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1. Introduction

Let Q be an open bounded subset of RN, N = 2, let Q be the cylinder Q x (0,T) with
some given T > 0. Consider the following nonlinear parabolic problem:

ou .
o +A(u)=x inQ,
u(x,t)=0 onodQx(0,T), (1.1)

u(x,0) =uy inQ,

where A(u)=—div(a(x,t,u, Vu)) is a Leray-Lions operator defined on D(A) C W(}’XLM(Q),
with M is an N-function, and y is a given data.

In the variational case (i.e., where y € W~ 1"Ez;(Q)), it is well known that the solvabil-
ity of (1.1) is done by Donaldson [2] and Robert [11] when the operator A is monotone,
t> < M(t), and M satisfies a A, condition, and by finally the recent work [3] for the gen-
eral case.

In the L! case, an existence theorem is given in [4]. However, the techniques used in
[4] do not allow us to adapt it for parabolic inequalities. It is our purpose in this paper to
solve the obstacle problem associated to (1.1) in the case where y € L' (Q) + W "Ez(Q)
and without assuming any growth restriction on M. The existence of solutions is proved
via a sequence of penalized problems, with solutions u,. A priori estimates of the trun-
cation of u, are obtained in some suitable Orlicz space. For the passage to the limit, the
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2 Parabolic inequalities in L!

almost everywhere convergence of Vu, is proved via new techniques. As operators mod-
els, we can consider slow or fast growth:

Alw) = —div<(1+ ul) vy 08U 1Vu) 'v”')>,

[Vul (1.2)

A(u) = —div(Vuexp (IVul)).

For some classical and recent results in the setting of Orlicz spaces dealing with elliptic
and parabolic equations, the reader can be referred to [8, 10, 12-14].

2. Preliminaries

2.1. Let M : Rt — R* be an N-function, that is, M is continous, convex, with M(t) >0
fort >0, M(t)/t — 0ast— 0,and M(t)/t — o ast—» 0,

Equivalently, M admits the representation M(t) = |, a(s)ds, where a: R* — R* is non-
decreasing, right continuous, with a(0) = 0, a(t) >0 for t >0, and a(t) tends to o as
I — o0,

The N-function M conjugate to M is defined by M(t) = fot a(s)ds, where a: R* — R*
is given by a(t) = sup{s:a(s) <t} (see [1]).

The N-function is said to satisfy the A, condion if, for some k > 0,

M(2t) < kM(t), Vt=0, (2.1)

when (2.1) holds only for ¢ > some #; >0, then M is said to satisfy the A, condition near
infinity.

We will extend these N-functions into even functions on all R.

Let P and Q be two N-functions. P < Q means that P grows essentially less rapidly
than Q, that is, for each € >0, P(¢)/Q(€t) — 0 as t — co. This is the case if and only if
lim; . (Q7(1))/(P71(t)) = 0

2.2. Let Q be an open subset of RN. The Orlicz class Ky (Q) (resp., the Orlicz space
Ly (Q)) is defined as the set of (equivalence classes of) real-valued measurable functions
u on Q such that

J M (u(x))dx < +oo (resp., J M(@)dx < 400 for some A > 0). (2.2)
Q

L (Q) is a Banach space under the norm

||u||MQ—1nf{)L>O J (u(x)>dxs1} (2.3)

and Ky;(Q) is a convex subset of Ly ().

The closure in Ly (Q) of the set of bounded measurable functions with compact sup-
port in Q is denoted by Ex(Q).

The equality Ey(Q) = Ly (Q) holds if and only if M satisfies the A, condition, for all ¢
or for t large, according to whether Q has infinite measure or not.
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The dual of Ejy(Q) can be identified with L3;(Q) by means of the pairing [, uvdx, and
the dual norm of L3;(Q)) is equivalent to || - [I37,0-

The space Ly (Q) is reflexive if and only if M and M satisfy the A, condition, for all ¢
or for t large, according to whether Q) has infinite measure or not.

2.3. We now turn to the Orlicz-Sobolev space, WLy (Q) (resp., WEx(Q)) is the space
of all functions u such that u and its distributional derivatives up to order 1 lie in Ly;(Q)
(resp., Ep(Q))). It is a Banach space under the norm

lulliave= D> [|D%l|y- (2.4)

lal<1

Thus, W'Ly(Q) and W'Ep(Q) can be identified with subspaces of product of N +1
copies of Ly (Q). Denoting this product by [ ] Ly, we will use the weak topologies ([ ] L,
[1Ex) and o ([T Ly, [T Lyp).

The space W Ex(Q) is defined as the (norm) closure of the Schwartz space D(Q) in
W1'Ep(Q) and the space W} Ly(Q) as the ([T Lar, [ [ Exp) closure of D(Q) in WLy (Q).
We say that u,, converges to u for the modular convergence in WLy (Q) if for some A >0,

DO( . DO(

J M(M)dx—-o, V]al < 1. (2.5)
Q A

This implies convergence for o([ ] Ly, [ Lz7). If M satisfies the A, condition on R™, then

modular convergence coincides with norm convergence.

2.4. Let W Ly(Q) (resp., W 1E;(Q)) denote the space of distributions on Q which
can be written as sums of derivatives of order < 1 of functions in L3z (resp., Ez(Q)). It is
a Banach space under the usual quotient norm.

If the open set Q) has the segment property, then the space D(Q) is dense in W{ Ly(Q)
for the modular convergence and thus for the topology ([ TLum,[1L3;) (cf. [6, 7]). Con-
sequently, the action of a distribution in W~'Lz;(Q) on an element of W Ly(Q) is well
defined.

2.5. Let Q be a bounded open subset of RN, T >0, and set Q = Q x (0,T). Let M be an
N-function. For each & € NV, denote by D? the distributional derivatives on Q of order «
with respect to the variable x € RN. The inhomogeneous Orlicz-Sobolev spaces of order
1 are defined as follows:

WLy (Q) = {u € Ly(Q) : Dfu € Ly (Q), Yla| <1}, 06
W™Ep(Q) = {u € Ex(Q) : D% € En(Q), Vlal <1}. '

The latest space is a subset of the first one. They are Banach spaces under the norm

lull = > [|D%ul[p 0 (2.7)

la|=1

We can easily show that they form a complementary system when Q satisfies the seg-
ment property. These spaces are considered as subspaces of the product spaces [ [ Ly(Q)
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which has N + 1 copies. We will also consider the weak topologies ([ ]Ly, ][ Ezr) and
o(ITLa, [1Lyp). If u € WYLy (Q), then the function ¢ — u(t) = u(-,t) is defined on
(0, T) with values in WLy (Q). If, further, u € W"Ey(Q), then u(t) is W'Ey(Q)-
valued and is strongly measurable. Furthermore, the following continuous imbedding
holds: W Ep(Q) C LY(0, T; W'Ep(Q)). The space WLy (Q) is not in general sepa-
rable, if u € W*L;;(Q), we cannot conclude that the function u(t) is measurable from
(0, T) into W'Ly (). However, the scalar function ¢ — || D%u(t)| ., is in L' (0, T) for all
lal < 1.

2.6. The space Wy Ep(Q) is defined as the (norm) closure in W'*Ep(Q) of D(Q).

We can easily show as in [7] that when Q has the segment property, then for all u €
=AU Lan [ 1Ex)

D(Q) there exist some A >0 and a sequence (u,) C D(Q) such that for all
lal <1, [ M((D%u, — D%u)/A)dx — 0 when n — co. Consequently, D(Q)U(HLM’HEM) =
D(Q)U(HLM’HLV), this space will be denoted by W(} *Ly(Q). Furthermore, W&’XEM(Q) =

W(}’xLM(Q) N [ ] E3;. Poincaré’s inequality also holds in Wol’xLM(Q) and then there is a
constant C > 0 such that forall u € W&‘XLM(Q), one has

> IDfullyq = C 2 1Dl (2.8)

lal<1 lal=1

thus both sides of the last inequality are equivalent norms on Wy™*Ly(Q). We have then
the following complementary system:

( Wo*Lu(Q) | F )
Wo En(Q) | Fo )’

(2.9)

F being the dual space of Wy Ep(Q). It is also, up to an isomorphism, the quotient of
[1Lsz by the polar set Wy Ep(Q)*, and will be denoted by F = W~*L37(Q) and it is
shown that

WL = £ = T Dife: e Lu(Q)- (2.10)
|l <1

This space will be equipped with the usual quotient norm:

If1F=inf > [l fallye (2.11)

|l <1

where the inf is taken on all possible decompositions f = > 4<1 D% fa, fo € Liz(Q).
The space Fy is then given by Fy = {f = > 4<1 D% fa : fo € E3r(Q)} and is denoted by
Fo = W™Ex(Q).

Defintion 2.1. We say that u, — u in W~""L37(Q) + L' (Q) for the modular convergence
if we can write

Uy = z Dul+uld, u= z Du®+u° (2.12)

lal<1 lal<1



R. Aboulaich etal. 5
with 4% — u® in L3;(Q) for the modular convergence for all |« < 1 and u) — u® strongly
in L'(Q).

We will give the following approximation theorem which plays a crucial role when
proving the existence result of solutions for parabolic inequalities.

THEOREM 2.2. Let ¢ € WOI’XEM(Q) N L*(Q) and consider the convex set JHy = {v €
Wé’xLM(Q) :v = ¢ae inQ}. Then for every u € Hy N L¥(Q) such that du/ot €
WLy (Q) + LY(Q), there exists v € Ky 0 D(Q) such that

vi—u in WY Lu(Q),

8vj Jdu . Clxr 1 (213)
5 " M WLy (Q) +LY(Q)

for the modular convergence.

Proof. Tt is easily adapted from that given in [4, Theorem 3] and the approximation tech-
niques of [9]. O

Remark 2.3. The result is still true for § € W*Ep(Q) N L (Q), when Q is more regular
(see [9]).

In order to deal with the time derivative, we introduce a time mollification of a func-
tion v € Ly(Q). Thus, we define, for all 4 > 0 and all (x,1) € Q,

V(1) = yr V(x,s)exp (u(s —t))ds, (2.14)

where V(x,s) = v(x,$)x(0,1)(s) is the zero extension of v. The following proposition is fun-
damental in the sequel.

ProrosITION 2.4 [5]. If v € Ly(Q), then v, is measurable in Q, 0v,/ot = u(v —v,) and
J M(v,)dxdt < J M(v)dxdt. (2.15)
Q Q

Recall now the following compactness result which is proved in [5].

PROPOSITION 2.5. Assume that (uy), is a bounded sequence in W{ Lyr(Q) such that du,/ot
is bounded in W=""L3;(Q) + LY(Q), then u, is relatively compact in L' (Q).

3. The main result

Let Q be an open bounded subset of RN, N > 2, with the segment property. Let P and M
be two N-functions such that P <« M. Consider now the operator A : D(A) C W&’XLM(Q)
— W L(Q) in divergence form A(u) = —div(a(x,t,u, Vu)), where a: Q X R X R x
RN — RY is a Carathéodory function satisfying for a.e. x € Q and for all {,{’ € RV,
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((# {")andalls,t € R:

lalx,,5,0)| <h(et)+k P M(kalsl) +ksM  M(klC1),
(a(xat)saz)_a(x)t>s’(,))((_(,) >0’ (31)
a(x,t,s,()( = (XM(|(|) - d(x)t))

with d € LY(Q), a, k1, ks, ks, ks >0, and h € Ezz(Q). Let
v € WIEn(Q) N L™ (Q). (3.2)
Finally, consider
fell(Q). (3.3)

We define for all t € R, k = 0, Tx(¢) = max(—k,min(k,t)), and Sc(t) = fot Tr(n)dn.
We will prove the following existence theorem.

TueOREM 3.1. Let uy € L1(Q) such that uy = 0. Assume that (3.1)—(3.3) hold true. Then
there exists at least one solution u € C([0, T1;L'(Q)) such that u(x,0) = ug a.e. and for all
T€]0,T],

uzy aeinQ,
Te(u) € Wy Lu(Q),

o

JQ Sk(u(t) —v(t))dx+ < 3% Tie(u— v)> +JQT a(x, t,u, Vu)VTi(u—v)dxdt

< IQ, fTi(u—v)dxdt+ J;) S (1 — v(x,0))dx,

v

Vk>0and Vv e XKy, NL*(Q) such that o

e WLy (Q) +L'(Q),
(Pl//)

where Q; = Qx]0,7][.

Remark 3.2. Since {v € 5, N L*(Q) : ov/ot € W *Lzx(Q) + L'(Q)} € C([0,T],L (Q)),
(see [4]), the first and the latest terms of problem (py, ) are well defined.

Proof

Step 1. A priori estimates.
For the sake of simplicity, we assume that d(x,t) = 0.
Consider the approximate equations

ou
©—div(a(x,t, tn, Vi) — 0T, (1, — )™ = fr,
ot 4 f (P,)

Uy € Wo™Lpt(Q),  t4n(x,0) = ufl,
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where f, — f strongly in L'(Q) and ug — uo strongly in L'(Q). Thanks to [3, Theo-
rem 3.1], there exists at least one solution u, of problem (P,). By choosing Ti(u, —
Tn(uy)),h = |lvll« as test function in (P,), we get

<aun,Tk(un—Th(un))> +J aun, Vi) Vu,dxdt
ot h<|uy| <h+k

- IQnTn(un ) T (= Ty (1)) et = JanTk(u,, T (uy) ) dxdt.
(3.4)

On the one hand, we have

(% Ty T () ) = [ Stm(rax- | shua (3.5)

where S} (s) = J; Tx(q — Tn(q))dq, and by using the fact that [, S}'(,(T))dx = 0 and | [, S}
()] < klludllr, we get

ocjh \ kM( | Vu,|)dxdt - J nTy(un —v) Tk (un — Ty (uy))dxdt < Ck, VneN,
<|u,|<h+ Q
(3.6)

so that

- JQnT,,(un ) dedt <c (3.7)

Since —nT,(uy — ¥)~ Tk(u, — Tn(u,)) = 0, for every h = ||y, we deduce by Fatou’s
lemma as k — 0 that

J nT,(u,—v) <C (3.8)
Q
Using in (P,) the test function Tk (u,)x(0,7), we get for every 7 € (0, T),

J;) Sk (un(1))dx + J a(x,t, Tx(un), VTi (t4,)) V Tx (u) dx dt

T

(3.9)
+j 0Ty (1 — ) ) Te () dxdt < Ck
Q:
which gives thanks to (3.8)
ISk(un(T))dx+J a(x, Te (1), V Te (1)) V T (1) dc dt < Ch, (3.10)
Q

T

jQM(WTk(un) |)dxdt < Ck (3.11)
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On the other hand, by using [6, Lemma 5.7], there exist two positive constants y; and y,
such that

J M(M)dxdtsyzj M(|VTi(uy)|)dxdt (3.12)
Q th Q
which implies, by using (3.11), that
meas { | u, | >k} < M”(Zk—%l) (3.13)
so that
lim meas { | u,| >k} =0 uniformly with respect to n. (3.14)

k— oo

Take now a nondecreasing function 6 € C?>(R) such that 6k(s) = s for |s| < k/2 and
Ok (s) = ksign(s) for |s| > k. By multiplying the approximate equation by Hl;(un), we get
E)GkT(:,J —div (a(x,t, un, Virn) 0 (1)) +a(x,t, 1ty Vity) Vi, 0 (1) (3.15)
—nT,(u, — 1//) ek(”n) = fnek(un)>

which implies that 96y (u,)/9t is bounded in W~*L3;(Q) + L'(Q). Since 6k (u,) is bound-
ed in W& Ly (Q), we have by Proposition 2.5 that 8¢(u,) is relatively compact in L'(Q)
and so that u, — u a.e. in Q, and from (3.8) by using Fatou’s lemma, we get u > y a.e. in
Q. Consequently,

Ty () — Tp(u)  weakly in Wy Ly (Q) (3.16)

for the topology (I L, [ | Ezp)-
Step 2. Almost everywhere convergence of the gradients.

Since Ti(u) € Wy Lu(Q), then there exists a sequence (a'j) C D(Q) such that oc? -
Ty (u) for the modular convergence in Wol “Lp(Q). In the sequel and throughout the pa-
per, xjs and x; will denote, respectively, the characteristic functions of the sets Qs =
{(x,1) € Q: [VTi(af)] < s} and Q = {(x,t) € Q: |VTi(u)| < s}. For the sake of sim-
plicity, we will write only €(n, j,u,s) to mean all quantities (possibly different) such that
limg . o limy, . o limj . o lim,, . o €(11, j, t, ) = 0.

Taking now T, (u, — Tk(oc?),,), n > 0 as test function in (P,), we get

<%,T}1<un - Tk(af)y)> +J a(x,un,Vu,,)VTq@n - Tk(‘x;Y)H)
) (3.17)
_ JQnTn((un — ) )T, (s — Ti(o), ) dxdt < C,

and by using (3.8), we get

<%’TW(”n - Tk(“?)y)> + JQa(un,Vu,,)VTn (u,, — Tk(aﬂ?)y) <Cn. (3.18)
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The first term of the left-hand side of the last equality reads as

k

n n aT ( )
(%1 - 1t ) ) = (O = 5T (- i), )

T
+ <k8(t) T, (u - Tk(a§)y)>.

The second term of the last equality can be written as

du, 0T (e )
(270 )

= JQS” (u,,(T) - Tk((xlj)”(T))dx— JQSq(u()‘)dx > —r]L2 |uf | dx = —nC,

(3.19)

(3.20)
the third term can be written as
oTi(af), k
<—at T, (s — Te(a > uj Ti(a (@),) (T (1 = T (), )
(3.21)

thus by letting #, j — co and since ocﬁ? — Ti(u) a.e. in Q and by using Lebesgue theorem,

JQ (Tk(“’;) - Tk(‘xlf)ﬂ) <Tﬂ<“” - Tk(“ﬁ)y))dxdt

(3.22)
_ IQ (Te(w) — Te(w),) (T, (1 — T(u),) )dxdt + €(m, ).
Consequently,
u,, .
<§,T,7<Tk(un—Tk((x’j)ﬂ>>> > e(n, j) - nC. (3.23)
On the other hand,
k
JQa(un,Vun)VT,, <un - Tk(ocj)”)dxdt
_ J a(Ti (1), V Te (1)) V T (1) = V Ty (o) x50
(1T ()~ T (o) <173 “
(3.24)

+J a(up, V) Vuydxdt
(<l un |} { = Tie (), | <1}

k
—Lkmumm el a(ttn, Ven) V Tk (6F) X (197 (o155 AX AE
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which implies, by using the fact that f{k<\unI}m{lun—Tk(a’;)ykq} a(uy, Vu,)Vuudxdt = 0, that

J a(ty, V) VT (uy) — VTk((x?)HXj,sdxdt
(1T at) =Tk (@) <1}
(3.25)

<C +J a(ty, Vi)V Ty (ok koo dxdt.
(k< V{2t — T )l <} (b V4n) VTi5) 77153

Since a( Tk (t4n), V Ti1y (1)) is bounded in (L7(Q))N, there exists some A,y € (L (Q))N
such that

a(Tiin(un)s V Tiiy(un)) — hgyy  weaklyin (LH(Q))N for 0<HLM,1_[EM).
(3.26)

Consequently,

alu,, Vu,)V Ti(a* Ky dx dt
Lk<|un}ﬁ{lun—Tk(txlf)yldl} (140, Vi) ( J)!‘X{|VTk<%>\>S}
(3.27)

his VTk((X’?) T (o dxdt +€(n),
J{k<u|}m{|uTk(a§)y<q} U j /AX{IV k(o) |>s}

where we have used the fact that VTk((X];)#)({kdu,,\}ﬁ{ L1ty =Ty ( , tends strongly to

(xﬁ?)qul

V Tl ke ulinlu- Te(a, <y 0 (Eni(Q))Y. Letting j — oo, we obtain

alun, Vi)V Ti ok koo dx dt
Lk<un}n{unn<a§)y<n} (s V14V T(5) X 91155

(3.28)
= hesn VT (W) uxiivr dxdt+e€e(n,j).
J{kdu\}ﬂ{\uka(u)le} " BV 1<) /

Thanks to Proposition 2.4, one easily has
by V T (1) T, dxdt
Lk<|u|}m{\u7n(u>#\<n} “7 HRVT; 1<)
(3.29)

hieey VT wissidxdt+e(u) = €(u,s).
oo B VT 0 e+ €)= €l9)

Hence

a(Ti(un), VTi (1)) V Ti (1) — VTk(oc’;)#Xj,sdxdt < Cn+e(n,j,u,s).
(3.30)

LTk(un)Tk(aﬁ)%kn}
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On the other hand, note that

| al(T(un), VT () VT () = VT (o), cddt
{1 Tk (un) = Tr(af)ul<n}

ZJ a(Ti(un), VT (1)) V T (1) — VT (o) st
U Tk () = Ti(aj)y 1<}

a(Te (), V Tic (1)) | V T () 16 = V Ti(@) s el
(3.31)

|
{1 Tk (1) = Ti(o ) | <y}

The latest integral tends to 0 as n and j go to co. Indeed, we have that

a(Ti (), VT (u)) | VT (a8 xis — VTR (a5 xi s |dxdt 3.32
oy o T 00 VT ) [V T 155 = VT st 332)

tends to

W | VT (o) yi s — VT (a5 yis |dxdt 3.33
LWTM% e[ V(@) 56— VTr(eb) (333)

as n — oo, since
a(Ti(un),VTi(un)) — he weakly in (Lﬁ(Q))N for U(HLM,HEM) (3.34)

while VTk((x];))(j,s - VTk(oclj),,Xj,s € (Ez(Q))N. It is obvious that

hie | VT (o) xi s — VT (oF) xis |dxdt 3.35
«[{Tk(u)—Tk(aj?)yqﬁ k[ k( ])X], k( ])yX]»] ( )

goes to 0 as j — oo by using Lebesgue theorem. We deduce then that

a(Tx(un), VT (un))VTi (1) — VTk(ocf)Xj,sdxdt <Cn+en,j,us).
(3.36)

L|Tk(un>ma§-)#<n}

Let now 0 < § < 1. We have
|| [a(Tiun), 9 Tiun)) = a(Tx (), VTe0) | [V i) - 9T (0] vt
< Cmeas{ ‘ Ty (u,) — Tk(cx?)#' > 77}6

+c| a0, Y Ti(un))  a(Tilu), VT
Tk (un) = Ti (o} )l <3N Qr

)
[V T (1) fVTk(u)]dxdt] .
(3.37)
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On the other hand, we have for every s > r, r > 0,

J . [ (Tk(un))VTk(”n))7a(Tk(un))VTk(”))] [VTk(un)*VTk(u)]dxdt
1Tk (un) =Tk (o )ul<nNQ}

< o [a(T(n). VTa)) = 0(Ti(), VT ()]
1Tk () = Tie ot} )l <n}

X [VTk(un) - VTk(“)}(s]dx‘it

< - 1a(T0), Y Ti() = a(Ti(n), V()15
T (un) = Ti (e}l <}

X [V Ty (u,) - VTk(oc’;))(j,s]dxdt

+ (Tk(un)> VTk(un)) [VTk(“ﬁ)Xj,s - VTk(u)Xs]dth

LlTk(un) Ti(af)ul<n}

+

J . [a(Tk (un), V Tx (“?)Xj,s)_a(Tk(”n)’VTk(u)Xs)]VTk(”n)dxdt
{1 Tk (un) = Ti (o ) <1}

Te(un), VTi (X yi ) VT (a8 y; (dxdt
L o T VT3 VT

J a(Tx(un), VTi(u)xs) V Tie(u)ysdx dt
UTk(un) = Ti(a)ul<n}

= Il (f’l,],[/t,s) +Iz(7l,],{/l,5) +I3(n)jnu>s) +I4(n,j,‘bl,s) +15(n)j),u7s)~
(3.38)

We will go to the limit as #, j, 4, and s — oo in the last fifth integrals of the last side.
Starting with I;, we have

Li(n, j,u,s) < Cy+e(n,j,u,s)

a(Ti(un), V Tk (h) xj.5) V Ti () = V T (o) yj sdx dt
(3.39)

LITk ()= Tk 1<}

since

a(Ti(un), VTi(a )X]S)X{\Tk (W) ~Ti () l<rr}

N (3.40)

_’a(Tk(u)’VTk((xj)Xj,s)X{\Tk(u)—Tk(a‘jf)#\<11} in (Ex(Q))
while

VTi(u,) — VTi(u) weaklyin (LH(Q))N. (3.41)
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We deduce then that

a(Tx (un), VTx(6F) xis) V Tk (t4n) — VT (aF) yj.sdx dt
J{Tkwn)—n(a?)wm (Tic(un) ()15) ¥ T (1) (@)

a(Ti(u), VTi(oh)xjs) V Ti(u) — V Ti (af) xj o dx dt + €(n)
(3.42)

L|Tk<u)—n<a§>y|<n}

which gives by letting j — co and using the modular convergence of VTk(oc’;), that

J o alT(w), V() xj.) V () = V T (o) xj.cdx dt
{1 Tk ()= Te(a)ul <1} (3.43)

= JQa(Tk(u),VTk(u)XS)VTk(u) — VTi(u)ysdxdt+€(j) = €(j).
Finally,

Li(n, j,u,s) < Cn+e(n,j,u,s) +€(n, j) = €n,j,u,sn). (3.44)

For what concerns I, by letting n — oo, we have

L(n, j,u,s) = J he[V T (@) xjc = V Ti(u)ys Jdxdt + €(n) (3.45)
{1 T ()= Ti(ah), <}
since
a(Tk (un), VTk(un))X{‘Tk(un)*Tk(aﬁ)yKﬂ} e hk Weakly in (LM fOr 0(1_[ LM’l_[EM>
(3.46)
while

X113t en LY T (@)= ¥ Tk xe] — Xm0t ¥ T () 75— V T () s
(3.47)

strongly in (Ex(Q))N. By letting now j — oo, and using Lebesgue theorem, we deduce
then that

IZ(”)]')‘L‘)S) = E(f’l,j). (348)
Similar tools as above give
I(n, j,u,s) = €(n, ),

L, jophys) = JQa(Tk(u),VTk(u))VTk(u) Fe(n o), 5.49)

Is(n, j,u,s) = JQa(Tk(u), VTe(w)) VTi(u)+€(n, j,u4,s).
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Combining (3.37)—(3.48) and (3.49), we get

[, 1a(Ti(u) 9T (0) = a(Tia), VTl [V Ti) = VT 0]l
' (3.50)

k 8 . 1-6
sCmeasHTk(un)—Tk((xj)H) <17} +C(e(n, j,sum))

and by passing to the limit sup over n, j, y, s, and, 5

lim | [a(Ti(tn), ¥ Ti(un)) = a(Ti (), Y Te() [V T (1) — V Ti(0)] dxdt = 0,

n—oo Qr

(3.51)
and thus there exists a subsequence also denoted by (u,) such that
Vu, — Vu ae. inQ, (3.52)
and since r is arbitrary, we obtain
Vu, — Vu ae.inQ. (3.53)

Step 3. Passage to the limit.
Let ¢ € Hy N D(Q). Choosing now Ti(u, — $)x(0,r) as test function in (P,), we get

<au",Tk(un - ¢)> +J a(x, tyun, Vuy) VT (u, — ¢)dxdt
Q: Q:

d
‘ (3.54)
—J nTn(un—w)*Tk(un—qs)dxdt:JQ Fu T (un — ¢)dxdt
which gives, by — [ nT,(u, — v)~ T (u, — ¢p)dxdt = 0,
o
Sk (1 ( d —, Tr(u, —
I e (u (1)) x+<at e (u ¢)>QT
+JQ a(x, tyun, Vuy) VT (u, — ¢)dxdt (3.55)
j FuT (s dxdt+J Sk (14 (0) — $(0)) dlx.
We will show that
u, — u in C([0,T],L}(Q)). (3.56)

Since Ti(u) € Ky, for every k = |||, there exists a sequence (w;) in D(Q)n Hg such
that

wi — Te(1)  in Wy Ly(Q) (3.57)
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for the modular convergence. Choosing now q);?f# = Ti(wj)u +e #Ti(n;), with 7; = 0 con-
verges to ug in L'(Q), as test function in (3.55),

aun 1l il
< 3 , T (uy JM)>QT + JQTa(x, tun, Vi)V T (uy — @3, ) dxdt

(3.58)
- J nTy(uy —v)~ Ti(uy — @;f,lﬂ)dxdt = J S Tie (un — dD;»’,lH)dxdt.
r Q-

On the one hand, we have

((@f) Tl = f})) =g (1100) ~ @) Tilws ~ @ e = e oo

(3.59)

T

on the other hand, by using the monotonicity of a and the fact that — [, nT,(u,
v)” Ty (uy — CD?,IH)dx dt = 0, we deduce that

du ; ;
< T ;;)>Q +IQTa(x,t,un,Vq)}"lH)VTk(un—q);?fy)dxdt
‘ (3.60)
< | fTiun - ol )dxd
QT
Since, for every € > 0,
Xt VO V T (1t = @) |
_ (1T 0)| 61
<eM(a(x,t, Trspiy., (“n))vq)j,y)) +M c >
we have by using Vitali’s theorem
. . . . . aun i,
limsuplimsuplimsuplimsuplimsup T Ti(up, - ®@j,)) <0 (3.62)
|- i—o0 U—oo j—oo n—o00 Q
uniformly on 7. Therefore, by writing
Se(un(r) — 0 Y = {22 Ty~ 0) ) = { (@) Tic (- @)
o EAUntT A% =\ T L\t = Ry o ) > Lk \tn = R4 .
# | Selwo—Tiln)dx
(3.63)

and using (3.55) and (3.59), we see that

J Sk (un(7) — DY) dx < €(n, joppsis 1) (3.64)
Q
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which implies, by writing

JQS"<M)“Z“%(IQS’<(””(T) d)’l dx+J Sk (um (1) — d);”lﬂ)dx),

(3.65)
that
JQSk(M>dxsel(n,m), (3.66)
we deduce then that
L} | un(T) — um(7) |dx < €2(n,m), not depending on , (3.67)

and thus (u,) is a Cauchy sequence in C([0,T],L'(Q)), and since u, — u, a.e. in Q, we
deduce that

u, — u in C([0,T],L}(Q)). (3.68)

Go back now to (3.48) and pass to the limit to obtain

J Sk(u(r) — ¢(7) )dx+<a¢ Te(u—¢) > +JQ a(x, t,u, Vu) VT (u— ¢)dxdt

T

sj ka(u—¢)dxdt+J Sk (u(0) — $(0))dx
Q: Q

(3.69)
since for every v € #,, N L*(Q), there exists v; € I, N D(Q) such that
vj — v for the modular convergence in Wol’xLM(Q),
% — % for the modular in W~"*L37(Q) + L'(Q), 70

we deduce then that
J Sk(u(r)—v(r))dx+<%,Tk(u—v)> +J a(x,t,u, Vu)VTi(u—v)dxdt
Q Q. :

sj ka(u—v)ddeJ Sk (u(0) — v(0)) dx
Q: Q
(3.71)

which completes the proof. O
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Remark 3.3. A similar result can be proved when dealing with the right-hand side in
L'(Q) + W="E3;(Q) or replacing the assumption (3.1) by the general one:

|a(x,t,5,0)| < b(Is]) (h(x,t) + M M(kslZ1)), (3.72)

where b: R* — R* is an increasing continuous function. Indeed, we consider the follow-
ing approximate problems:

W _ iy (a(, b T (), Vit)) — 1T (t1n —¥) ™ = i
i (P)

Uy € Wo Lnt(Q),  tn(x,0) = ufl,

and we conclude by adapting the same steps.
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