

EXISTENCE OF INFINITELY MANY NODAL SOLUTIONS FOR A SUPERLINEAR NEUMANN BOUNDARY VALUE PROBLEM

AIXIA QIAN

Received 12 January 2005

We study the existence of a class of nonlinear elliptic equation with Neumann boundary condition, and obtain infinitely many nodal solutions. The study of such a problem is based on the variational methods and critical point theory. We prove the conclusion by using the symmetric mountain-pass theorem under the Cerami condition.

1. Introduction

Consider the Neumann boundary value problem:

$$\begin{aligned} -\Delta u + \alpha u &= f(x, u), \quad x \in \Omega, \\ \frac{\partial u}{\partial \nu} &= 0, \quad x \in \partial\Omega, \end{aligned} \tag{1.1}$$

where $\Omega \subset \mathbb{R}^N (N \geq 1)$ is a bounded domain with smooth boundary $\partial\Omega$ and $\alpha > 0$ is a constant. Denote by $\sigma(-\Delta) := \{\lambda_i \mid 0 = \lambda_1 < \lambda_2 \leq \dots \leq \lambda_k \leq \dots\}$ the eigenvalues of the eigenvalue problem:

$$\begin{aligned} -\Delta u &= \lambda u, \quad x \in \Omega, \\ \frac{\partial u}{\partial \nu} &= 0, \quad x \in \partial\Omega. \end{aligned} \tag{1.2}$$

Let $F(x, s) = \int_0^s f(x, t) dt$, $G(x, s) = f(x, s)s - 2F(x, s)$. Assume

(f_1) $f \in C(\overline{\Omega} \times \mathbb{R})$, $f(0) = 0$, and for some $2 < p < 2^* = 2N/(N-2)$ (for $N = 1, 2$, take $2^* = \infty$), $c > 0$ such that

$$|f(x, u)| \leq c(1 + |u|^{p-1}), \quad (x, u) \in \Omega \times \mathbb{R}. \tag{1.3}$$

(f_2) There exists $L \geq 0$, such that $f(x, s) + Ls$ is increasing in s .
(f_3) $\lim_{|s| \rightarrow \infty} (f(x, s)s)/|s|^2 = +\infty$ uniformly for a.e. $x \in \Omega$.

(f_4) There exist $\theta \geq 1, s \in [0, 1]$ such that

$$\theta G(x, t) \geq G(x, st), \quad (x, u) \in \Omega \times \mathbb{R}. \quad (1.4)$$

(f_5) $f(x, -t) = -f(x, t), (x, u) \in \Omega \times \mathbb{R}$.

Because of (f_3), (1.1) is called a superlinear problem. In [6, Theorem 9.38], the author obtained infinitely many solutions of (1.1) under (f_1)–(f_5) and

(AR) $\exists \mu > 2, R > 0$ such that

$$x \in \Omega, \quad |s| \geq R \implies 0 < \mu F(x, s) \leq f(x, s)s. \quad (1.5)$$

Obviously, (f_3) can be deduced from (AR). Under (AR), the (PS) sequence of corresponding energy functional is bounded, which plays an important role for the application of variational methods. However, there are indeed many superlinear functions not satisfying (AR), for example, take $\theta = 1$, the function

$$f(x, t) = 2t \log(1 + |t|) \quad (1.6)$$

while it is easy to see that the above function satisfies (f_1)–(f_5). Condition (f_4) is from [2] and (1.6) is from [4].

In view of the variational point, solutions of (1.1) are critical points of corresponding functional defined on the Hilbert space $E := W^{1,2}(\Omega)$. Let $X := \{u \in C^1(\Omega) \mid \partial u / \partial \nu = 0, x \in \partial\Omega\}$ a Banach space. We consider the functional

$$J(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \alpha u^2) dx - \int_{\Omega} F(x, u) dx, \quad (1.7)$$

where E is equipped with the norm

$$\|u\| = \left(\int_{\Omega} |\nabla u|^2 + \alpha \int_{\Omega} u^2 \right)^{1/2}. \quad (1.8)$$

By (f_1), J is of C^1 and

$$\langle J'(u), v \rangle = \int_{\Omega} (\nabla u \nabla v + \alpha u v) dx - \int_{\Omega} f(x, u) v dx, \quad u, v \in E. \quad (1.9)$$

Now, we can state our main result.

THEOREM 1.1. *Under assumptions (f_1)–(f_5), (1.1) has infinitely many nodal solutions.*

Remark 1.2. [8, Theorem 3.2] obtained infinitely many solutions under (f_1)–(f_5) and

(f_3)' $\lim_{|u| \rightarrow \infty} \inf(f(x, u)u) / |u|^{\mu} \geq c > 0$ uniformly for $x \in \Omega$, where $\mu > 2$.

(f_4)' $f(x, u)/u$ is increasing in $|u|$.

It turns out that (f_3)' and (f_4)' are stronger than (f_3) and (f_4), respectively, furthermore, the function (1.6) does not satisfy (f_3)', then Theorem 1.1 applied to Dirichlet boundary value problem improves [8, Theorem 3.2].

Remark 1.3. [1, Theorem 7.3] also got infinitely many nodal solutions for (1.1) under assumption that the functional is of C^2 .

2. Preliminaries

Let E be a Hilbert space and $X \subset E$, a Banach space densely embedded in E . Assume that E has a closed convex cone P_E and that $P =: P_E \cap X$ has interior points in X , that is, $P = \overset{\circ}{P} \cup \partial P$, with $\overset{\circ}{P}$ the interior and ∂P the boundary of P in X . Let $J \in C^1(E, \mathbb{R})$, denote $K = \{u \in E : J'(u) = 0\}$, $J^c = \{u \in E : J(u) \leq c\}$, $K_c = \{u \in K : J(u) = c\}$, $c \in \mathbb{R}$.

Definition 2.1. We say that J satisfies Cerami condition (C), if for all $c \in \mathbb{R}$

- (i) Any bounded sequence $\{u_n\} \subset E$ satisfying $J(u_n) \rightarrow c$, $J'(u_n) \rightarrow 0$ possesses a convergent subsequence.
- (ii) There exist $\sigma, R, \beta > 0$ such that for any $u \in J^{-1}([c - \sigma, c + \sigma])$ with $\|u\| \geq R$, $\|J'(u)\| \|u\| \geq \beta$.

Definition 2.2 (see [3]). Let $M \subset X$ be an invariant set under σ . We say M is an admissible invariant set for J , if (a) M is the closure of an open set in X , that is, $M = \overset{\circ}{M} \cup \partial M$; (b) if $u_n = \sigma(t_n, v)$ for some $v \notin M$ and $u_n \rightarrow u$ in E as $t_n \rightarrow \infty$ for some $u \in K$, then $u_n \rightarrow u$ in X ; (c) if $u_n \in K \cap M$ such that $u_n \rightarrow u$ in E , then $u_n \rightarrow u$ in X ; (d) for any $u \in \partial M \setminus K$, $\sigma(t, u) \in \overset{\circ}{M}$ for $t > 0$.

In [5], we proved $J \in C^1(E, \mathbb{R})$ satisfies the deformation Lemma 2.3 under (PS) condition and assumption (Φ) : $K(J) \subset X$, $J'(u) = u - A(u)$ for $u \in E$, $A : X \rightarrow X$ is continuous. It turns out that the same lemma still holds if J satisfies (C), that is.

LEMMA 2.3. Assume $J \in C^1(E, \mathbb{R})$ satisfies (Φ) and (C) condition. Let $M \subset X$ be an admissible invariant set to the pseudo-gradient flow σ of J . Define $K_c^1 = K_c \cap \overset{\circ}{M}$, $K_c^2 = K_c \cap (X \setminus M)$ for some c . Assume $K_c \cap \partial M = \emptyset$, there exists $\delta > 0$ such that $(K_c^1)_{4\delta} \cap (K_c^2)_{4\delta} = \emptyset$, where $(K_c^i)_{4\delta} = \{u \in E : d_E(u, K_c^i) < 4\delta\}$ for $i = 1, 2$. Then there is $\varepsilon_0 > 0$, such that for any $0 < \varepsilon < \varepsilon_0$ and any compact subset $A \subset (J^{c+\varepsilon} \cap X) \cup M$, there is $\eta \in C([0, 1] \times X, X)$ such that

- (i) $\eta(t, u) = u$, if $t = 0$ or $u \notin J^{-1}([c - 3\varepsilon_0, c + 3\varepsilon_0]) \setminus (K_c^2)_\delta$;
- (ii) $\eta(1, A \setminus (K_c^2)_{3\delta}) \subset J^{c-\varepsilon} \cup M$, and $\eta(1, A) \subset J^{c-\varepsilon} \cup M$ if $K_c^2 = \emptyset$;
- (iii) $\eta(t, \cdot)$ is a homeomorphism of X for $t \in [0, 1]$;
- (iv) $J(\eta(\cdot, u))$ is nonincreasing for any $u \in X$;
- (v) $\eta(t, M) \subset M$ for any $t \in [0, 1]$;
- (vi) $\eta(t, \cdot)$ is odd, if J is even and M is symmetric about the origin.

Indeed, $\sigma > \varepsilon_0 > 0$ can be chosen small, where σ is from (ii) of (C), such that $\|J'(u)\|^2 / (1 + 2\|J'(u)\|) \geq 6\varepsilon_0 / \delta$, $\forall u \in J^{-1}([c - 3\varepsilon_0, c + 3\varepsilon_0]) \setminus (K_c)_\delta$.

In [3, 5], a version of symmetric mountain-pass theorem holds under (PS). (C) is weaker than (PS), but by above deformation Lemma 2.3, a version of “symmetric mountain-pass theorem” still follows.

THEOREM 2.4. Assume $J \in C^1(E, \mathbb{R})$ is even, $J(0) = 0$ satisfies (Φ) and $(C)_c$ condition for $c > 0$. Assume that P is an admissible invariant set for J , $K_c \cap \partial P = \emptyset$ for all $c > 0$, $E = \overline{\bigoplus_{j=1}^{\infty} E_j}$, where E_j are finite dimensional subspaces of X , and for each k , let $Y_k = \bigoplus_{j=1}^k E_j$ and $Z_k = \overline{\bigoplus_{j=k}^{\infty} E_j}$. Assume for each k there exist $\rho_k > \gamma_k > 0$, such that $\limsup_{k \rightarrow \infty} a_k < \infty$, where $a_k = \max_{Y_k \cap \partial B_{\rho_k}(0)} J(x)$, $b_k = \inf_{Z_k \cap \partial B_{\gamma_k}(0)} J(x) \rightarrow \infty$ as $k \rightarrow \infty$. Then J has a sequence of critical

points $u_n \in X \setminus (P \cup (-P))$ such that $J(u_n) \rightarrow \infty$ as $n \rightarrow \infty$, provided $Z_k \cap \partial B_{\gamma_k}(0) \cap P = \emptyset$ for large k .

3. Proof of Theorem 1.1

PROPOSITION 3.1. *Under (f_1) – (f_3) and (f_4) , J satisfies the (C) condition.*

Proof. For all $c \in \mathbb{R}$, since Sobolev embedding $H^1(\Omega) \rightarrow L^2(\Omega)$ is compact, the proof of (i) in (C) is trivial.

About (ii) of (C) . If not, there exist $c \in \mathbb{R}$ and $\{u_n\} \subset H^1(\Omega)$ satisfying, as $n \rightarrow \infty$

$$J(u_n) \rightarrow c, \quad \|u_n\| \rightarrow \infty, \quad \|J'(u_n)\| \|u_n\| \rightarrow 0, \quad (3.1)$$

then we have

$$\lim_{n \rightarrow \infty} \int_{\Omega} \left(\frac{1}{2} f(x, u_n) u_n - F(x, u_n) \right) dx = \lim_{n \rightarrow \infty} \left(J(u_n) - \frac{1}{2} \langle J'(u_n), u_n \rangle \right) = c. \quad (3.2)$$

Denote $v_n = u_n / \|u_n\|$, then $\|v_n\| = 1$, that is, $\{v_n\}$ is bounded in $H^1(\Omega)$, thus for some $v \in H^1(\Omega)$, we get

$$\begin{aligned} v_n &\rightharpoonup v \quad \text{in } H^1(\Omega), \\ v_n &\rightarrow v \quad \text{in } L^2(\Omega), \\ v_n &\rightarrow v \quad \text{a.e. in } \Omega. \end{aligned} \quad (3.3)$$

If $v = 0$, as the similar proof in [2], define a sequence $\{t_n\} \in \mathbb{R}$:

$$J(t_n u_n) = \max_{t \in [0, 1]} J(t u_n). \quad (3.4)$$

If for some $n \in \mathbb{N}$, there is a number of t_n satisfying (3.4), we choose one of them. For all $m > 0$, let $\bar{v}_n = 2\sqrt{m}v_n$, it follows that

$$\lim_{n \rightarrow \infty} \int_{\Omega} F(x, \bar{v}_n) dx = \lim_{n \rightarrow \infty} \int_{\Omega} F(x, 2\sqrt{m}v_n) dx = 0. \quad (3.5)$$

Then for n large enough

$$J(t_n u_n) \geq J(\bar{v}_n) = 2m - \int_{\Omega} F(x, \bar{v}_n) dx \geq m, \quad (3.6)$$

that is, $\lim_{n \rightarrow \infty} J(t_n u_n) = +\infty$. Since $J(0) = 0$ and $J(u_n) \rightarrow c$, then $0 < t_n < 1$. Thus

$$\begin{aligned} &\int_{\Omega} \left(|\nabla(t_n u_n)|^2 + \alpha(t_n u_n)^2 \right) - \int_{\Omega} f(x, t_n u_n) t_n u_n \\ &= \langle J'(t_n u_n), t_n u_n \rangle = t_n \frac{d}{dt} \Big|_{t=t_n} J(t u_n) = 0. \end{aligned} \quad (3.7)$$

We see that

$$\begin{aligned}
& \int_{\Omega} \left(\frac{1}{2} f(s, t_n u_n) t_n u_n - F(x, t_n u_n) \right) dx \\
&= \frac{1}{2} \int_{\Omega} \left(|\nabla(t_n u_n)|^2 + \alpha(t_n u_n)^2 \right) - \int_{\Omega} F(x, t_n u_n) \\
&= J(t_n u_n) \rightarrow +\infty, \quad n \rightarrow \infty.
\end{aligned} \tag{3.8}$$

From above, we infer that

$$\begin{aligned}
& \int_{\Omega} \left(\frac{1}{2} f(s, u_n) u_n - F(x, u_n) \right) dx \\
&= \frac{1}{2} \int_{\Omega} G(x, u_n) dx \geq \frac{1}{2\theta} \int_{\Omega} G(x, t_n u_n) dx \\
&= \frac{1}{\theta} \int_{\Omega} \left(\frac{1}{2} f(s, t_n u_n) t_n u_n - F(x, t_n u_n) \right) dx \rightarrow +\infty, \quad n \rightarrow \infty,
\end{aligned} \tag{3.9}$$

which contradicts (3.2).

If $v \not\equiv 0$, by (3.1)

$$\int_{\Omega} \left(|\nabla u_n|^2 + \alpha u_n^2 \right) - \int_{\Omega} f(x, u_n) u_n = \langle J'(u_n), u_n \rangle = o(1), \tag{3.10}$$

that is,

$$1 - o(1) = \int_{\Omega} \frac{f(x, u_n) u_n}{|u_n|^2} dx = \left(\int_{v \neq 0} + \int_{v=0} \right) \frac{f(x, u_n) u_n}{|u_n|^2} |v_n|^2 dx. \tag{3.11}$$

For $x \in \Omega' := \{x \in \Omega : v(x) \neq 0\}$, we get $|u_n(x)| \rightarrow +\infty$. Then by (f_3)

$$\frac{f(x, u_n(x)) u_n(x)}{|u_n(x)|^2} |v_n(x)|^2 dx \rightarrow +\infty, \quad n \rightarrow \infty. \tag{3.12}$$

By using Fatou lemma, since $|\Omega'| > 0$ ($|\cdot|$ is the Lebesgue measure in \mathbb{R}^N),

$$\int_{v \neq 0} \frac{f(x, u_n) u_n}{|u_n|^2} |v_n|^2 dx \rightarrow +\infty, \quad n \rightarrow \infty. \tag{3.13}$$

On the other hand, by (f_3) , there exists $\gamma > -\infty$, such that $f(x, s)s/|s|^2 \geq \gamma$ for $(x, s) \in \Omega \times \mathbb{R}$. Moreover,

$$\int_{v=0} |v_n|^2 dx \rightarrow 0, \quad n \rightarrow \infty. \tag{3.14}$$

Now, there exists $\Lambda > -\infty$ such that

$$\int_{v=0} \frac{f(x, u_n) u_n}{|u_n|^2} |v_n|^2 dx \geq \gamma \int_{v=0} |v_n|^2 dx \geq \Lambda > -\infty, \tag{3.15}$$

together with (3.11) and (3.13), it is a contradiction.

This proves that J satisfies (C) . \square

PROPOSITION 3.2. *Under $(f_4)'$, then for $|t| \geq |s|$ and $ts \geq 0$, $G(x, t) \geq G(x, s)$, that is, (f_4) holds for $\theta = 1$.*

Proof. for $0 \leq s \leq t$,

$$\begin{aligned} G(x, t) - G(x, s) &= 2 \left[\frac{1}{2} (f(x, t)t - f(x, s)s) - (F(x, t) - F(x, s)) \right] \\ &= 2 \left[\int_0^t \frac{f(x, t)}{t} \tau d\tau - \int_0^s \frac{f(x, s)}{s} \tau d\tau - \int_s^t \frac{f(x, \tau)}{\tau} \tau d\tau \right] \\ &= 2 \left[\int_s^t \left(\frac{f(x, t)}{t} - \frac{f(x, \tau)}{\tau} \right) \tau d\tau + \int_0^s \left(\frac{f(x, t)}{t} - \frac{f(x, s)}{s} \right) \tau d\tau \right] \geq 0. \end{aligned} \quad (3.16)$$

In like manner, for $t \leq s \leq 0$, $G(x, t) - G(x, s) \geq 0$. \square

On $E := H^1(\Omega)$, let us define $P_E = \{u \in E : u(x) \geq 0, \text{ a.e. in } \Omega\}$, which is a closed convex cone. Let $X = C_v^1(\Omega)$, which is a Banach space and embedded densely in E . Set $P = P_E \cap X$, then P is a closed convex cone in X . Furthermore, $P = \overset{\circ}{P} \cup \partial P$ under the topology of X , that is, there exist interior points in X . We may define a partial order relation: $u, v \in X$, $u > v \Leftrightarrow u - v \in P \setminus \{0\}$, $u \gg v \Leftrightarrow u - v \in \overset{\circ}{P}$.

As the proof of those propositions in [5, Section 5], it turns out that condition Φ is satisfied and P is an admissible invariant set for J under (f_1) , (f_2) , and (C) condition.

Proof of Theorem 1.1. Let $E_i = \ker(-\Delta - \lambda_i)$, $Y_k = \bigoplus_{i=1}^k E_i$ and $Z_k = \bigoplus_{i=k}^{\infty} E_i$. It shows that J is continuously differentiable by (f_1) and satisfies the $(C)_c$ condition for every $c \in R$ by Proposition 3.1.

(1) As the proof of [7, Theorem 3.7(3)], there exists $\gamma_k > 0$ such that for $u \in Z_k$, $\|u\| = \gamma_k$, we have

$$b_k := \inf_{Z_k \cap \partial B_{\gamma_k}(0)} J(u) \rightarrow \infty, \quad k \rightarrow \infty. \quad (3.17)$$

(2) Since $\dim Y_k < +\infty$ and all norms are equivalent on the finite dimensional space, there exists $C_k > 0$, for all $u \in Y_k$, we get

$$\frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \alpha u^2) = \frac{1}{2} \|u\|^2 \leq C_k \|u\|_2^2 \equiv C_k \int_{\Omega} |u|^2 dx. \quad (3.18)$$

Next, by (f_3) , there exists $R_k > 0$ such that $F(x, s) \geq 2C_k|s|^2$ for $|s| \geq R_k$. Take $M_k := \max\{0, \inf_{|s| \leq R_k} F(x, s)\}$, then for all $(x, s) \in \Omega \times \mathbb{R}$, we obtain

$$F(x, s) \geq 2C_k|s|^2 - M_k. \quad (3.19)$$

It follows from (3.18) and (3.19) that, for all $u \in Y_k$

$$\begin{aligned} J(u) &= \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \alpha u^2) - \int_{\Omega} F(x, u) \\ &\leq -C_k \|u\|_2^2 + M_k |\Omega| \leq -\frac{1}{2} \|u\|^2 + M_k |\Omega|, \end{aligned} \quad (3.20)$$

which implies that for ρ_k large enough ($\rho_k > \gamma_k$),

$$a_k := \max_{Y_k \cap \partial B_{\rho_k}(0)} J(u) \leq 0. \quad (3.21)$$

Moreover, for $k \geq 2$, $Z_k \cap P = \{0\}$. This can be seen by noting that for all $u \in P \setminus \{0\}$, $\int_{\Omega} u\phi_1(x)dx > 0$, while for $u \in Z_k$, $\int_{\Omega} u\phi_1(x)dx = 0$, where ϕ_1 is the first eigenfunction corresponding to λ_1 , which implies $Z_k \cap \partial B_{\gamma_k}(0) \cap P = \emptyset$.

By Theorem 2.4, J has a sequence of critical points $u_n \in X \setminus (P \cup (-P))$ such that $J(u_n) \rightarrow \infty$ as $n \rightarrow \infty$, that is, (1.1) has infinitely many nodal solutions. \square

Example 3.3. By Theorem 1.1, the following equation with $\alpha > 0$

$$\begin{aligned} -\Delta u + \alpha u &= 2u \log(1 + |u|), \quad x \in \Omega, \\ \frac{\partial u}{\partial \nu} &= 0, \quad x \in \partial\Omega \end{aligned} \quad (3.22)$$

has infinitely many nodal solutions, while the result cannot be obtained by either [6, Theorem 9.12] or [8, Theorem 3.2].

References

- [1] T. Bartsch, *Critical point theory on partially ordered Hilbert spaces*, J. Funct. Anal. **186** (2001), no. 1, 117–152.
- [2] L. Jeanjean, *On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^N* , Proc. Roy. Soc. Edinburgh Sect. A **129** (1999), no. 4, 787–809.
- [3] S. Li and Z.-Q. Wang, *Ljusternik-Schnirelman theory in partially ordered Hilbert spaces*, Trans. Amer. Math. Soc. **354** (2002), no. 8, 3207–3227.
- [4] S. Liu, *Existence of solutions to a superlinear p -Laplacian equation*, Electron. J. Differential Equations **2001** (2001), no. 66, 1–6.
- [5] A. Qian and S. Li, *Multiple nodal solutions for elliptic equations*, Nonlinear Anal. **57** (2004), no. 4, 615–632.
- [6] P. H. Rabinowitz, *Minimax Methods in Critical Point Theory with Applications to Differential Equations*, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Rhode Island, 1986.
- [7] M. Willem, *Minimax Theorems*, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Massachusetts, 1996.
- [8] W. Zou, *Variant fountain theorems and their applications*, Manuscripta Math. **104** (2001), no. 3, 343–358.

Aixia Qian: Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China
 E-mail address: qianax@163.com

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk