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A singular boundary value problem (BVP) for a second-order nonlinear differential equa-
tion is studied. This BVP is a model in hydrodynamics as well as in nonlinear field theory
and especially in the study of the symmetric bubble-type solutions (shell-like theory).
The obtained solutions (ground states) can describe the relationship between surface ten-
sion, the surface mass density, and the radius of the spherical interfaces between the fluid
phases of the same substance. An interval of the parameter, in which there is a strictly
increasing and positive solution defined on the half-line, with certain asymptotic behav-
ior is derived. Some numerical results are given to illustrate and verify our results. Fur-
thermore, a full investigation for all other types of solutions is exhibited. The approach
is based on the continuum property (connectedness and compactness) of the solutions
funnel (Knesser’s theorem), combined with the corresponding vector field’s ones.
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distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
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1. Introduction

In order to study the behavior of nonhomogeneous fluids, Dell'Isola et al. [6] added an
additional term to the volume-free energy Ey(p) and hence the total energy of the fluid
becomes

E(p,|Vpl?) =Eo(p>+§|vm2, y>0. (1.1)

Then, under isothermal process, the D’Alembert-Lagrange principle can be applied
(taking into account the conservation of mass) on the functional

J(p.0) = jj (02~ E(p,19p1) ) v (1.2)
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2 A terminal BVP

to get the differential system

- dv
pi+div(pp) =0, I + V(ulp) —yAp) =0, (1.3)
where p(p) = dEy(p)/dp is the so called chemical potential of the fluid. When there is no

motion of the fluid, this system is reduced to the equation

yAp = pu(p) — o, (1.4)

where i is a constant.

The differential equation (1.4) can be regarded as a model for microscopical spherical
bubbles in a nonhomogeneous fluid. Because of the symmetry, we are interested in a
solution depending only on the radial variable p. In that case [6] (see also [12]), (1.4) can
be written as

n—1

(r"p'(r) = y w(p) — tos (1.5)

where n = 2,3,..., and it is known as the density profile equation. We must add boundary
conditions on (1.5):
(i) because of the spherical symmetry, the derivative of p must vanish at the origin

p'(0) = 0; (16)
(ii) since the bubble is surrounded by a liquid with density p;, we must also have

rErp p(r) =p1 >0. (1.7)

We are interested in a strictly increasing solution p = p(r) of the boundary value problem
(1.5)—(1.7) with 0 < p(r) < py, a function describing an increasing mass density profile.

In the simple case under consideration, the chemical potential u(p) is a third-degree

polynomial on p with three distinct positive roots p; < p, < p3 = py, that is, g = u(p) =

4a(p —p1)(p — p2)(p — p3). For A = \Ja/y(p2 — p1) and & = (p5 — p2)/(p2 — p1), the bound-

ary value problem (1.5)—(1.7) can be written (without loss of generality) as

,Tl_l(f”’lp'(f))' =4 (p+1p(p—&):= f(p), 0<r<+oo,

lim r"~'p'(r) =0, rljgrl})op(r) =L

r—0+

(1.8)

The solutions of this ordinary differential equation determine the mass density profile.
Furthermore, BVPs of type (1.8) have also been used as models in the nonlinear field
theory (see [2, 7] and the references therein). However the study of BVP (1.8) is not an
easy subject (see [6, page 546]), but we endeavour to formulate a rigorous mathematical
approach. Berestycki et al. [3] studied a generalized Emden equation and explained the
physical significance of its solutions. In a recent paper [4], Bonheure et al. obtained some



A. P. Palamides and T. G. Yannopoulos 3

results on existence and multiplicity of the singular BVP

u’ +ku?, =c(t)g(u),
u'(0) =0, u(M) =0,

(1.9)

where ¢(t) is bounded on (0,+0o0) and M < oo, combining shooting argument with vari-
ational methods.

For strongly singular higher-order linear differential equations together with two-
point conjugate and right-focal boundary conditions, Agarwal and Kiguradze [1] pro-
vided easily verifiable best possible conditions which guarantee the existence of a unique
solution.

Using in this paper a quite different approach, we are going to prove, the existence of
an increasing solution of (1.8) with a unique zero, at least for every & € (0,&y), where the
exact value of &y remains an open problem. Our estimation indicates that £y ~ 0.83428.
As many previous studies pointed out, the existence of such a solution is a very important
and meaningful case, in the above theories (bubble density, radius, surface tension, etc.,
are depending on it).

2. Preliminaries: general theory

Let us consider the following boundary value problem:

1 o )
%(p(r)p (1) = f(r.p(r),p(r)p’(r)),
p(0) = po € (—1,0), (2.1)
dim p(r) = ¢,

where f:Q:=[0,+00) X R?> — R is continuous with three distinct zeros —1, 0, and & €
(0,1), that is,

ft,—Lv)=f(t,0,v) = f(,E&,v) =0 Vie (0,+0), v R, (2.2)
and further for all t € (0,+) and v € R,

ftu,v) =0, ue(-1,0)U (&, +o0), f(tu,v) <0, ue(—co,—1]uU(0,8).
(2.3)

Let us notice from the beginning that the constant functions
p(r)=-1, p(r)=0, p(r)=§ r=0, (2.4)

are solutions of the equation in (2.1) (with initial values p(0) = —1, p(0) = 0, and p(0) =
&, resp.) and we will assume throughout of this section that they are unique.
Let us also suppose that p € C'((0,+00),(0,+00)) with lim;—o. p(¢) = 0 and

Ltp(r)dr < oo, Jot ﬁ { Lsp(x)dx}ds < oo foranyt>0. (2.5)
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Consider now the corresponding initial value problem

(p(1p' (1) = f (r,p(r), p(r)p’ (1)) = 0,

) (2.6)
)=po€(=1,0),  lim p(r)p’(r) =

P(f
p(0
and prove the next existence results.

ProrosITION 2.1. Assume that the assumption (2.5) and the sign property on f are fulfilled
and further that there is a constant M > 0 such that

| f(tbu,v)| <M, t>0,u,vER. (2.7)

Then the IVP (2.6) admits a global solution.

Proof. Let p be a solution of (2.6). Then p € X(P), the family of all solutions emanating
from P = (p,0), implies

p(t) = (Sp)(2), (2.8)
where
t 1 s ,
(Sp)(8) := po + L e L p(r) f (r,p(r), p(r)p’ (r)) dr ds. (2.9)
For any (fixed) positive T, we may define the Banach space
K'[0,T] = {u e C[0,T], pu’ € C[0,T]} (2.10)
with norm
llully = max {{[ull, | pu’ll}, (2.11)

where ||u|| denotes the usual sup-norm of u on [0,T]. On the other hand, in order to
prove that the operator

S:K'0,T] — K'[0,T] (2.12)

is compact, we note that if py takes values in a bounded set, there exist positives Ky and
K such that

|(Sp)(8) |_>po|+M[ jp(r)drds<1<o,
(2.13)

[ p(£)(Sp)'( |<MJp ydr<K,, 0=<t<T.

Then,

ISplli < K = max {Ko,K; }. (2.14)
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Furthermore, {Sp} is an equicontinuous family since

[(Sp)(t) — (Sp)(t')

s) J p(r) f(r,p(r), p(r)p’(r))drds
<M|¢(t)—¢(t )

(2.15)
| p(B(Sp) (1) — p()(Sp) (¢ ijp F(rp(r), p(r)p (1) dr
<M|¢*(t)—¢*(t')], 0=t t <T,
and the mappings
t 1 s N 3 t
8(1) = JO e Lp(r)drds, 6% (t) = Lp(r)dr (2.16)

are absolutely continuous. Finally, by an application of the standard Schauder fixed-point
theorem, we get a solution p = p(r) defined over the entire interval [0, T]. O

We consider now the segment

E:={(p,pp'):p=po € (—1,0), pp’ = 0}. (2.17)

THEOREM 2.2. Assume that the assumption (2.5) and the sign property on f are fulfilled.
Then (2.6) has a local solution p € X(P), P € E.

Proof. LetB:= {(t,u,v):t =0, max{|lu—poll, lv]l} <1}. Weassociate toany P € [0,T] X
R2, the closest point Q in B. This is obviously a continuous mapping. Defining the mod-
ification g : [0, T] X R? — R by g(P) = f(Q), we see that g is continuous, bounded, and

= f on B. By the previous proposition, there is a solution p € % (P) that solves the
problem

(p(t)p' (1) = g(6:p(1), p(t)p (1)),
p(t) (2.18)
p(0)=po,  lim p(r)p’(r) =0
n [0,T]. Let
B:=sup{se[0,T]: (t,p(t),p(t)p’(t)) € Bfor0 <t <s}. (2.19)

Evidently, 0 < 8 < T. On the other hand, since g = f on B, we have

{5 (PO ) = £ (1p(0,p(0p (1), 0== (220)
consequently, p is a local solution of (2.6). O

Taking into account the classical theorem of the extendability of solutions, we impose
one more condition on the desired solution

lim p(r)p'(r) =0. (2.21)

r—+oo
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~1 -075 -05 -025 0.25 0.5
Figure 2.1. (¢ = 0.6616, py ~ —0.999112).

Actually we seek for a strictly increasing solution of the differential equation in (2.1),
which has (exactly) one zero and satisfies the asymptotic relationship lim,—.+. p(r) = &.

We notice now that a vector field can be defined on the phase plane, with crucial
properties for our study. More precisely, noticing (2.3) and considering the (p, pp") phase
semiplane (pp” = 0), we easily check that

(pp') <0 forpe (—o0,—1)U(0,&),

(pp’) >0 forpe (~1,0) U (& +). (2.22)

Thus, it is obvious that any solution of (2.6) with py > & does not satisfy the demand
lim, 4 p(r) = &, since it is an increasing function. Similarly, whenever py < —1, the cor-
respondingly solution p = p(r), r > 0, is not an increasing map. Consequently, the con-
dition py € (—1,0) is necessary in order to obtain a solution with the desired properties and
this is the reason for the restriction of the parameter py € (—1,0) in (2.6). Finally, any tra-
jectory (p(r), p(r)p’(r)), r = 0, emanating from the segment E, “moves” in a natural way
(initially, when p(r) < 0) toward the positive pp’-semiaxis and then (when p(r) = 0) to-
ward the positive p-semiaxis (see Figures 2.1-2.4). As a result, assuming a certain growth
rate on f, we can control the vector field in such a way that it assures the existence of a
trajectory satisfying the given properties and the boundary conditions

lim p(r) =¢, rETmp(r)p'(r) =0. (2.23)

r—+co

These properties, will be referred to in the rest of this paper as “the nature of the vec-
tor field.” Therefore, a combination of properties of the associated vector field with the
Kneser’s property of the cross sections of the solutions’ funnel is the main tool that we
will employ in our study. It is obvious therefore, that the technique presented here is dif-
ferent from those employed in the previous papers [6, 12], but closely related, at the same
time, to the methods of [9, 11] or [10].

For the convenience of the reader and to make the paper self-contained, we summa-
rize here the basic notions used in the sequel. First, we refer to the well-known Kneser’s
theorem (see, e.g., the Copel’s text book [5]).
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Figure 2.3. (py = —0.77075, & = 0.3).

-1 -0.75 -0.5 -0.25 025 05 0.75

Figure 2.4. (py = —0.9999999932, £ ~ 0.83428).

THEOREM 2.3. Consider the system

Y =flxy), ()€ lap] xR, (2.24)
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with f continuous and let Ey be a continuum (i.e., compact and connected) subset of R" and
let %(Ey) be the family of all solutions of 2.24 emanating from Eq. If any solution yE % (Ep)
is defined on the interval [«, 7], then the cross section

X(1;E0) = {y(1): y € X(Ep)} (2.25)

is a continuum in R".

Reminding that a set-valued mapping %, which maps a topological space X into com-
pact subsets of another one Y, is called upper semicontinuous (usc) at the point x, if and
only if for any open subset V in Y with 9(x;) < V there exists a neighborhood U of x,
such that G(x) < V for every x € U, we recall the next two lemmas, which were proved
(without any assumption of uniqueness of solutions) in [9].

LEMMA 2.4. Let X and Y be metric spaces and let G : X — 2 be a usc mapping. If A is
a continuum subset of X such that, for every x € A, the set 4(x) is a continuum, then the
image G(A) := U{9(x) : x € A} is also a continuum subset of Y.

We consider the set

w:={(p,pp):-1<p<& pp =0} (2.26)

any point Py := (po,p;) € E < dw and the family X (Py) of all noncontinuable solutions of
the initial value problem (2.6). By the continuity of the nonlinearity and the nature of the
vector field (sign of f), we have two possible cases.

(i) Considering a solution p € & (Py), there exists r; > 0 (depending on p) such that

p(r)p’ (n) =0, p(n)<§& or p(r)p'(r)>0, p(n)=§ (2.27)

and furthermore the restriction p | [0,7;] is an increasing function. Consequently in this
case, we can define a map # : E — 2%¢ by

H(Po) :={(p(r1),p(r1)p'(r1)) €0w:p € X(Poy)}. (2.28)

(ii) In the case where H(E) = U{J{(Py) : Py € E} # & and there a point Py € E such
that Dom(p) = [0,+) and

Jim_ p(r)p’(r) =0, Jim p(r) = ¢ (2.29)
for some p € ¥(Py), we will say that P is a singular point of the above map J. This is

exactly the case, the existence of which we must investigate.

LemMa 2.5 [9]. The above mapping K is upper semicontinuous (usc) at any nonsingular
point Py := (po,py) € E and the set K (Py) is a continuum. Moreover, the image ¥ (B) of any
continuum B is also a connected and compact set.

We also need another lemma from the classical topology.
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LEmMA 2.6 (see [8, Chapter V, Paragraph 47, point III, Theorem 2]). If A is an arbitrary
proper subset of a continuum B and S a connected component of A, then

SN (B\A) # @, (2.30)
that is,
SNoA + 2. (2.31)
Let A be a subset of w. We set
X(A):=u{&X(P):Pe A} (2.32)

and recall that &(r*;A) := {(p(r*), p(r*)p’(r*)) : p € X(A)} represents the cross-section
of all solutions p € %(A) at the point r = r*. For the domain w, let J denote the above
mapping, which is defining with respect to the set w. Then the following lemma holds.

LemMma 2.7. If the subset Ey C E is a continuum such that
H(Eo) NEf #+ 2, H(E) nE* +2 (2.33)

and contains exactly one singular point Py := (po, ppy) of the map I, then both the sets
H(Ey) N E? and J(Ey) N E* are bounded and connected subsets of dw, where

Ef ={(p,pp’) €0w:p =&}, E*:={(p,pp’) € 0w : pp’ =0}. (2.34)

Proof. By the continuation of solutions and the singularity of 3 at the point Py, the set
H(Py) = @. Taking into account the nature of the vector field and the definition of the
singularity of the map J, this means that

lim p(r)p’(r) =0, rlj{friop(r) =¢. (2.35)

r—+oo

Since P, separates E; into two bounded connected sets, the result follows by the continu-
ity of J{ and the uniqueness of the solution p(r) = &. O

ProposSITION 2.8. Let Py = (po, ppo) € Eo be a singular point of the consequent map X,
where Ey C E is a continuum. Then, every connected component S of the (assuming non-
empty) setS = E* N K (Eo) approaches the boundary Ef of dw in the sense thatS N OEf + 2.

Proof. By Lemma 2.7, the set B = (E* U Eg‘) N (H(Ey) u {(&,0)}) is a continuum. The
set A = E* N JH(Ey) is a connected subset of B. Then the same set S = E* N H(Ey) is a
connected subset of A. Therefore, an ample use of Lemma 2.6 gives S N oL} + 2. O

Now we give a theorem which summarizes the main results, concerning the existence
of a solution of the boundary value problem, under consideration.

THEOREM 2.9. Let also Ey be a continuum in E such that

Then the boundary value problem (2.1)—(2.21) admits a strictly increasing solution.
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Proof. The result follows by Proposition 2.8. O

Remark 2.10. In view of the above procedure and since by assumption lim;_.o+ p(t) = 0, it
is clear that the second initial condition lim,_o4 p(r)p’(r) = 0 in (2.6) can be relax to any
one of the form lim,_q; p*(r)p’(r) = 0, where the new function p*(r) >0, r > 0, satisfies
also the restriction (2.5) and

lir&p*(r)p'(r) =0= lirap(r)p'(r) =0. (2.37)
In particular, if lim;_4 p*(t) = [ > 0, for example whenever p*(t) = 1 is the constant
map, then (2.5) are fulfilled automatically, that is, the boundary conditions in (2.6) can
read as

p(0) = po € (—1,0), lim p’(r) = 0. (2.38)

r—0+

3. Main results

Consider the following singular boundary value problem:

L (1) = 42+ Dplp - §) = (),

! (3.1)

: n—1 7 — 1 =
rllrg}rr p'(r)=0, rlggrr})op(r) =,

modeling the density profile problem.
Since lim,_o(f(p)/p) = —4A%¢ for every € € (0,£), there exists an 5 € (0,1) such that

—4V(E+e)p < flp) <dA*(—E+e)p<0, 0<p=y,

3.2
0<4V(—E+e)p < flp) <-4V (E+e)p, -n<p<O. (32)
Consider the corresponding initial value problem
(P () = 4 (p+ Dplp = £) = [ (p),
r (3.3)

I : n—1 —
p(0)=—n,  limr"p(r) =0.

In view of Theorem 2.2 and Remark 2.10, this singular IVP has a local solution. By the
nature of the vector field (sign of the nonlinearity), any solution p = p(r) of (3.3) as well
as its derivative r"~!p’(r) are strictly increasing functions in a (right) neighborhood of
r = 0, precisely as far as p(r) < 0. With respect to the existence of p = p(r), we notice
that the point r = 0 is a regular singularity for the equation in (3.3) (see, e.g., [14] or
[13]). Precisely, this initial value problem has a unique solution, which is a holomorphic
function at the point r = 0, that is,

+oo
p(r)=—n+> pu(-mr¥*, 0<r<g, (3.4)
k=1
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where the coefficients pox = pox(—#) are given by a recurrence formulae, for example,
p2(=n) = (24%/n) (=n)(=n+ 1)(=1 = ). (3.5)

Remark 3.1. Although the initial condition lim,_; 7" !p’(r) = 0 in (3.3) seems to be
weaker than the natural boundary condition lim,_¢+ p'(r) = 0 (see (1.6)), in the present
situation the later follows. Indeed, since

n—1 ./ !
tim TN e 1)y -8 = >0 (3.6)
for any small enough & > 0,
0<(r"'p'(r) < (Bp+1)r""!, O<r<e (3.7)

Hence, an integration on the interval [0, €] yields

(e < Bt (3.8)
n
that is,
rlilap (r)y=0. (3.9)

Lemma 3.2. For any (small) yo > 0, there exists an o € [0,1) and r; >0 such that the
solution p = p(r) of (3.3), (with n replaced by 1) satisfies

—no<p(r)<0, p(r)=0, 0<r"p'(r)<yy, O0<r<r. (3.10)

Proof. We assume that there is not any r; > 0 for which the first of (3.10) is fulfilled. Then,
let us suppose that

p(r)<0, r=0. (3.11)
In view of (3.1)—(3.3) and recalling the nature of the vector field, we have
("o (1) = 4A2(=E+e)p(r)r™!, 0 <7< +oo. (3.12)

Consequently, (r"1p’(r))’ > 0,0 < r < +00,s0 r" 1p’(r) >0, 0 < r < +c0 and further this
means that the solution p = p(r), 0 < r < +co is an increasing map. Hence,

lim p(r)=1<0, (3.13)

and this implies
dim p'(r) =0. (3.14)

Now given that
lim rp’(r) = 0= lim r" p’(r) =0, (3.15)

r—0+ r—0+
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an integration of (3.12) on the interval [0, 7] yields
Pl (r) = —402(E — ) Lrp(t)t"*1 dt, 0<r<+oo. (3.16)
We notice first that for [ = 0 (by the L'Hospital’s rule),

lim " '[ - p(£)] = lim —p(h) _ lim #"p’(t) = +oo, (3.17)

t—+oo tﬂ+w1/ﬂ71 Cn— 1t

because the function r"~!p’(r) is positive and increasing. Hence,
r
lim J [—p(8)]¢" dt = +oo. (3.18)
r—+o Jq

If I < 0, then (3.18) is still true and further
Jo [=p®]t* ldt AV (E-e)

r”* n—1

lﬂn p'(t) = 4r* (& —¢) 13131 lﬂn rp(r) = +oo,

(3.19)

a contradiction to (3.14). Let us now assume that [ = 0. Then by (3.14), we have
lim,_ o p’(r) = 0 and then noticing (3.16),

n—1
0:,12910/’,( r) = —4A2(=E+¢) hm W
2(_ n—1[ _
_ (Ewe) 7p(r)] (3.20)
n—1 r—+e rn=2
4 (=E+e) p(r) 4V (E—e)
T a1 ralgo 1/r n—1 hmrp(r)>0

provided that the last limit lim, . r2p’(r) exists.
In order to demonstrate this assertion, we notice first that

lim "~ 'p"(r) = m < +o0, (3.21)

r—+oo

because (r"~'p’(r))" = 0,0 < r < +oo. Now since

n—1,/
2 N r"lp'(r)
rl}{frgor p (1) rlirf%o P (3.22)
we immediately get
m ifn=3

lim r?p’(r) = ’ +00, 3.23
i r%p"(r) {o itns>3, T (3.23)

So assume that n >3 and m = +o0. Then

n—1 ./ 4 n-1412 _ _

lim rp’(r) = lim w = lim A p(r) = Dp()(p(r) 5)’ (3.24)

r—+co (1’"_3), r—+oo (n—3)rn—+
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given that the limit

lim *[ - p(r)] = lim @ (3.25)

r—+oo r—too

exists. One more application of the UHospital’s rule guarantee, that (3.25) exists if

lim rp’(r) (3.26)

r—+oo
exists too. As above

+oo ifn=3,4,
ligrn rp'(r)y=1{m ifn=>5, m < +co. (3.27)
r—-+oo

0 if n>5,

For n > 5 and m = +o0, we similarly get

lim r*p’(r) = lim 1402 (p(r) — 1) p(r) (p(r) — &)

r—+o0o r—+o0o (n — 5);*”*6

, (3.28)

given that

r—+o0 r (3.29)
exists.
Continuing this procedure, we conclude that the limit lim,_ . 72p’ (r) exists if at least
one of
liin " —p(r)] or 1}&11 1o (r) (3.30)
exists. But this is true (see (3.17) or (3.21)).
This is a contradiction if n < 3, in view of (3.16). If n > 3, we assert that there exists
a sequence {r,} with limr, = +co, such that limr2p’(r,) > 0 and this clearly contradicts
the above equality lim,_ . r?p’(r) = 0. In order to demonstrate the last assertion, let us
suppose that limr2p’(r,) = 0 for any such sequence. On the other hand, we know that
lim,—10 7" 1p’(r) >0 and so let

k=max{m=2,3,...,n—2:3r, — oo, limr"p’(r,) = 0}. (3.31)

Then since lim, ., r"p’(r) >0, it is clear that k < n — 3 and further by maximality of
k, there is a subsequence of {r,}, say itself such that

limrkp' (r,) = 0, limrk*2p’ (r,) > 0. (3.32)
Then again (3.16) implies

1

rip'(r,) = —4A%(E —¢) R

J oAl 0=y < oo, (3.33)
0
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and hence, given that

it follows that
0 = limrkp’ (,) = 4%(¢ — &) lim | —r,’;(_l‘l)_]kt”‘1 dt _ 432_(§ :2) lim Vf_lrg;/jlgf’v)]
= 4’}12815;:) lim = k’o_, (1r)vr);k—2 ol _4?2_(1)7(;)+ 5 limrs*2p’ (r,) >0,
(3.35)
a contradiction.
Consequently for each #o € [0,#], there is an r,,; > 0 such that
—no<p(r)<0, 0=<r<ry, p(ry,)=0. (3.36)
Consider now the set
wo=1{(p,r" )i —np<p=<0,rlp >0} (3.37)
and define a map ¥y : Eg = [—#,0] X {0} — 299 by the formula
Ho(=10,0) = (p(rye)s 7' p" (1)) (3.38)
Clearly the image K (Ey) is a continuum. Thus the point
ry = max {ry, : o € [0,%]} (3.39)
is finite and independent 7.
On the other hand, by (3.2), we also have
(" (1) < =4 (E+ep(r)r!, 0<r< o < Ty (3.40)
and so
i ) <~ o) [ o tdr < a2 +0po) [ rar
(3.41)

rn rn
= —4V(E o)~ p(0) = 47 (E +8) 0.

Hence we get

n

"m0’ (1y,) < 4A? n 3.42
rrlo P (rf’lo) —= (5+8)}70;) ( . )
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that is, we may choose

. n
Mo = mln{l’],myo} (343)

and then clearly (3.10) is fulfilled. O

Lemma 3.3. Consider any 1 < 1, then there is a (small enough) y§ such that for every posi-
tive yo < yi the corresponding solution p = p(r) with initial value p(r;) = 0, ! ' p’ (r1) = yo
satisfies

0<p(r)<n, yo=r"p'(r)>0, r<r<mn,rilp(n) =0 (3.44)

for somery > 1.

Proof. Let us suppose on the contrary that an arbitrary small point y, exists, with
1 (r) >0, 1 <r<+oo. (3.45)
We will show there exists an r, > r; such that
p(r2) =11 (3.46)
Assume on the contrary that
0<p(r)<m, r=nm. (3.47)

Since the function 7"~ 1p’(r), r > r1, is decreasing,

rl}»I}lo " (r)=m=0. (3.48)
Hence
rlirlqoop'(r) =0, and then rlirllop(r) =1€ (0,1). (3.49)
Now in view of (3.2),
("o (1)) <4 (=E+e)p(r)r™", 1 <7< +oo, (3.50)

and this yields the contradiction

Flp®]etdt .y

=1 r—-+oo pn—1

lim p'(t) < 4A* (= +e) lim
_ 4 (E+e)

n—1 r—+oo

(3.51)

Thus (3.46) holds.
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We fix a point ¥, > 0 and we will prove first that the set

r2 > 11 : 3y € (0, ¥o] such that the corresponding solution with (3.52)
p(r1) =0, r71p' (r1) = yo satisfies (3.45)-(3.46) '
is bounded, say by ;. Assume on the contrary, that there exist sequences
{yor} € (0,70],  {rox} with limryy = +o0 (3.53)
such that the corresponding solutions {pi} satisfy
0<pi(r)<m, yox=r"'p(r)>0, r<r<ry pu(rk) =n. (3.54)
Then by (3.2) and (3.45), we get
(r”_lp,'((r))/ <4V (=E+e)pr(nr, i <r<rp. (3.55)
Thus, an integration on the interval [r,7,] yields
2,k
i (k) < Yok +4A2(—£+5)J (1 dt
r” rn T2k " ,
St a0 ) - Tt - [ o
n n n o n
2 ”znk 2 7'22 k™ r12
< yok +4A (—E-i—s)?’m — 4\ (=& + &) yok ’2” , r€E[r,rxl
(3.56)
Hence we get
Yok k1 2,k
pr(rg) < 5= |1 -4 (=€ +e) = | + 4V (=E+ &)=, (3.57)
ik 2n n
and then for all large k, we conclude the contradiction p; (r2x) < 0.
We set now
(. 4N2(E—¢)(ri/n)m
* _
Yo =i {ym 1+4A2(E =) (rf" — 1) /2n (3.58)
and consider any
0 € (0,55) (3.59)

such that (3.45)-(3.46) are fulfilled. Then again by (3.2), we get

(r”_lp'(r)), <4V (=E+e)p(r)r"™!, r<r<n. (3.60)
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Thus, noticing (3.58) and the definition of 75", an integration on the interval [ry,7,] yields
' (r2) < yo +4A2(—E+8)J p(t)t" 1 dt
r

e+ AR+ 0)| Zp() = Lp(r) = [ (e

2

”22 5]

- yo+4)t2(f£+s)%r11 — 42 (~E+ )y

[ AN (=E+e)yo((rF* —ri)/2n)
= Yo 1-
2n

> (3.61)

] +4A2(—f+s)%r]1

2(_ 2.2 n
sya‘[l—“( srebllres ”)/2”)]+4A2(—f+.s>%m.

1

Consequently, in view of (3.58) we obtain 3" p’(r,) < 0, a contradiction to (3.45). O

ProrosITION 3.4. For any 01 < 1, there is a positive 1o < n such that the solution p = p(r)
with initial value

p(0) = =70, lim r"~1p’(r) = 0 (3.62)
satisfies
—no<pr)<n, rp'(r)=0, O0<r<r, ' (r)=0 (3.63)

for some r, > 0.

Proof. By the previous Lemma 3.3, for the given #;, there exists a yg such that for all pos-
itive yo < yg, the solution passing through the point (0, yo) satisfies inequalities (3.44).
On the other hand, in view of Lemma 3.2, there is an 79 > 0 such that (3.10) is fulfilled.
Therefore, the result follows. O

LemMa 3.5. Thereis a y1 > yo such that for any solution p = p(r) with
p(r) =0, 1" () = (3.64)
for some r) >0, there exist 0 < ro < r1 < 1, so that

—1<p(r)<0, " p'(r)>0, rn<r=<r, p(rn)=-1,
3.65
0=<p(r)<& r'p'(r)>0, rn<r=n, p(n)=C¢ (369

Moreover, this solution is a (both sides) nonbounded strictly increasing solution, that is,

lim p(r) = —c0, 1" 'p'(r)>0, re€(0,4+00), lim p(r)= +co. (3.66)

r—0+ r—+oo

Proof. Supposing first that # > 2 and that the first conclusion is false. Then for any y; > yy,

—1<p(r) <0 Vre (0,n). (3.67)
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Now we fix any positive ry < r1. By its definition, the nonlinearity f(p), -1 <p <&isa
bounded function, namely,

—4)* < f(p) <4\?, —-1<p<i (3.68)
So it follows that
(r"_lp'(r)), <4Vl ro<r<r, (3.69)
which in turn implies
" () —r"1p'(r) < 4A2r1n%rn, ro<r<r, (3.70)

Consequently, as in the precedent argument, we obtain

402 1 1 A2 | 1?1
< - +— - - —, 71
P(T‘o) mn n2-n [r{’z r(’)‘z] n 2 (3.71)
where
1 1 1
= — > 0. 3.72
™ n—2 [1’612 r{“z] ( )

Thus, by choosing y; large enough, we conclude the contradiction
p(ry) < —1. (3.73)
Similarly, let us assume that for every y; >0 and an (also fixed) r, > ry, it holds
0<p(r)<& M p'(r)>0, rn<r<mn, ri'p'(rn) =0 (3.74)
Also by 3.68, we have
(r”‘lp'(r))/ > A\l o <r <y, (3.75)
which implies

n_ .n
' (r) =1 () = —4/\2%, rn<r<r. (3.76)

Hence, as above we obtain (recall that n > 2)

N3 —rf o7 1 1 1 1 1
- >——|2=1- - + -—
p(r2) =p(n) n [ 2 2—n\ry? 2 2-n| it 2

(3.77)

that is, for y; large enough, p(r,) > &, another contradiction. Noticing now the nature of
the vector field, we conclude immediately that the obtained solution is a strictly increasing
map.
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In order to demonstrate (3.66), we assume that there exists M > 0 such that for every
Y1 > Yo,

-M<p(r)<M, Vre(0,+om). (3.78)
We suppose first that for any y; > vy,
—M<p(r)<0, Vre(0,n) (3.79)

and fix any positive 7y < r;. By its definition, the nonlinearity f(p), - M <p <M is a
bounded function, namely,

-K=<f(p)<K, -M=<p<M. (3.80)
So it follows that
(r”_lp'(r))/ <Kr"™, rn<r<rn, (3.81)
which in turn implies
i () — " 1p (1) SKrf’;r”’ ro<r<r, (3.82)

Consequently, as in the preceding argument, we obtain

K 1 1 K [r% - r§]
<- +— - - — . 3.83
p(ro) mynt oS [rf‘z rg‘_z] ” B ( )
where
1 1 1
=——|—=——=|>0. 3.84
i n—Z[rg‘z rl’“z] (3.84)

Thus, by choosing y; large enough, we conclude the contradiction
p(ro) < —-M. (3.85)
Similarly, let us assume that for every y; >0 and an (also fixed) r, > ry, it holds
0<p(r)<M, rp(r)>0, r<r<nr, rip(n) =0 (3.86)
Also by (3.80), we have
(" (1) = =K, r<r<mn, (3.87)

which implies

() = () = —K——L, r<r<n. (3.88)
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Hence, as above we obtain (recall that n > 2)
K|ri-r 1 1 » 1 1
- >-——|=1- -— ||+ — - ,
plr2) —p(n) n [ 2 2—n\ry % rp? 2—-n| it ?

that is, for y; large enough, p(r,) = M, another contradiction.
A similar argument works for the case n = 2 and this clearly ends the proof. O

Remark 3.6. We notice that, since the inequality f(p) = (p+1)p(p — &) < 0 holds true for
p < —1, the map r"!p’(r) >0, 0 < r < r, is decreasing (see the nature of vector field),
hence by the extendability of solutions, lim,_q. 7" 1p’(r) = +o0 and so lim,_¢: p(r) =
—co. Similarly f(p) >0, for p > & and this yields lim,_.+. p(r) = +oco.

Remark 3.7. Consider the solution p = p(r) of the initial value problem (3.3), with (fixed)
—n € (=1,0) and let r,, r; be two points such that

—n<p(r)<0, r"1p(r)=0, 0<r<r, p(r)=0,
3.90
p(r)=0, " 1p'(r)=0, r<r<rn. (3.90)

Since the graph of the function limg_.; f(p) = 4A%(p*> — 1)p is symmetric with respect to
the r"~p’-axis, it is clear that

p(r)<& rn<sr<mn, (3.91)

for the case when ¢ is close enough to 1.
Indeed, considering the initial value problem

(r"1p' (1) = 4N (p* ~ 1)pr"

p(0) = -7, lir(gr”’lp’(r) =0, (3.92)
if we prove that (p = p(r) denotes now the solution of IVP (3.92))
p(r)<nu, r=0, (3.93)

by the continuity of solutions upon the nonlinearity, at the case when £ — 1—, the bound-
ary value problem (3.1) does not admit any solution.
Suppose in the contrary, that there exists a point 7, > 7 = r; such that

p(r2) =1, 0<mg= ?gflp'(?z) < ?qﬂp'(ﬂ) =mj. (3.94)

Then there exist a point 7y € (0,71) such that ?(V)H p' (o) = m; and furthermore, for any

t € (r1,7), there is an r € (7y,7) with

Pl (1) = £/ (1), (3.95)
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Since r < t, it follows that (for all such r and t)

p'(r)>p'(t). (3.96)

Consider now a partition {mg < m; < - - - < my} of the interval [mg,m;] as well as the
corresponding partitions

{?0=1’0<1’1<"'<Tk=;’\1}, {;’\2=t0>t1>"'>tk=;‘\1} (397)

of [7y,71] and [71,72], respectively, so that
P () =t (t), (i=0,1,....k). (3.98)
Then, of course,
p (r) >p' (), (i=0,1,....k). (3.99)

In addition, because the map p’ = p’(¢), 7o < r < 73, is continuous (and bounded), we can
choose the max {m; —m;_, :i=1,2,...,k} small enough, so that

%p'(ﬁ) < %p'(n), (i=0,1,....k—1). (3.100)
Hence
kt‘l—t' kr-l—r-
z l+2 lp/(ti) SZ 1+2 lpr(ri)’ (3.101)
i=1 i=1
and thus we obtain the contradiction
n=p(R) = J o (1t < J o (r)dr < L o' (R)dr = —p(0) = 1. (3.102)

In conclusion, (3.93) and so (3.91) hold true. In others words, using the terminology of
the previous section, for all large enough & € (0,1), we have

H(Py) CE*:={(p,pp’) €E0w: pp’ =0}, Py=(-1,0). (3.103)

On the other hand, when & — 0+, there always exists a solution p = p(r) of the IVP (3.3)

such that
-n<p(r)<0, rp(r)=0, 0<r<r, p(r)=0,
! (3.104)
0<p(r)<& 7 p'(r)>0, rn<r<n, p(n)==%E

that is,
H(Po) CEf = {(p,pp’) €0w:p=E} (3.105)

TuEOREM 3.8. For every small enough & € (0,1), the boundary value problem (3.1) admits
(at least) one strictly increasing solution.
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Proof. In view of Proposition 3.4, for a given &, there is an ;" > 0 small enough and a
solution p = po(r) of the IVP (3.3), such that (3.103) is satisfied, with Py = (—#{,0). On
the other hand, since & is small, there exists an 7 € (0,1) large enough and a solution
p = pi1(r) with

—ng <p(r)<0, ™ lp'(r)=0, 0<r<r, p0)=-n5, p(n)=0

3.106
0=<p(r)<& rlp'(r)>0, rn<sr<n, pln)=E£ ( :

for some positive values r; and r, of the variable r, that is, (3.105) is also fulfilled with
P 0= (_’76k > 0)
Considering finally the continuum set

Eo:=[—ng,—ni]x {0}, (3.107)

we may apply Theorem 2.9 to get an € [—#¢,—#; ] and the unique solution p = p(r) €
X(P), P = (1,0) of the initial value problem (3.3) such, that lim,_, p(r) = &. O

Conjecture 3.9. If we know that the above obtained singular point P = (#,0) is unique,
then by Theorem 2.9, the corresponding solution p € ¥(P) is also unique. Numerical
trials indicate that is true! However this actually is an open problem.

Remark 3.10. The above obtained solution of the boundary value problem (3.1), transfer-
ring via the transformation given above of (1.8), clearly gives a positive solution p = p(r)
of our problem (1.5)—(1.7), that is,

O<pi<p(r)<p, 0<r<+oo. (3.108)

TueOREM 3.11. A unique &y € (0,1) exists such that the terminal value problem

L) = 42+ Dplp — ) = Flp),
lim p(r) = -1, lim p(r) = &u

r—0+ r—+00

(3.109)

admits at least one strictly increasing solution.
Furthermore, the point &y € (0,1) is the maximal one in the sense that, for every & > &y,
the boundary value problem (3.1) does not admit any solution.

Proof. We consider a fixed £ € (0,1) and notice Lemma 3.2. Then for any (small) yo >0
there exists an 7y € [0,1) and r; > 0 such that the solution of IVP

——(r"1p'(r)) = 42} (p+ 1)p(p - &),
o (1) (p+Dplp—8) (3.110)

p(0) = =no,  lim r"~p'(r) =0
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satisfies
—no<p(r)<0, p(r1)=0, 0<r"'p'(r)<y;,, O<r<r. (3.111)

In view of Lemma 3.5, there is a ¥, > y, such that the solution p = p(r) which satisfies

p(r1) =0and r{‘_lp’(rl) = y1, for some r; >0, there exists an ry € (0,r;) such that

~1<p(r)<0, " 'p'(r)>0, ro<r<ry, p(ro)=-L (3.112)
Consider the continuum
Eo = {0} X [yo, 1] (3.113)
in the domain
Q:={(p,pp):—1<p=<0,r"p’ >0} (3.114)
By the sign property of the nonlinearity (nature of the vector field), it is clear that every
solution p € X(Ey) extended backwards is a strictly increasing function. Therefore, by the
fundamental continuation theorem, we can define a map
H* By — 299, (3.115)
analogously with the similarly defined one above, by
H*(P):= {(p(r0), 8 'p'(ro)) €9Q:p € X(P), P=(0,y) € Eo}, (3.116)
for some ry € (0,r7). Consider the subsets
E* = {(p,r" ) €dQ:p=—1}, Eo:={(p,r"p')€0Q:r"1p' =0} (3.117)
of O, and notice that both sets

I*(Bo) NE*,  H*(Ey) NEs (3.118)

are nonempty connected subsets of the boundary Q. Consequently, in view of Lemma
2.6, we must have

o(H* (Ey) NEy) NE*, = {(~1,0)] # @. (3.119)
This means that there exists a singular point P € E; of the map J*, that is, there is a

solution p = p(r) € ¥(P) which remains left asymptotic in Q and so it satisfies the left
asymptotic relations in (3.109).
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Finally, noticing Remark 3.7, for the case where & = & is close enough to the right end
of the interval (0, 1), there is an , > 0 such that

0<pi(r)<&, rlpi(r)=0, rn<r<nr, rlp(n) =0 (3.120)

and mainly p;(r;) < &, where p = p;(r) is a solution of the equation in (3.109), with &y
replaced by &, such that lim,_o. pi (r) = —1.

On the other hand, there exists a &, < & such that (now p = py(r) is a solution of the
equation in (3.109), with &y replaced by &, and the new r, generally different by the above
one)

lim po(r) = =1, po(r2) = &, M lpi(r) >0, 0<r<n (3.121)

for (at least) one such solution. This is obvious, since for £ = 0, the nonlinearity f(p) =
4V (p+1)p? >0, p = —1, that is, the function r"!p’(r) is strictly increasing and thus
lim,_ o p(7) = +00.

Now we set & = &y, &1 = &1, and

(&, if the analogous of (3.121) with respect to

Eoo + &0 .
== instead of &, holds true,
§oo +&10 _ 2 (3.122)

2 &1 if the analogous of (3.120) with respect to
&oo +&10

T instead of &; holds true.

This definition of & and &;; is well posed because, since the function r"~!p’(r) is de-
creasing on [r1,72] and p = p(r) is an increasing one on [r1,7;], we may apply the usual
continuation theorem to guarantee that there is not other case. We repeat this procedure
replacing the interval [&y;,&10] or [p0,&11], according to (3.121) or (3.120), with [&p1,11]
to get a second interval [£y,,&12] with same as [£y, &1 ] properties and so forth and finally
we can obtain sequences {&y,} and {;,} such that

limfo,, = limfl,, = EM (3123)

By the construction of {;,,} (i = 0,1) and the definition of &, we conclude that the
BVP (3.109) is solvable.

The last result for the maximality of & € (0,1) follows by the monotonicity of {;,}.

O

Remark 3.12. 1f the singular point Py of the map J* is unique, then the uniqueness of the
point &y and the uniqueness of solutions with respect to their initial data function py(r)
yield the uniqueness of the above obtained solution p = pp(r), 0 < r < +o0. This remains
also an open problem. Some monotonicity assumptions on the nonlinearity, possibly, are
sufficient for that.
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4. A numerical approach

By the previous and especially in view of Theorems 3.8 and 3.11, it is obvious that we
cannot find out theoretically the maximal point £,; and (then an initial one) py such that
the BVP (3.1) admits an increasing solution. But if we know that for some &* there is an
initial point p§ such that the corresponding solution p = p(r) satisfies for some r; > 0,

p(0)=p&, pi<plr)<&*, r1p(r)>0, O0<r<ry, p(r)=2E%, (4.1)

then we can approximate numerically the solution of (3.1), for every & € (0,&*], using
the NDSolve command of MATHEMATICA and applying the shooting method. So, we
restrict our consideration in the sequel for the case n = 3 and A = 1. Precisely, by the series
expression (3.4)-(3.5) of the solutions, we may use as initial values

p(ro) =po, 147 'p (ro) = (4/3)rfA* (po + 1) po(po — &), (4.2)

for a small enough ry. In this way for ry = 0.01, and & = 0.6616, py = —0.999112 or

n—1,/

£ =0.6617, pg = —0.999112, we obtained the two curves on the phase plane (p,r""!p’),
respectively, (see Figures 2.1 and 2.2). We notice that at the first case the relations

p(0)=po, po<p(r)<& " 'p(r)>0, O<r<r, p(r)=¢ (4.3)

are fulfilled, while at the second one, we have
p(0)=po, po<p(r)<& r'p(r)=0, 0<r<ry, r'p'(r)=0. (4.4)

Following the same technique, we get the next two Figures 2.3 and 2.4 and notice that
in view of the last one, it seems that & = 0.83428 ~ &), is a “good” approximation of the
extreme (existence) point &y according to Theorem 3.11.

We notice finally, for the convenience of the reader, that we have used the next NDSolve
command of MATHEMATICA:

£=0.8 po=-0.9999997; 1o=0.01; py=(4/3)(po+1)po(po—&)rs;
solution
= NDSolve [{p}[r]=p2lr], r*p5lr]+2rps[r] = 4r*(p1[r] + 1) p1[r] (p1[r] = &),
pilrol =po,r¢p2lro]l =po}, {p1lr], p2(rl}, {r,0.1,12}, MaxSteps- >10°].
ParametricPlot [Evaluate [{p [r],7*\ p2[r]}/.solution], {r,0,12}]. ws)
4.5

Remark 4.1. Following the same technique, we may prove the following existence result
(see Figure 4.1).
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Figure 4.1. (pg =~ 0.999112, & ~ —0.6372).

There is a minimum &, € (—1,0) such that for every & € (,,,0), there exists a py €
(0,1) such that the solution p € ¥(Py), Py = (po,0) of the IVP

——(r"1p'(r) —412(p—1)p(p—f),

(4.6)
11rgl ' (r) = p(0) =
is a strictly decreasing function, which satisfies
lim r"lp'(r) =0, lim p(r) =§. (4.7)

Furthermore, there exists a strictly decreasing solution p,, of the terminal value problem

L il 1.7 _ /\2 _ _
rh— 1( (1’)) =4 (P 1) (P Em): (48)
limp(r) =1,  lim p(r) = &

Also, there is a (monoparametric) family of strictly decreasing solutions

lim p(r) = +o0, 1" 1p'(r)< —00<r<+oo, lim p(r)= —oo. (4.9)

r—0+ r—+oo
Finally by Proposition 3.4 and taking into account Remark 3.7, we presume (Figure 4.2).

Conjecture 4.2. For any & € (0, 1), there is a maximal pgy € (0,1) such that the solution
of IVP

——(r" (1) =4 (p+ Dplp — &) := f(p),

rm- (4.10)
lim r"~p'(r) = limp(r) = po,

r—0+ r—0

with 0 < py < pom, is oscillating and asymptotically stable, that is, lim, 1 p(r) =
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x1074

10 |

x107°

—15°F

Figure 4.2. (po = —0.0001, & = 0.6597253).
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