

EXISTENCE OF A POSITIVE SOLUTION FOR A p -LAPLACIAN SEMIPOSITONE PROBLEM

MAYA CHHETRI AND R. SHIVAJI

Received 30 September 2004 and in revised form 13 January 2005

We consider the boundary value problem $-\Delta_p u = \lambda f(u)$ in Ω satisfying $u = 0$ on $\partial\Omega$, where $u = 0$ on $\partial\Omega$, $\lambda > 0$ is a parameter, Ω is a bounded domain in \mathbb{R}^n with C^2 boundary $\partial\Omega$, and $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ for $p > 1$. Here, $f : [0, r] \rightarrow \mathbb{R}$ is a C^1 nondecreasing function for some $r > 0$ satisfying $f(0) < 0$ (semipositone). We establish a range of λ for which the above problem has a positive solution when f satisfies certain additional conditions. We employ the method of subsuper solutions to obtain the result.

1. Introduction

Consider the boundary value problem

$$\begin{aligned} -\Delta_p u &= \lambda f(u) \quad \text{in } \Omega, \\ u &> 0 \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial\Omega, \end{aligned} \tag{1.1}$$

where $\lambda > 0$ is a parameter, Ω is a bounded domain in \mathbb{R}^n with C^2 boundary $\partial\Omega$ and $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ for $p > 1$. We assume that $f \in C^1[0, r]$ is a nondecreasing function for some $r > 0$ such that $f(0) < 0$ and there exist $\beta \in (0, r)$ such that $f(s)(s - \beta) \geq 0$ for $s \in [0, r]$. To precisely state our theorem we first consider the eigenvalue problem

$$\begin{aligned} -\Delta_p v &= \lambda |v|^{p-2}v \quad \text{in } \Omega, \\ v &= 0 \quad \text{on } \partial\Omega. \end{aligned} \tag{1.2}$$

Let $\phi_1 \in C^1(\overline{\Omega})$ be the eigenfunction corresponding to the first eigenvalue λ_1 of (1.2) such that $\phi_1 > 0$ in Ω and $\|\phi_1\|_\infty = 1$. It can be shown that $\partial\phi_1/\partial\eta < 0$ on $\partial\Omega$ and hence, depending on Ω , there exist positive constants m, δ, σ such that

$$\begin{aligned} |\nabla\phi_1|^p - \lambda_1\phi_1^p &\geq m \quad \text{on } \overline{\Omega}_\delta, \\ \phi_1 &\geq \sigma \quad \text{on } \Omega \setminus \overline{\Omega}_\delta, \end{aligned} \tag{1.3}$$

where $\overline{\Omega}_\delta := \{x \in \Omega \mid d(x, \partial\Omega) \leq \delta\}$.

We will also consider the unique solution, $e \in C^1(\overline{\Omega})$, of the boundary value problem

$$\begin{aligned} -\Delta_p e &= 1 && \text{in } \Omega, \\ e &= 0 && \text{on } \partial\Omega \end{aligned} \tag{1.4}$$

to discuss our result. It is known that $e > 0$ in Ω and $\partial e / \partial \eta < 0$ on $\partial\Omega$. Now we state our theorem.

THEOREM 1.1. *Assume that there exist positive constants $l_1, l_2 \in (\beta, r]$ satisfying*

- (a) $l_2 \geq kl_1$,
- (b) $|f(0)|\lambda_1/mf(l_1) < 1$, and
- (c) $l_2^{p-1}/f(l_2) > \mu(l_1^{p-1}/f(l_1))$,

where $k = k(\Omega) = \lambda_1^{1/(p-1)}(p/(p-1))\sigma^{(p-1)/p}\|e\|_\infty$ and $\mu = \mu(\Omega) = (p\|e\|_\infty/(p-1))^{p-1}(\lambda_1/\sigma^p)$. Then there exist $\hat{\lambda} < \lambda^*$ such that (1.1) has a positive solution for $\hat{\lambda} \leq \lambda \leq \lambda^*$.

Remark 1.2. A simple prototype example of a function f satisfying the above conditions is

$$f(s) = r[(s+1)^{1/2} - 2]; \quad 0 \leq s \leq r^4 - 1 \tag{1.5}$$

when r is large.

Indeed, by taking $l_1 = r^2 - 1$ and $l_2 = r^4 - 1$ we see that the conditions $\beta (= 3) < l_1 < l_2$ and (a) are easily satisfied for r large. Since $f(0) = -r$, we have

$$\frac{|f(0)|\lambda_1}{mf(l_1)} = \frac{\lambda_1}{m(r-2)}. \tag{1.6}$$

Therefore (b) will be satisfied for r large. Finally,

$$\frac{l_2^{p-1}/f(l_2)}{l_1^{p-1}/f(l_1)} = \frac{(r^4-1)^{p-1}(r-2)}{(r^2-1)^{p-1}(r^2-1)} \sim \frac{r^{4p-3}}{r^{2p}} \sim r^{2p-3} \tag{1.7}$$

for large r and hence (c) is satisfied when $p > 3/2$.

Remark 1.3. Theorem 1.1 holds no matter what the growth condition of f is, for large u . Namely, f could satisfy p -superlinear, p -sublinear or p -linear growth condition at infinity.

It is well documented in the literature that the study of positive solution is very challenging in the semipostone case. See [5] where positive solution is obtained for large λ when f is p -sublinear at infinity. In this paper, we are interested in the existence of a positive solution in a range of λ without assuming any condition on f at infinity.

We prove our result by using the method of subsuper solutions. A function ψ is said to be a subsolution of (1.1) if it is in $W^{1,p}(\Omega) \cap C^0(\overline{\Omega})$ such that $\psi \leq 0$ on $\partial\Omega$ and

$$\int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla w \leq \int_{\Omega} \lambda f(\psi) w \quad \forall w \in W, \tag{1.8}$$

where $W = \{w \in C_0^\infty(\Omega) \mid w \geq 0 \text{ in } \Omega\}$ (see [4]). A function $\phi \in W^{1,p}(\Omega) \cap C^0(\bar{\Omega})$ is said to be a supersolution if $\phi \geq 0$ on $\partial\Omega$ and satisfies

$$\int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla w \geq \int_{\Omega} \lambda f(\phi) w \quad \forall w \in W. \quad (1.9)$$

It is known (see [2, 3, 4]) that if there is a subsolution ψ and a supersolution ϕ of (1.1) such that $\psi \leq \phi$ in Ω then (1.1) has a $C^1(\bar{\Omega})$ solution u such that $\psi \leq u \leq \phi$ in Ω .

For the semipositone case, it has always been a challenge to find a nonnegative subsolution. Here we employ a method similar to that developed in [5, 6] to construct a positive subsolution. Namely, we decompose the domain Ω by using the properties of eigenfunction corresponding to the first eigenvalue of $-\Delta_p$ with Dirichlet boundary conditions to construct a subsolution. We will prove Theorem 1.1 in Section 2.

2. Proof of Theorem 1.1

First we construct a positive subsolution of (1.1). For this, we let $\psi = l_1 \sigma^{p/(1-p)} \phi_1^{p/(p-1)}$. Since $\nabla \psi = p/(p-1) l_1 \sigma^{p/(1-p)} \phi_1^{1/(p-1)} \nabla \phi_1$,

$$\begin{aligned} & \int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla w \\ &= \left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \int_{\Omega} \phi_1 |\nabla \phi_1|^{p-2} \nabla \phi_1 \cdot \nabla w \\ &= \left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \int_{\Omega} |\nabla \phi_1|^{p-2} \nabla \phi_1 [\nabla(\phi_1 w) - w \nabla \phi_1] \\ &= \left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \int_{\Omega} |\nabla \phi_1|^{p-2} \nabla \phi_1 \cdot \nabla(\phi_1 w) - \left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \\ & \quad \times \int_{\Omega} |\nabla \phi_1|^p w \\ &= \left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \int_{\Omega} \lambda_1 |\phi_1|^{p-2} \phi_1 (\phi_1 w) - \left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \\ & \quad \times \int_{\Omega} |\nabla \phi_1|^p w \quad (\text{by (1.2)}) \\ &= \left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \int_{\Omega} [\lambda_1 |\phi_1|^p - |\nabla \phi_1|^p] w \quad \forall w \in W. \end{aligned} \quad (2.1)$$

Thus ψ is a subsolution if

$$\left(\frac{p}{p-1} l_1 \sigma^{p/(1-p)} \right)^{p-1} \int_{\Omega} [\lambda_1 \phi_1^p - |\nabla \phi_1|^p] w \leq \lambda \int_{\Omega} f(\psi) w. \quad (2.2)$$

On $\overline{\Omega}_\delta$

$$|\nabla\phi_1|^p - \lambda\phi_1^p \geq m \quad (2.3)$$

and therefore

$$\left(\frac{p}{p-1}l_1\sigma^{p/(1-p)}\right)^{p-1} \left[\lambda_1\phi_1^p - |\nabla\phi_1|^p\right] \leq -m \left(\frac{p}{p-1}l_1\sigma^{p/(1-p)}\right)^{p-1} \leq \lambda f(\psi) \quad (2.4)$$

if

$$\lambda \leq \tilde{\lambda} := \frac{m((p/(p-1))l_1\sigma^{p/(1-p)})^{p-1}}{|f(0)|}. \quad (2.5)$$

On $\Omega \setminus \overline{\Omega}_\delta$ we have $\phi_1 \geq \sigma$ and therefore

$$\psi = l_1\sigma^{p/(1-p)}\phi_1^{p/(p-1)} \geq l_1\sigma^{p/(1-p)}\sigma^{p/(p-1)} = l_1. \quad (2.6)$$

Thus

$$\left(\frac{p}{p-1}l_1\sigma^{p/(1-p)}\right)^{p-1} \left[\lambda_1\phi_1^p - |\nabla\phi_1|^p\right] \leq \lambda f(\psi) \quad (2.7)$$

if

$$\lambda \geq \hat{\lambda} := \frac{\lambda_1(p/(1-p))l_1\sigma^{p/(1-p)})^{p-1}}{f(l_1)}. \quad (2.8)$$

We get $\hat{\lambda} < \tilde{\lambda}$ by using (b). Therefore ψ is a subsolution for $\hat{\lambda} \leq \lambda \leq \tilde{\lambda}$.

Next we construct a supersolution. Let $\phi = l_2/(\|e\|_\infty)e$. Then ϕ is a supersolution if

$$\int_\Omega |\nabla\phi|^{p-2}\nabla\phi \cdot \nabla w = \int_\Omega \left(\frac{l_2}{\|e\|_\infty}\right)^{p-1} w \geq \lambda \int_\Omega f(\phi)w \quad \forall w \in W. \quad (2.9)$$

But $f(\phi) \leq f(l_2)$ and hence ϕ is a super solution if

$$\lambda \leq \bar{\lambda} := \frac{l_2^{p-1}}{\|e\|_\infty^{p-1} f(l_2)}. \quad (2.10)$$

Recalling (c), we easily see that $\hat{\lambda} < \bar{\lambda}$. Finally, using (2.1), (2.9) and the weak comparison principle [3], we see that $\psi \leq \phi$ in Ω when (a) is satisfied. Therefore (1.1) has a positive solution for $\hat{\lambda} \leq \lambda \leq \lambda^*$ where $\lambda^* = \min\{\tilde{\lambda}, \bar{\lambda}\}$.

References

- [1] M. Chhetri, D. D. Hai, and R. Shivaji, *On positive solutions for classes of p -Laplacian semipositone systems*, Discrete Contin. Dynam. Systems **9** (2003), no. 4, 1063–1071.
- [2] P. Drábek and J. Hernández, *Existence and uniqueness of positive solutions for some quasilinear elliptic problems*, Nonlinear Anal. Ser. A: Theory Methods **44** (2001), no. 2, 189–204.
- [3] P. Drábek, P. Krejčí, and P. Takáč, *Nonlinear Differential Equations*, Chapman & Hall/CRC Research Notes in Mathematics, vol. 404, Chapman & Hall/CRC, Florida, 1999.
- [4] Z. M. Guo and J. R. L. Webb, *Large and small solutions of a class of quasilinear elliptic eigenvalue problems*, J. Differential Equations **180** (2002), no. 1, 1–50.
- [5] D. D. Hai and R. Shivaji, *An existence result on positive solutions for a class of p -Laplacian systems*, Nonlinear Anal. **56** (2004), no. 7, 1007–1010.
- [6] S. Oruganti and R. Shivaji, *Existence results for classes of p -Laplacian semipositone equations*, submitted.

Maya Chhetri: Department of Mathematical Sciences, University of North Carolina at Greensboro, NC 27402, USA

E-mail address: maya@uncg.edu

R. Shivaji: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA

E-mail address: shivaji@math.msstate.edu

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk