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We are concerned with the nonlinear fourth-order three-point boundary value prob-
lem u(4)(t) = a(t) f (u(t)), 0 < t < 1, u(0) = u(1) = 0, αu′′(η)− βu′′′(η) = 0, γu′′(1) +
δu′′′(1) = 0. By using Krasnoselskii’s fixed point theorem in a cone, we get some exis-
tence results of positive solutions.

Copyright © 2007 Chuanzhi Bai. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

As is pointed out in [1, 2], boundary value problems for second- and higher-order differ-
ential equations play a very important role in both theory and applications. Recently, an
increasing interest in studying the existence of solutions and positive solutions to bound-
ary value problems for fourth-order differential equations is observed; see, for example,
[3–8].

In this paper, we are concerned with the existence of positive solutions for the follow-
ing fourth-order three-point boundary value problem (BVP):

u(4)(t)= a(t) f
(
u(t)

)
, 0 < t < 1,

u(0)= u(1)= 0,

αu′′(η)−βu′′′(η)= 0, γu′′(1) + δu′′′(1)= 0,

(1.1)

where α, β, γ, and δ are nonnegative constants satisfying αδ + βγ + αγ > 0; 0 < η < 1,
a∈ C[0,1], and f ∈ C([0,∞),[0,∞)). We use Krasnoselskii’s fixed point theorem in cones
to establish some simple criteria for the existence of at least one positive solution to BVP
(1.1). To the best of our knowledge, no paper in the literature has investigated the exis-
tence of positive solutions for BVP (1.1).
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The paper is formulated as follows. In Section 2, some definitions and lemmas are
given. In Section 3, we prove some existence theorems of the positive solutions for BVP
(1.1).

2. Preliminaries and lemmas

In this section, we introduce some necessary definitions and preliminary results that will
be used to prove our main results.

First, we list the following notations and assumptions:

f0 = lim
u→0

f (u)
u

, f∞ = lim
u→∞

f (u)
u

. (2.1)

(H1) f : [0,∞)→[0,∞) is continuous;
(H2) a∈ C[0,1], a(t)≤ 0, for all t ∈ [0,η], a(t)≥ 0, for all t ∈ [η,1], and a(t) �≡ 0, for

all t ∈ (p,η)∪ (η,q) (0 < p < η < q < 1).
By routine calculation, we easily obtain the following lemma.

Lemma 2.1. Suppose that α, β, γ, δ are nonnegative constants satisfying αδ + βγ + αγ > 0.
If h∈ C[0,1], then the boundary value problem

v′′(t)= h(t), t ∈ [0,1],

αv(η)−βv′(η)= 0, γv(1) + δv′(1)= 0
(2.2)

has a unique solution

v(t)=
∫ t

η
(t− s)h(s)ds+

1
σ

∫ 1

η

(
α(η− t)−β

)(
γ(1− s) + δ

)
h(s)ds, (2.3)

where σ = αδ +βγ+αγ(1−η) > 0.

Let G(t,s) be the Green’s function of the differential equation

−u′′(t)= 0, t ∈ (0,1), (2.4)

subject to the boundary condition

u(0)= u(1)= 0. (2.5)

In particular,

G(t,s)=
⎧
⎨

⎩
s(1− t), 0≤ s≤ t ≤ 1,

t(1− s), 0≤ t < s≤ 1.
(2.6)
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It is rather straightforward that

0≤G(t,s)≤G(s,s), 0≤ t, s≤ 1, (2.7)

G(t,s)≥mG(s,s), t ∈ [p,q], s∈ [0,1], (2.8)

where 0 < p < q < 1, and 0 <m=min{p,1− q} < 1.
Let X be the Banach space C[0,1] endowed with the norm

‖u‖ =max
0≤t≤1

∣
∣u(t)

∣
∣. (2.9)

We define the operator T : X→X by

Tu(t)=
∫ 1

0
G(t,s)

[∫ s

η
(τ − s)a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

η

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds,

(2.10)

where G(t,s) as in (2.6). From Lemma 2.1, we easily know that u(t) is a solution of the
fourth-order three-point boundary value problem (1.1) if and only if u(t) is a fixed point
of the operator T .

Define the cone K in X by

K =
{
u∈ X | u≥ 0, min

t∈[p,q]
u(t)≥m‖u‖

}
, (2.11)

where 0 < p < η < q < 1, and

0 <m=max{p,1− q} < 1. (2.12)

Lemma 2.2. Assume that (H1) and (H2) hold. If β ≥ αη, then T : K→K is completely con-
tinuous.

Proof. For any u∈ K , we know from (2.10), (H1), (H2), and β ≥ αη that

(Tu)(t)=
∫ η

0
G(t,s)

[∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

η

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds

+
∫ 1

η
G(t,s)

[∫ s

η
(τ− s)a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ s

η

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

s

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds
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=
∫ η

0
G(t,s)

[∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

η

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds

+
∫ 1

η
G(t,s)

[
1
σ

∫ s

η

[
αδ(τ−η) +βγ(1− s) +αγ(1− s)(τ−η) +βδ

]
a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

s

(
β+α(s−η)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds

≥ 0, t ∈ [0,1]. (2.13)

Hence, in view of (2.13) and (2.7), we have

‖Tu‖ = max
t∈[0,1]

(Tu)(t)≤
∫ η

0
G(s,s)

[∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

η

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds

+
∫ 1

η
G(s,s)

[
1
σ

∫ s

η

[
αδ(τ−η) +βγ(1− s) +αγ(1− s)(τ−η) +βδ

]
a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

s

(
β+α(s−η)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds.

(2.14)

Thus from (2.8), (2.13), and (2.14), we get

min
t∈[p,q]

(Tu)(t)

≥m
∫ η

0
G(s,s)

[∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

η

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds

+m
∫ 1

η
G(s,s)

[
1
σ

∫ s

η

[
αδ(τ−η) +βγ(1− s) +αγ(1− s)(τ−η) +βδ

]
a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

s

(
β+α(s−η)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds=m‖Tu‖,

(2.15)

where m as in (2.12). So T : K→K . Moreover, it is easy to check by the Arzela-Ascoli
theorem that the operator T is completely continuous. �

Remark 2.3. By σ = αδ +βγ+αγ(1−η) > 0 and β ≥ αη, we have β > 0.

Recently, Krasnoselskii’s theorem of cone expansion/compression type has been used
to study the existence of positive solutions of boundary value problems in many papers;
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see, for example, Liu [7], Ma [9], Torres [10], and the references contained therein. The
following lemma (Krasnoselskii’s fixed point theorem) will play an important role in the
proof of our theorem.

Lemma 2.4 [11]. LetX be a Banach space, and letK ⊂ X be a cone inX . Assume thatΩ1, Ω2

are open subsets of X with 0 ∈Ω1, Ω1 ⊂Ω2 and let A : K ∩ (Ω2 \Ω1)→K be a completely
operator such that either

(i) ‖Au‖ ≤ ‖u‖, u∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).

3. Main result

We are now in a position to present and prove our main result.

Theorem 3.1. Let β ≥ αη. Assume that (H1)-(H2) hold. If f0 =∞ and f∞ = 0, then (1.1)
has at least a positive solution.

Proof. Since f0 =∞, we can choose r > 0 sufficiently small so that

f (u)≥ εu for 0≤ u≤ r, (3.1)

where ε satisfies

ε ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

6
m(1−η)

∫ η
0 −a(τ)τ3dτ

, if a
(
t0
)
< 0, for some t0 ∈ (p,η),

σ

βmη
∫ 1
η (τ−η)(1− τ)

(
γ(1− τ) + δ

)
a(τ)dτ

, if a
(
t1
)
> 0, for some t1 ∈ (η,q).

(3.2)

Set Ωr = {u∈ K | ‖u‖ < r}. From condition (H2), we consider two cases as follows.

Case 1. If a(t0) < 0 for some t0 ∈ (p,η), then, for u ∈ ∂Ωr , we have from (2.13), (3.1),
and (3.2) that

(Tu)(η)≥
∫ η

0
G(η,s)

[∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

η

(
β−α(η− s)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds

≥
∫ η

0
G(η,s)

∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ ds≥ ε

∫ η

0
G(η,s)

∫ η

s
(s− τ)a(τ)u(τ)dτ ds

≥mε‖u‖
∫ η

0
G(η,s)

∫ η

s
(s− τ)a(τ)dτ ds=mε‖u‖

∫ η

0
a(τ)dτ

∫ τ

0
G(η,s)(s− τ)ds

=mε‖u‖
∫ η

0
a(τ)dτ

∫ τ

0
(1−η)s(s− τ)ds=mε‖u‖1−η

6

∫ η

0
−a(τ)τ3dτ ≥ ‖u‖,

(3.3)
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which implies

‖Tu‖ ≥ ‖u‖, ∀u∈ ∂Ωr . (3.4)

Case 2. If a(t1) > 0 for some t1 ∈ (η,q), then, for u ∈ ∂Ωr , we have from (2.13), (3.1),
and (3.2) that

(Tu)(η)≥
∫ 1

η
G(η,s)

[
1
σ

∫ s

η

[
αδ(τ −η) +βγ(1− s) +αγ(1− s)(τ−η) +βδ

]
a(τ) f

(
u(τ)

)
dτ

+
1
σ

∫ 1

s

(
β+α(s−η)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ
]
ds

≥ 1
σ

∫ 1

η
G(η,s)

∫ 1

s

(
β+α(s−η)

)(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ ds

≥ β

σ

∫ 1

η
G(η,s)

∫ 1

s

(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ ds

≥ εβm

σ
‖u‖

∫ 1

η
G(η,s)ds

∫ 1

s

(
γ(1− τ) + δ

)
a(τ)dτ

= εβm

σ
‖u‖

∫ 1

η

(
γ(1− τ) + δ

)
a(τ)dτ

∫ τ

η
η(1− s)ds

= εβm

σ
‖u‖

∫ 1

η
η(τ −η)

(
1− 1

2
(τ +η)

)
(
γ(1− τ) + δ

)
a(τ)dτ

≥ εβηm

σ
‖u‖

∫ 1

η
(τ −η)(1− τ)

(
γ(1− τ) + δ

)
a(τ)dτ ≥ ‖u‖,

(3.5)

that is,

‖Tu‖ ≥ ‖u‖, ∀u∈ ∂Ωr . (3.6)

Next, define a function f ∗(v) : [0,∞)→[0,∞) by

f ∗(v)= max
0≤u≤v

f (u). (3.7)

It is easy to see that f ∗(v) is nondecreasing. Since f∞ = 0, we have lim v→∞ f ∗(v)/v = 0.
Thus, there exists R > r such that

f ∗(R)≤ θR, (3.8)

where θ satisfies

θ
[

1
12

∫ η

0
−a(τ)τ3dτ +

1
6σ

[
(1−η)σ +βδ

](
1−η2)

∫ 1

η
a(τ)dτ

+
1

6σ

(
β+α(1−η)

)
∫ 1

η

(
γ(1− τ) + δ

)
a(τ)dτ

]
≤ 1.

(3.9)
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Hence, we obtain

f (u)≤ f ∗(R)≤ θR, 0≤ u≤ R. (3.10)

Thus from (2.14) and (3.10), for all u∈ ∂ΩR, we have

‖Tu‖ ≤ θR
[∫ η

0
G(s,s)

[∫ η

s
(s− τ)a(τ)dτ +

1
σ

∫ 1

η
(β−αη+αs)

(
γ(1− τ) + δ

)
a(τ)dτ

]
ds

+
∫ 1

η
G(s,s)

[
1
σ

∫ s

η

[
αδ(τ−η) +βγ(1− s) +αγ(1− s)(τ−η) +βδ

]
a(τ)dτ

+
1
σ

∫ 1

s

(
β+α(s−η)

)(
γ(1− τ) + δ

)
a(τ)dτ

]
ds
]

≤ θR
[∫ η

0
a(τ)dτ

∫ τ

0
s(1− s)(s− τ)ds+

β

σ

∫ 1

η

(
γ(1− τ) + δ

)
a(τ)dτ

∫ η

0
s(1− s)ds

+
1
σ

∫ 1

η
s(1− s)ds

∫ 1

η

[
αδ(1−η) +βγ(1−η) +αγ(1−η)2 +βδ

]
a(τ)dτ

+
1
σ

∫ 1

η
s(1− s)ds

∫ 1

η

(
β+α(1−η)

)(
γ(1− τ) + δ

)
a(τ)dτ

]

= θR
[

1
12

∫ η

0
−a(τ)τ3dτ +

β

6σ

(
3η2− 2η3)

∫ 1

η

(
γ(1− τ) + δ

)
a(τ)dτ

+
1

6σ

[
(1−η)σ +βδ

](
1− 3η2 + 2η3)

∫ 1

η
a(τ)dτ

+
1

6σ

(
β+α(1−η)

)(
1− 3η2 + 2η3)

∫ 1

η

(
γ(1− τ) + δ

)
a(τ)dτ

]

≤ θR
[

1
12

∫ η

0
−a(τ)τ3dτ +

1
6σ

[
(1−η)σ +βδ

](
1−η2)

∫ 1

η
a(τ)dτ

+
1

6σ

(
β+α(1−η)

)
∫ 1

η

(
γ(1− τ) + δ

)
a(τ)dτ

]
≤ R= ‖u‖,

(3.11)

that is,

‖Tu‖ ≤ ‖u‖, for u∈ ∂ΩR. (3.12)

Hence, from (3.6), (3.12), and Lemma 2.4, T has a fixed point u∈ΩR \Ωr , which means
that u is a positive solution of BVP (1.1). �

Theorem 3.2. Let β ≥ αη. Assume that (H1)-(H2) hold. If f0 = 0 and f∞ =∞, then (1.1)
has at least a positive solution.
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Proof. Since f∞ =∞, we can choose R1 > 0 sufficiently large so that

f (u)≥ Au, u≥ R1, (3.13)

where A satisfies

A≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

6
m(1−η)

∫ η
p −a(τ)(τ − p)

(
τ2 + τ p− τ p2

)
dτ

, if a
(
t0
)
< 0, for some t0 ∈ (p,η),

σ

βmη
∫ q
η (τ −η)(1− τ)

(
γ(1− τ) + δ

)
a(τ)dτ

, if a
(
t1
)
> 0, for some t1 ∈ (η,q).

(3.14)

Choose

R≥ R1

m
, (3.15)

where m> 0 as in (2.12). Let u∈ ∂ΩR. Since u(t)≥m‖u‖ =mR≥ R1 for t ∈ [p,q], from
(3.13), we see that

f
(
u(t)

)≥Au(t)≥AmR, ∀t ∈ [p,q], u∈ ∂ΩR. (3.16)

For u∈ ∂ΩR, we consider two cases as follows.

Case 1. If a(t0) < 0 for some t0 ∈ (p,η), then we have from (3.3), (3.14), and (3.16) that

(Tu)(η)≥
∫ η

0
G(η,s)

∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ ds

≥
∫ η

p
G(η,s)

∫ η

s
(s− τ)a(τ) f

(
u(τ)

)
dτ ds

≥ AmR
∫ η

p
G(η,s)

∫ η

s
(s− τ)a(τ)dτ ds

= AmR(1−η)
∫ p

η
a(τ)dτ

∫ τ

p
s(s− τ)ds

= 1
6
AmR(1−η)

∫ p

η
−a(τ)(τ− p)

(
τ2 + τ p− 2p2)dτ

≥ R= ‖u‖,

(3.17)

which implies

‖Tu‖ ≥ ‖u‖, ∀u∈ ∂ΩR. (3.18)
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Case 2. If a(t1) > 0 for some t1 ∈ (η,q), then we have from (3.5), (3.14), and (3.16) that

(Tu)(η)≥ β

σ

∫ 1

η
G(η,s)

∫ 1

s

(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ ds

≥ β

σ

∫ q

η
G(η,s)

∫ q

s

(
γ(1− τ) + δ

)
a(τ) f

(
u(τ)

)
dτ ds

≥ AmR
β

σ

∫ q

η
G(η,s)

∫ q

s

(
γ(1− τ) + δ

)
a(τ)dτ ds

= AmR
β

σ

∫ q

η

(
γ(1− τ) + δ

)
a(τ)dτ

∫ τ

η
η(1− s)ds

≥ AmR
βη

σ

∫ q

η
(τ−η)(1− τ)

(
γ(1− τ) + δ

)
a(τ)dτ ≥ R= ‖u‖,

(3.19)

which implies

‖Tu‖ ≥ ‖u‖, ∀u∈ ∂ΩR. (3.20)

Since f0 = 0, we can choose 0 < r < R such that

f (u)≤ θu, 0≤ u≤ r, (3.21)

where θ as in (3.9). For u∈ ∂Ωr , we have from (3.11) and (3.21) that

‖Tu‖ ≤ θ‖u‖
[

1
12

∫ η

0
−a(τ)τ3dτ +

1
6σ

[
(1−η)σ +βδ

](
1−η2)

∫ 1

η
a(τ)dτ

+
1

6σ

(
β+α(1−η)

)
∫ 1

η

(
γ(1− τ) + δ

)
a(τ)dτ

]
≤ ‖u‖.

(3.22)

So,

‖Tu‖ ≤ ‖u‖, u∈ ∂Ωr . (3.23)

Therefore, from (3.20), (3.23), and Lemma 2.4, T has a fixed point u ∈ΩR \Ωr , which
means u is a positive solution of BVP (1.1). �

Finally, we conclude this paper with the following example.

Example 3.3. Consider the following fourth-order three-point boundary value problem:

u(4)(t)= sinπ(1 + 2t)ur(t), 0 < t < 1,

u(0)= u(1)= 0,

αu′′
(

1
2

)
−βu′′′

(
1
2

)
= 0, γu′′(1) + δu′′′(1)= 0,

(3.24)

where 0 < r < 1, α, β, γ, and δ are nonnegative constants satisfying αδ + βγ + αγ > 0 and
β ≥ (1/2)α. Then BVP (3.24) has at least one positive solution.
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To see this, we will apply Theorem 3.1. Set

f (u)= ur , a(t)= sinπ(1 + 2t), η = 1
2
. (3.25)

With the above functions f and a, we see that (H1) and (H2) hold. Moreover, it is easy to
see that

f0 =∞, f∞ = 0, β ≥ αη. (3.26)

The result now follows from Theorem 3.1.
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