EXISTENCE OF INFINITELY MANY NODAL SOLUTIONS FOR
A SUPERLINEAR NEUMANN BOUNDARY VALUE PROBLEM
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We study the existence of a class of nonlinear elliptic equation with Neumann boundary
condition, and obtain infinitely many nodal solutions. The study of such a problem is
based on the variational methods and critical point theory. We prove the conclusion by
using the symmetric mountain-pass theorem under the Cerami condition.

1. Introduction

Consider the Neumann boundary value problem:

-Autoau=f(xu), x€Q,

1.1
a—u=0, x € 0Q), (L)
0v

where Q € RN(N > 1) is a bounded domain with smooth boundary 0Q and « >0 is a
constant. Denote by o0(—A):={1; [0 =1; <A, < -+ <Ak <...} the eigenvalues of the
eigenvalue problem:

-Au=Au, xe€Q,

1.2
a—u:O, x € 0Q. (12)
0y

Let F(x,s) = fgf(x,t)dt, G(x,s) = f(x,s)s — 2F(x,s). Assume
(fi) f € C(QXR), f(0) =0, and for some 2 < p <2* =2N/(N —2) (for N = 1,2,
take 2* = ), ¢ > 0 such that

| feou)| <c(1+1ulP™),  (xu) € QxR. (1.3)
(f2) There exists L > 0, such that f(x,s)+ Ls is increasing in s.

(f3) lim|g— (f(x,5)s)/|s|? = +o0 uniformly for a.e. x € Q.
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(fa) There exist 8 > 1, s € [0, 1] such that
0G(x,t) = G(x,st), (x,u) € QXR. (1.4)

(fs) flx,—t) = —f(x,1), (x,u) € AXR.
Because of (f3), (1.1) is called a superlinear problem. In [6, Theorem 9.38], the author
obtained infinitely many solutions of (1.1) under ( f;)—(f5) and
(AR) 3u >2, R >0 such that

x€Q, Is|=zR=0<puF(x,s) < f(x,5)s. (1.5)

Obviously, (f3) can be deduced from (AR). Under (AR), the (PS) sequence of corre-
sponding energy functional is bounded, which plays an important role for the applica-
tion of variational methods. However, there are indeed many superlinear functions not
satisfying (AR), for example, take 8 = 1, the function

f(x,t) =2tlog (1+1¢]) (1.6)

while it is easy to see that the above function satisfies ( f;)—(f5). Condition (f;) is from
(2] and (1.6) is from [4].

In view of the variational point, solutions of (1.1) are critical points of corresponding
functional defined on the Hilbert space E:= WH2(Q). Let X := {u € C(Q) | du/dv =
0, x € dQ)} a Banach space. We consider the functional

](u)=%JQ(IVu\2+ocu2)dx—JQF(x,u)dx, (1.7)

where E is equipped with the norm

lull = (jﬂ |Vu|2+aj0u2)m. (1.8)

y (f1), ] is of C! and
J (w),v) —J (VuVv+auv)dx — J f(x,u)vdx, u,veE. (1.9)

Now, we can state our main result.
TaEOREM 1.1. Under assumptions ( f1)—(fs), (1.1) has infinitely many nodal solutions.

Remark 1.2. [8, Theorem 3.2] obtained infinitely many solutions under ( f;)—(fs) and
(f3)" lim}y)— o Inf ( f (x, u)u)/|u|* = ¢ > 0 uniformly for x € Q, where p > 2.
(fa)" f(x,u)/u is increasing in |ul.
It turns out that (f3)" and (f3)" are stronger than (f3) and ( f4), respectively, furthermore,
the function (1.6) does not satisfy (f3)’, then Theorem 1.1 applied to Dirichlet boundary
value problem improves [8, Theorem 3.2].

Remark 1.3. [1, Theorem 7.3] also got infinitely many nodal solutions for (1.1) under
assumption that the functional is of C?.
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2. Preliminaries

Let E be a Hilbert space and X C E, a Banach space densely embedded in E. Assume
that E has a closed convex cone Pg and that P =: Pg(\ X has interior points in X, that is,

p=p JoP, with P the interior and 9P the boundary of P in X. Let ] € C'(E,R), denote
K={ueE:J'(u)=0},J={ucE: Ju) <c},K.={ueK: J(u)=c},ceR.

Definition 2.1. We say that ] satisfies Cerami condition (C), if for all c € R
(i) Any bounded sequence {u,} C E satistying J(u,) — ¢, J'(u,) — 0 possesses a con-
vergent subsequence.
(ii) There exist o,R, > 0 such that for any u € J Y([c — o,c+0]) with |lull =R,
0 o) llull = B.

Definition 2.2 (see [3]). Let M C X be an invariant set under 0. We say M is an admissible

invariant set for J, if (a) M is the closure of an open set in X, that is, M =1\c/I JoM; (b)
if u, = o(t,,v) for some vé& M and u, — u in E as t, — o for some u € K, then u, — u
in X; (¢) if u, € K(\M such that u, — u in E, then u, — u in X; (d) for any u € OM\K,

o(t,u) EJ\O/I for ¢t > 0.

In [5], we proved ] € C'(E, R) satisfier the deformation Lemma 2.3 under (PS) condi-
tion and assumption (®): K(J) ¢ X, J'(u) = u — A(u) foru € E, A : X — X is continuous.
It turns out that the same lemma still holds if J satisfies (C), that is.

LemMa 2.3. Assume ] € C'(E,R) satisfies (O) and (C) condition. Let M C X be an admissi-

ble invariant set to the pseudo-gradient flow o of ]. Define K! = K. ]\O/I, K2 = K.N(X\M)
for some c. Assume K.(1OM = @, there exits § > 0 such that (K})45 (K2)4s = @, where
(Ki)gs = {u € E: dg(u,K?) < 48} for i = 1,2. Then there is &y > 0, such that for any 0 < e <
& and any compact subset A C (J*** (N X) UM, there is n € C([0,1] X X, X) such that
(i) n(t,u) =u, if t=0o0ru & J 1 ([c — 3ep,c+ 3] )\ (K?) 5

(i) (1, A\(K?)s5) CJ ¢ UM, and n(1,A) c J*" ¢ UM if K? = &;

(iii) #(¢,-) is a homeomorphism of X for t € [0,1];

(iv) J(n(+,u)) is nonincreasing for any u € X;

(v) n(t,M) C M for any t € [0,1];

(vi) n(t,-) is odd, if ] is even and M is symmetric about the origin.
Indeed, o > &y > 0 can be chosen small, where ¢ is from (ii) of (C), such that ||J’ (u)|I?/(1 +
21J" (w)ll) = 60/, Yu € J 1 ([c — 3e0,c + 3e0] )\ (K ).

—_ = =

In [3, 5], a version of symmetric mountain-pass theorem holds under (PS). (C) is
weaker than (PS), but by above deformation Lemma 2.3, a version of “symmetric
mountain-pass theorem” still follows.

TueOREM 2.4. Assume] € C'(E,R) is even, ] (0) = 0 satisfies (®) and (C), condition for ¢ >
0. Assume that P is an admissible invariant set for ], K. (V0P = & forallc >0, E = ©7, Ej,

where E; are finite dimensional subspaces of X, and for each k, let Yy = 69];:1 Ej and Zy =

@f:k E;. Assume for each k there exist px > yx >0, such that limy_..ay < o, where a; =
mameaBPk(o)](x), b = infzmaBYk(o)](X) — 00 as k — co. Then ] has a sequence of critical
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points u, € X\(PU(—P)) such that J](u,) — o as n — oo, provided Z;(10B,,(0)(\P = &
for large k.

3. Proof of Theorem 1.1
ProrosrTiON 3.1. Under (fi)—(f3) and ( f4), ] satisfies the (C) condition.

Proof. For all ¢ € R, since Sobolev embedding H!(Q) — L*(Q) is compact, the proof of
(i) in (C) is trivial.
About (ii) of (C). If not, there exist ¢ € R and {u,} C H'(Q) satisfying, as n — oo

J(un) — ¢ fun|[ — oo, {[]" () [[ [[un]| — 0, (3.1)

then we have

lim (%f(x,u,,)un —F(x,u,,))dx = lim (](u,,) - %(]’(un),un)) =c. (3.2)

n—oo Q n—oo

Denote v, = u,/||u,||, then ||v,|| = 1, that is, {v,} is bounded in H'(Q), thus for some
v € HY(Q), we get

v, —v in HY(Q),
v, — v inL*(Q), (3.3)

Vv, — v a.e. in Q.
If v = 0, as the similar proof in [2], define a sequence {t,} € R:

](tnun) = max ](tun)- (34)
te[0,1]

If for some n € N, there is a number of t, satisfying (3.4), we choose one of them. For all
m >0, let v, = 2./mv,, it follows that

lim | F(x,v,)dx=lim | F(x,2/mv,)dx=0. (3.5)
Q

n—o Jo n—oo

Then for n large enough

T (tattn) = T (7) :Zm—JQF(x,vn)dem, (3.6)

that is, lim,, . J(t,u,) = +00. Since J(0) = 0 and J(u,) — ¢, then 0 < £, < 1. Thus

|v(tnun)|2+“(tn“n)2 - f(x>tnun)tn”n
X -
J (tuy) =0.

t=t,

= <]’(tn”n)atnun> = tn%
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We see that
J (lf(s, tatty )ttty — F(x, t,m,,))dx
a\2
- lj (| V (tau,) |2 +oc(tnun)2) — J F(x,tau,) (3.8)
2 Ja Q
:](tn”n) — 00, n-— o0,
From above, we infer that
J (lf(5>un)un_F(x>un))dx
al\2
J G(x,uy)dx = —J G(x,tyuy,)dx (3.9)
GJ ( (s, tutty) tatty — F(x,tnun)>dx — +00, n— 0,

which contradicts (3.2).
If v # 0, by (3.1)

J;) ( | vun|2+“uﬁ) - Jﬂf(xﬂ/ln)un = (],(un)run> =o(1), (3.10)
that is,
f X, un un x,un Uy
vy | dx. .
||un|| (J Jv 0) |un| | | (3.11)
Forx e Q' := {x € Q: v(x) # 0}, we get |u,(x)| — +oo. Then by (f3)
Jeou U)o, n— e, (3.12)
\un(x”

By using Fatou lemma, since |Q'| >0 (| - | is the Lebesgue measure in RY),

J fxunu,,

| |2dx — +00, n— co. (3.13)
un

On the other hand, by (f3), there exists y > —co, such that f(x,s)s/lsl2 > y for (x,s) €
Q X R. Moreover,

J |va|?dx — 0, n— oo. (3.14)
v=0

Now, there exists A > —o such that

fx,un Uy
|t |

together with (3.11) and (3.13), it is a contradiction.
This proves that ] satisfies (C). O

[ v | dx>yf |v,,| dx = A>—oo, (3.15)
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ProrosITION 3.2. Under (f1)', then for |t| = |s| and ts = 0, G(x,t) = G(x,s), that is, (f1)
holds for 8 = 1.

Proof. forO<s<t,

Glx, 1) — Glxys) = 2| & S (= fx99) = (R —F(x,s))]
[ f f(x,5) Lf(xT)
= [, e [ Fo e [ 1]
_ flot)  flxoT) (fet)  f(xs) -
_2_J5< t T )TdT+Jo< t s )TdT]_
(3.16)
In like manner, for t <s < 0, G(x,t) — G(x,s) > 0. O

On E := H'(Q), let us define Pr = {u € E: u(x) = 0, a.e. in Q}, which is a closed
convex cone. Let X = C(Q), which is a Banach space and embedded densely in E. Set
P = PN X, then P is a closed convex cone in X. Furthermore, P =P |J0dP under the
topology of X, that is, there exist interior points in X. We may define a partial order
relationtuy,ve X, u>veu—-veP\{0},u>ve u—veP.

As the proof of those propositions in [5, Section 5], it turns out that condition ® is
satisfied and P is an admissible invariant set for J under (f1), (f2), and (C) condition.

Proof of Theorem 1.1. Let E; = ker(— A —A;), Yk = @LE‘ and Z; = @2, E;. It shows
that J is continuously differentiable by ( f;) and satisfies the (C). condition for every ¢ € R
by Proposition 3.1.

(1) As the proof of [7, Theorem 3.7(3)], there exists y; > 0 such that for u € Z, |lull =
Yk, we have

by := kal(%t;k(o)](u) — 00, k— oo. (3.17)

(2) Since dim Yy < +o0 and all norms are equivalent on the finite dimensional space,
there exists Cx > 0, for all u € Yy, we get

1 1
EJ (IVul? +au?) = = ||lull* < Clul3 = ij |ul?dx. (3.18)
Q 2 Q

Next, by (f3), there exists Rx > 0 such that F(x,s) > 2C|s|? for |s| > Ri. Take M :=
max{0, infs<r, F(x,s)}, then for all (x,s) € Q X R, we obtain

F(x,s) = 2Ck|s|? — M. (3.19)

It follows from (3.18) and (3.19) that, for all u € Y

1

J(u) = 5 JQ (IVul* +au?) - JQF(x,u)

h (3.20)
~Cilul3 + M| Q| < 75||u||2+Mk|Q|,



Aixia Qian 335
which implies that for pi large enough (px > yk),

ar:= max J(u)<0. (3.21)
Y 0By, (0)

Moreover, for k > 2, Z, (P = {0}. This can be seen by noting that for all u € P\ {0},
Joq u¢1(x)dx > 0, while for u € Z, [ u¢;(x)dx = 0, where ¢, is the first eigenfunction
corresponding to A1, which implies Zx (10B,, (0)( 1P = @.

By Theorem 2.4, ] has a sequence of critical points u, € X\(PJ(—P)) such that
J(u,) — co as n — oo, that is, (1.1) has infinitely many nodal solutions. O

Example 3.3. By Theorem 1.1, the following equation with & > 0

—Au+au=2ulog(1+|ul), x€Q,

(3.22)
ou =0, x€0Q
0y

has infinitely many nodal solutions, while the result cannot be obtained by either [6,
Theorem 9.12] or [8, Theorem 3.2].
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