to that pattern. This proposition is formulated in terms of primary
quantitative measures, such as area, length, perimeter, and so forth, of the pattern. Fuzzy
descriptions of linguistic summaries help to evaluate the degree to which a summary
describes a pattern or object in the database. Techniques, such as clustering and genetic
algorithms, are used to mine images. Image mining is a relatively new area of research. It
is used to extract patterns from multidated satellite images of a geographic area.

1. Introduction

The objective of this paper is to propose an approach for developing linguistic summaries
of certain spatial patterns or features in remote-sensed images. A linguistic proposition
of the form “Y is F” is formulated using primary quantitative measures, such as length,
area, perimeter, and so forth, of the pattern. From these measures, it is possible to com-
pute secondary measures, such as circularity ratio and degree of self-affinity exponents of
Hurst and Hack (see [7]). It becomes possible then to construct a spatiotemporal model
if images over several time periods of the same geographic area are available.

In the past, much research has been focused on data mining or extracting implicit pat-
terns in relational databases [6, 10, 13, 16], but data mining in multimedia environment
has met limited success. This is mainly due to the fact that multimedia data is not as struc-
tured as relational data [17]. There is also the issue of diverse multimedia types, such as
images, sound, video, and so forth. While one method of data mining may find success
with one type of multimedia, such as images, the same method may not be well suited to
many other types of multimedia due to varying structure and content. Some related work
[17] has met success. In [17], the objective is to mine internet-based images and video.
The results generated could be a set of characteristic features based on a topic (keyword),
a set of association rules which associate data items, a set of comparison characteristics
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that contrast different sets of data, or classification of data using keywords. Data mining
techniques can be used in image mining [15] to classify, cluster, or associate images. Im-
age mining is a relatively new research area with applications in many domains including
space images and geological images. It can be used to extract unusual patterns, such as
forest fires, from multidated satellite images of a geographic area.

This paper proposes an approach that utilises fuzzy logic to describe patterns in
remote-sensed images. This method aims to extract some feature descriptors, such as
area, length, and so forth, of objects in remote-sensed images and store them in a re-
lational table. Data-mining techniques that employ clustering and genetic algorithms
(GAs) are then used to develop the most suitable linguistic summary of each object stored
in the table. The objective is to generate linguistic summaries of natural patterns, such as
land, island, water body, river and so forth, in remote-sensed images. The approach is to
use fuzzy logic to match actual image feature descriptors with feature definitions and to
evolve the best-suited linguistic summary of the image object/pattern using GAs.

This paper is organised as follows. Section 2 describes the system architecture, Section
3 describes the approach, Section 4 discusses the implementation issues, and Section 5
discusses the conclusions and future work.

2. System architecture

The system architecture is shown in Figure 2.1. The data summarizer is the key compo-
nent of the system. The input image is analysed and some feature descriptors are extracted
by the image analysis component. Feature descriptors are extracted using MATLAB [5]
and ENVI [4] which perform the functionality of the image analysis component. These
descriptors are stored thereafter in a relational table in the database. The knowledge base
uses geographic facts to define feature descriptors in a typical remote-sensed image. It
interacts with a built-in library of linguistic labels. As new feature definitions are added
into the knowledge base, corresponding linguistic labels are added in the built-in library.
Likewise, as we see a need to expand the built-in library, we would add corresponding
feature definitions based on geographic facts in the knowledge base. The built-in library
also interacts with the summarizer as it supplies the necessary labels to it. The summa-
rizer receives input from the database and the knowledge base. It performs a comparison
between actual feature descriptors of the image stored in the database with the feature
definitions stored in the knowledge base. After this comparison, the summarizer uses
the labels supplied by the library to develop some possible linguistic summaries describ-
ing each object. From these summaries, the most suitable one is selected by interaction
with the engine (GA). The GA evolves the most suitable solution which has the high-
est fitness value (Section 4) after several generations. This solution is passed back to the
summarizer which translates it into its corresponding linguistic summary. Thus, this sys-
tem is composed of two subsystems at this stage. The feature descriptor extraction using
MATLAB and ENVI is a manual subsystem involving user interaction. After descriptors
are extracted and stored in a relational table in the database, the automated subsystem
consisting of summarizer, knowledge base, library, and engine evaluates the descriptors
and compares them with feature definitions. An optimal linguistic summary of each ob-
ject is then generated automatically.
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Figure 2.1. System architecture.

3. Approach

The following assumptions are made regarding the data model. R is a relational table
defined as

R
(
A1,A2, . . . ,Ai, . . . ,An

)
, (3.1)

A1,A2, . . . ,An are the attributes in the table R (i.e., the columns of the relational table) and
t1, t2, . . . , tk are the tuples or records or entries in the table R (i.e., the rows of the relational
table).

A fuzzy set is the most natural representation of a linguistic variable. A linguistic vari-
able is one whose value is not a number but a word or a sentence in a natural language [9].
As we are concerned with generating linguistic summaries of objects, we will define some
fuzzy sets that represent our notion of what the object description or summary should
look like.

The general form of a linguistically quantified proposition is “QY’s are F”, where Q is
a fuzzy linguistic quantifier, Y is a class of objects, and F is a summary that applies to
that class. F is defined as a fuzzy set in Y. Q represents a linguistic quantifier that groups
objects in the class Y. An object/pattern in the image is characterised by a single tuple in
the database, therefore, Q can be ignored in this analysis.

An example of such a linguistically quantified proposition in the domain of remote-
sensed images would be as follows: island is moderately large.

In the above example, Y is island and F is moderately large. In terms of linguistics, this
description is equivalent to: moderately large island.

The objects considered are river, expanse of water (other water body which is not
river), land, and island. The attributes of the objects that are used to develop their lin-
guistic summaries are

(1) area,
(2) length,
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(3) location in image,
(4) additional information.

Area, length, and location (x- and y-coordinates in image) are extracted automati-
cally by image analysis component in Figure 2.1. For river, the most significant feature
descriptor that is extracted is its length. For land, island, and expanse of water, the most
significant feature descriptor extracted is area.

If

y = y1, y2, . . . , yp, (3.2)

then

truth
(
yi is F

)= µF
(
yi
)

: i= 1,2, . . . , p, (3.3)

where µF(yi) is the degree of membership of yi in the fuzzy set F and 0≤ µF(yi)≤ 1. The
higher the degree of membership, the higher the truth value of the linguistic proposition.
In this case, referring to (3.2) and (3.3), yi could be island, area of land, expanse of water,
or river. Area of land represents land other than island, expanse of water represents any
water body that is not a river. For each object yi, the degree of membership of its feature
descriptor, such as area or length in corresponding fuzzy sets, is calculated. Fuzzy sets for
area are large, considerably large, moderately large, fairly large, and small and fuzzy sets for
length are long, considerably long, relatively long, fairly long, and short.

The linguistic description is calculated as follows:

Tj =m1 j ∧m2 j ∧m3 j∧···∧mnj , (3.4)

where mij is the matching degree [6] of the ith attribute in the jth tuple. mij ∈ [0,1] is
a measure of degree of membership of the ith attribute value in a fuzzy set denoted by a
fuzzy label. Referring to (3.4), Tj thus evaluates the truth value for each object yi, as it
matches the feature descriptors of that object with fuzzy set definitions by calculating the
matching degrees and combining them together using logical AND operator. The logical
AND (∧) of matching degrees is calculated as the minimum of the matching degrees [6].

T =
k∑
j=1

Tj , ∀mij �= 0. (3.5)

Equation (3.5) means that we calculate the conjunction of only those matching degrees
that are nonzero in order to evaluate Tj . This aids in computational efficiency. All such
Tj ’s are added up to evaluate T . T is a numeric value that represents the truth of a possible
set of summaries of all the objects in the database.

As an example, consider the area as the attribute in the single-attribute case. Possible
fuzzy labels are large, considerably large, moderately large, fairly large, and small. If k = 4
(there are 4 objects in the table),

Tj =m1 j , (3.6)
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where m1 j represents the fuzzy membership value of area in fuzzy sets large, considerably
large, moderately large, fairly large, or small,

T =
4∑
j=1

Tj , ∀m1 j �= 0. (3.7)

Equation (3.7) means that each object has a nonzero fuzzy membership value for its area
in any of the fuzzy sets mentioned above; that membership value is added cumulatively
to the membership value calculated similarly for the next object in the table. Thus T is
evaluated as the sum of membership values (nonzero) of the area of all 4 objects in the
table. The next section discusses how the GA evolves the most suitable linguistic summary
for all the objects by maximising T .

4. Implementation issues

This section explains the GA approach and then discusses the results from applying this
approach to mining images.

4.1. GA approach. A GA emulates biological evolutionary theories as it attempts to solve
optimisation problems. The GA comprises a set of individual elements (the population)
and a set of biologically inspired operators, such as selection, crossover, and mutation.
According to evolutionary theories, only the most suited elements in a population are
likely to survive and generate offspring, thus transmitting their biological heredity to new
generations. In computing terms, a GA maps a problem onto a set of binary strings (the
population), each representing a potential solution. Using selection, crossover, and mu-
tation operators, the GA then manipulates the most promising strings (denoted by their
high-fitness value from the evaluation function), as it searches for the best solution to the
problem [2, 3, 14].

Given n attributes, each having m possible fuzzy labels, it is possible to generate mn + 1
descriptions. The GA searches for an optimal solution among these descriptions. Each
of these summaries is represented by a uniquely coded chromosome string (a string of
0’s and 1’s). The population of such strings is manipulated (using selection, crossover,
and mutation operators [14]) and evaluated by the GA, and the most suitable linguistic
summary that fits each object is generated. The evaluation function for the linguistic
summaries or descriptions of all objects in the table is

f =max(T), (4.1)

where T in (4.1) is evaluated as shown in the previous section and f is the maximum
fitness value of a particular set of linguistic summaries that have evolved over several
generations of the GA.

4.2. Results. In general, image objects are classified at the highest level into land and
water. Land is further classified into island and other land. Water is further classified into
river (characterised by its length) and other water body (characterised by area). Some of
the fuzzy sets being considered are
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(1) for land: large, considerably large, moderately large, fairly large, and small, based
on degree of membership of area of the land in the respective fuzzy sets,

(2) for other water body or expanse of water (except river): large, considerably large,
moderately large, fairly large, and small, based on degree of membership of area
of the water body in the respective fuzzy sets,

(3) for river: long, considerably long, relatively long, fairly long, and short, based on
degree of membership of length of the river in the respective fuzzy sets.

These fuzzy sets are defined based on geographic facts, such as

(i) largest continent is Asia with area of 44579000 km2,
(ii) largest freshwater lake is Lake Superior with area of 82103 km2,

(iii) smallest continent is Australia/Oceania with area of 7687000 km2,
(iv) longest river is the Nile with length 6669 km,
(v) shortest river is the Roe with length 0.037 km.

The fuzzy set for large expanse of water [11, 12] is defined in (4.2) referring to Figure 4.1(a)
and the geographic fact describing the size of the largest freshwater lake, where x1 =
79900 km2, x2 = 82103 km2,

µlarge expanse of water (x)=




1, 82103≤ x,
x

2203− 36.27
, 79900≤ x < 82103,

0, x < 79900.

(4.2)

The fuzzy set for considerably large expanse of water is defined in (4.3) referring to Figure
4.2, where x1 = 28034.33 km2, x2 = 55068.66 km2, x3 = 82103 km2,

µconsiderably large expanse of water (x)

=




1− (55068.66− x)
27034.33

, 28034.33≤ x ≤ 55068.66,

1− (x− 55068.66)
27034.33

, 55068.66 < x ≤ 82103,

0, x < 28034.33,

0, x > 82103.

(4.3)

The fuzzy set for moderately large expanse of water is defined in (4.4) referring to Figure
4.2, where x1 = 1000 km2, x2 = 28034.33 km2, x3 = 55068.66 km2,

µmoderately large expanse of water (x)

=




1− (28034.33− x)
27034.33

, 1000≤ x ≤ 28034.33,

1− (x− 28034.33)
27034.33

, 28034.33 < x ≤ 55068.66,

0, x < 1000,

0, x > 55068.66.

(4.4)



Hema Nair 293

X1 X2 x

1

µ

(a)

X1 X2 x

1

µ

(b)

Figure 4.1. (a) Fuzzy set for large. (b) Fuzzy set for small or short.

X1 X2 X3 x

1

µ

Figure 4.2. Fuzzy set for considerably large, moderately large, or fairly large.

The fuzzy set for fairly large expanse of water is defined in (4.5) referring to Figure 4.2,
where x1 = 100 km2, x2 = 1000 km2, x3 = 28034.33 km2,

µfairly large expanse of water (x)=




1− (1000− x)
900

, 100≤ x ≤ 1000,

1− (x− 1000)
27034.33

, 1000 < x ≤ 28034.33,

0, x < 100,

0, x > 28034.33.

(4.5)
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The fuzzy set for small expanse of water is defined in (4.6) referring to Figure 4.1(b):

µsmall expanse of water (x)=




1, 0 < x ≤ 600,
−x
400

+ 2.5, 600 < x ≤ 1000,

0, otherwise.

(4.6)

The set for small area of land is defined in (4.7) referring to Figure 4.1(b):

µsmall area of land (x)=




1, 0 < x ≤ 7687000,
−x

313000
+ 25.56, 7687000 < x ≤ 8000000,

0, otherwise.

(4.7)

4.2.1. An example. Consider the data in Table 4.1. For the second tuple which is an ex-
panse of water with approximate area 6.683 km2, the possible fuzzy labels are large ex-
panse of water, considerably large expanse of water, moderately large expanse of water, fairly
large expanse of water, or small expanse of water. The truth value (fuzzy membership
value) for each of these cases is evaluated as shown below by substituting x = 6.683 in
(4.2), (4.3), (4.4), (4.5), and (4.6), respectively:

(i) µlarge expanse of water (6.683)= 0,
(ii) µconsiderably large expanse of water (6.683)= 0,

(iii) µmoderately large expanse of water (6.683)= 0,
(iv) µfairly large expanse of water (6.683)= 0,
(v) µsmall expanse of water (6.683)= 1.

Thus this pattern can be described as a small expanse of water.
Similarly, for the other object in Table 4.1, the truth values are evaluated. The fuzzy

label with highest truth value is selected to form the most suitable linguistic summary for
the corresponding object/pattern.

An example pair of Spot multispectral images to be analysed is shown in Figures
4.3 and 4.4. These are subimages of the original images, used here due to file-size lim-
itations. The geographic coordinates of the original images are approximately 3◦17′U-
3◦48′U latitude and 100◦58′T-101◦38′T longitude referring to the topographic map. The
scale of the images is approximately 1 : 0.0003764. This means that 1 pixel square repre-
sents 0.0003764 km2. Table 4.1 shows a small sample data set of feature descriptors from
some of the objects in the image (Figure 4.3). Figure 4.4 shows an image of the same
geographic area taken on a later date. Table 4.2 shows a small sample data set of fea-
ture descriptors from some of the objects in the image (Figure 4.4). Area is in km2 and
length is in km. Additional information attribute denotes numbers as follows: 0= river,
1 = other water body, 2 = island, 3 = land, and 4 = fire. Location indicates x- and y-
coordinates of centroid of object. X ,Y = 0 indicates the remaining part of image as loca-
tion. The grey level values are from the R band as this band shows all the patterns clearly.
For objects where area is considered as the most significant parameter in calculations,
their length is set to 0. Fire is considered as a separate pattern.

The objective of this paper is to describe patterns/objects, such as river, land, island,
expanse of water, and so forth, quantitatively in terms of measures, such as area or length.
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Table 4.1. Feature descriptors from Figure 4.3. Location is in pixel coordinates.

Grey-level value
(R band)

Approximate area
km2

Location in image Additional
informationX Y

150 3300.84 1606 1457 3

0 6.683 1546 1132 1

Figure 4.3. Image of area in peninsular Malaysia acquired on March 6, 1998. Scale is approximately
1 : 0.0003764.

Figure 4.4. Image of the same area in peninsular Malaysia acquired on July 10, 2001. Scale is approx-
imately 1 : 0.0003764.

The additional information attribute of each object in the table is calculated using a clus-
tering technique that implements the k-means algorithm [8]. Tables 4.3 and 4.4 list the
data recorded from the images in Figures 4.3 and 4.4 for this purpose. The feature vector
in this case consists of X , Y , R, G, B values of several points on the patterns/objects and
their corresponding envelopes in the images. Additionally, a pattern/object is classified
using the following rules.

(1) If a pattern is to be classified as an island, it should have a water envelope sur-
rounding it such that it has a uniform band ratio of at least eight points on this
envelope (corresponding to directions E, W, N, S, NE, NW, SE, SW). Also, grey-
level values on the envelope could be lower than the grey-level values on the pat-
tern.

(2) If a pattern does not have an envelope in all directions as described in the first
rule above, then it is classified as land.
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Table 4.2. Feature descriptors from Figure 4.4. Location is in pixel coordinates.

Grey-level value
(R band)

Approximate area
km2

Location in image Additional
informationX Y

150 2874.38 1899 1150 3

27 6.683 2506 976 1

166 — 1550 1587 4

Figure 4.5. Indications of the smoke plume prominently in purple and the associated burnt scar in
dark green in the green slice range (32 to 63) or blue slice range (64 to 95).

(3) If a pattern is to be classified as water body (or other water body or expanse of
water), it is necessary that it should have a uniform band ratio.

The above rules hold for multiband images.
Comparing the images in Figures 4.3 and 4.4, it is noted that there are a few major

changes in the spatial patterns. A fire is indicated prominently in Figure 4.4 on the left
side of the image. Fire is considered as a separate pattern characterised by its bluish white
smoke plume and burnt scar area close to it. These patterns become clearly visible if
density slicing is performed on the image in the R-band. The colour image of Figure 4.5
indicates the smoke plume prominently in purple and the associated burnt scar in dark
green in the green slice range (32 to 63) or blue slice range (64 to 95). Histograms of the
area near the fire (Figures 4.6 and 4.7) corresponding to Figures 4.3 and 4.4 also indicate
that most of the pixels are of lower intensity for the burnt scar area from the fire image
(Figure 4.4) when compared with the same area without fire (Figure 4.3).

Fire is identified in Table 4.2 with additional information attribute equal to 4. Future
work (Section 5) will focus on developing rules for classifying river.

The spatial location attribute in Tables 4.1 and 4.2 is given a linguistic value, such as
centre, left, top, left, and so forth, using the following calculation. Centre span is a variable
defined to denote a circular distance around the x- and y-coordinates of the centre of an
image. The value of centre span may vary from image to image as it is subjective. It is
a number that is obtained by measuring the distance around the centre of the image,
which can be used to denote an area that still represents the centre of the overall image.
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0 127 255

Figure 4.6. Histogram of area from Figure 4.3 where fire is later detected.

35 145 255

Figure 4.7. Histogram of same area from Figure 4.4 near fire and burnt scar.

This value is evaluated by user interaction with the image. All objects, whose centroids
[1] lie within the range of centre span from the centre of the image, are still located at
the centre of the image. If the difference between x- and y-coordinates of the centroid
of the object and the centre of the image is greater than centre span, then the object
is located at lower right (diagonally from image centre). If the reverse is true, then the
object is located at top left (diagonally from image centre). If the difference between the
x-coordinate of the object and the x-coordinate of image centre is greater than centre
span and the difference between the y-coordinate of image centre and the y-coordinate
of centroid of the object is greater than centre span, then the object is located at the top
right of the image. Similar calculations are used to evaluate the locations lower left, right,
left, top, and bottom of image. An x- and y-coordinate of 0, 0 evaluates the location as
remainder of image, because the actual coordinates of the image have an origin greater
than 0, 0.

It is to be noted that patterns, such as urban area settlements, are ignored as trivial in
this analysis. The main concerns are natural patterns, such as water bodies, land, island,
and so forth. Additionally, patterns that signal calamities, such as fire, are also extracted
and described. The linguistic summaries are generated with reference to the scale of land
and water defined in the geographic facts from which the fuzzy sets are developed, even
though the area of land in the images may be large compared to the expanse of water.

The GA is run with the following input parameter set. These parameter values are set
after several trial runs. With other values, the GA produces the summary of only one
object/pattern in the table:
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Table 4.3. Data recorded from Figure 4.3 for clustering.

Object Envelope Object Envelope

X Y X Y R G B R G B

1721 1549 114 2917 146 103 94 0 127 175

1723 1521 165 2933 135 115 113 0 127 175

1677 1482 109 2889 137 120 122 0 123 162

1636 1511 237 2973 226 103 105 0 127 175

1633 1540 300 2908 255 99 107 0 123 175

1645 1574 105 2884 155 103 105 0 118 167

1680 1595 31 2905 153 106 102 0 123 158

1727 1572 61 2969 155 120 116 0 125 169

1504 1090 1497 1104 0 94 85 130 108 109

1533 1086 1528 1061 0 96 85 221 125 125

1450 1039 1413 1017 0 94 91 151 106 109

1606 1210 1567 1221 0 89 78 169 115 118

1553 1187 1567 1211 0 94 82 112 111 109

1592 1136 1593 1120 0 89 85 92 115 109

1611 1198 1658 1226 0 91 78 96 99 94

1574 1119 1581 1103 0 89 78 103 96 96

Table 4.4. Data recorded from Figure 4.4 for clustering.

Object Envelope Object Envelope

X Y X Y R G B R G B

1913 1159 131 1662 123 92 89 5 100 118

1906 1146 218 1781 126 92 87 5 103 121

1837 800 315 1944 145 86 77 6 105 123

1624 900 538 2177 135 87 79 6 98 118

1550 1037 723 2476 127 86 87 9 113 134

1924 1962 1059 2775 88 145 128 22 130 167

2312 1600 1363 2910 135 92 87 22 124 155

1917 1165 1510 2954 127 95 92 20 121 144

2572 963 2596 946 36 82 71 102 81 66

2518 898 2539 887 41 81 69 116 76 68

2496 887 2492 870 44 81 71 185 82 76

2402 792 2390 897 38 76 61 110 79 66

2417 984 2383 787 38 86 76 126 76 63

2501 1054 2505 1078 43 90 90 134 94 89

2551 1132 2546 1154 40 95 89 126 92 84

2597 1046 2614 1043 36 84 77 113 84 77
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(1) number of bits in a chromosome string of the population = 10,
(2) generations per cycle = 26,
(3) population size = 200 strings,
(4) probability of cross-over = 0.53,
(5) probability of mutation = 0.001.

After 208 generations, the linguistic summaries generated from the image in Figure 4.3
(no fire) are

(i) a small area of land at the centre,
(ii) a small expanse of water at the top right.

The GA input parameters are varied to obtain the linguistic summaries of patterns in
Table 4.2. The parameters used are

(1) number of bits in a chromosome string of the population = 10,
(2) generations per cycle = 10,
(3) population size = 200 strings,
(4) probability of cross-over = 0.53,
(5) probability of mutation = 0.001.

After 80 generations, the linguistic summaries generated from the image in Figure 4.4 are

(i) bluish white smoke indicating fire at the left,
(ii) a small expanse of water at the top right,

(iii) a small area of land at the centre.

Thus, comparing the results of the GA after mining the images of the same geographic
area without fire and with fire taken on two dates separated by a period of more than
three years, we can see that the GA can correctly describe an unusual pattern, such as
the fire indicated in the image in Figure 4.4. Referring to the corresponding topographic
map, it is possible to conclude that this fire could be the result of burning in a paddy field
or a nearby primary forest.

Thus, with two attributes such as length and area, each having five possible fuzzy labels,
it is possible to generate 52 + 1 descriptions. The GA has searched for an optimal solution
among these descriptions within a very short time.

5. Conclusions and future work

This paper has presented a new approach to describing images using linguistic summaries
that use fuzzy labels. A GA technique has been employed to evolve the most suitable
linguistic summary that describes each object/pattern in the database. This method can
be extended to an array of images of the same geographic area, taken over a period of
several years, to describe many other interesting and unusual patterns that emerge over
time. Some directions for future work include the following.

(1) Development of a user friendly tool with graphical interface to ease the task of
extracting and calculating feature descriptors, such as area, length, grey-level in-
tensity, colour, and so forth, stored in the tables. Currently, both MATLAB and
ENVI are required in order to populate the tables. Each has its own limitations.
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(2) Development of rules to identify and classify objects/patterns, such as river,
correctly.
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