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We consider the boundary value problem −∆pu = λ f (u) in Ω satisfying u = 0 on ∂Ω,
where u= 0 on ∂Ω, λ > 0 is a parameter, Ω is a bounded domain in Rn with C2 boundary
∂Ω, and ∆pu := div(|∇u|p−2∇u) for p > 1. Here, f : [0,r] → R is a C1 nondecreasing
function for some r > 0 satisfying f (0) < 0 (semipositone). We establish a range of λ
for which the above problem has a positive solution when f satisfies certain additional
conditions. We employ the method of subsuper solutions to obtain the result.

1. Introduction

Consider the boundary value problem

−∆pu= λ f (u) in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1.1)

where λ > 0 is a parameter, Ω is a bounded domain in Rn with C2 boundary ∂Ω and
∆pu := div(|∇u|p−2∇u) for p > 1. We assume that f ∈ C1[0,r] is a nondecreasing func-
tion for some r > 0 such that f (0) < 0 and there exist β ∈ (0,r) such that f (s)(s− β)≥ 0
for s∈ [0,r]. To precisely state our theorem we first consider the eigenvalue problem

−∆pv = λ|v|p−2v in Ω,

v = 0 on ∂Ω.
(1.2)

Let φ1 ∈ C1(Ω) be the eigenfunction corresponding to the first eigenvalue λ1 of (1.2)
such that φ1 > 0 in Ω and ‖φ1‖∞ = 1. It can be shown that ∂φ1/∂η < 0 on ∂Ω and hence,
depending on Ω, there exist positive constants m,δ,σ such that

∣∣∇φ1
∣∣p− λ1φ

p
1 ≥m on Ωδ ,

φ1 ≥ σ on Ω \Ωδ ,
(1.3)

where Ωδ := {x ∈Ω | d(x,∂Ω)≤ δ}.
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We will also consider the unique solution, e ∈ C1(Ω), of the boundary value problem

−∆pe = 1 in Ω,

e = 0 on ∂Ω
(1.4)

to discuss our result. It is known that e > 0 in Ω and ∂e/∂η < 0 on ∂Ω. Now we state our
theorem.

Theorem 1.1. Assume that there exist positive constants l1, l2 ∈ (β,r] satisfying
(a) l2 ≥ kl1,
(b) | f (0)|λ1/m f (l1) < 1, and

(c) l
p−1
2 / f (l2) > µ(l

p−1
1 / f (l1)),

where k=k(Ω)=λ1/(p−1)
1 (p/(p− 1))σ (p−1)/p‖e‖∞ and µ=µ(Ω)=(p‖e‖∞/(p− 1))p−1(λ1/

σ p). Then there exist λ̂ < λ∗ such that (1.1) has a positive solution for λ̂≤ λ≤ λ∗.

Remark 1.2. A simple prototype example of a function f satisfying the above conditions
is

f (s)= r[(s+ 1)1/2− 2
]
; 0≤ s≤ r4− 1 (1.5)

when r is large.

Indeed, by taking l1 = r2− 1 and l2 = r4− 1 we see that the conditions β(= 3) < l1 < l2
and (a) are easily satisfied for r large. Since f (0)=−r, we have

∣∣ f (0)
∣∣λ1

m f
(
l1
) = λ1

m(r− 2)
. (1.6)

Therefore (b) will be satisfied for r large. Finally,

l
p−1
2 / f (12)

l
p−1
1 / f (l1)

=
(
r4− 1

)p−1
(r− 2)(

r2− 1
)p−1(

r2− 1
) ∼ r4p−3

r2p ∼ r2p−3 (1.7)

for large r and hence (c) is satisfied when p > 3/2.

Remark 1.3. Theorem 1.1 holds no matter what the growth condition of f is, for large
u. Namely, f could satisfy p-superlinear, p-sublinear or p-linear growth condition at
infinity.

It is well documented in the literature that the study of positive solution is very chal-
lenging in the semipostone case. See [5] where positive solution is obtained for large λ
when f is p-sublinear at infinity. In this paper, we are interested in the existence of a
positive solution in a range of λ without assuming any condition on f at infinity.

We prove our result by using the method of subsuper solutions. A function ψ is said
to be a subsolution of (1.1) if it is in W1,p(Ω)∩C0(Ω) such that ψ ≤ 0 on ∂Ω and

∫
Ω
|∇ψ|p−2∇ψ ·∇w ≤

∫
Ω
λ f (ψ)w ∀w ∈W , (1.8)
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where W = {w ∈ C∞0 (Ω) |w ≥ 0 in Ω} (see [4]). A function φ ∈W1,p(Ω)∩C0(Ω) is said
to be a supersolution if φ≥ 0 on ∂Ω and satisfies

∫
Ω
|∇φ|p−2∇φ ·∇w ≥

∫
Ω
λ f (φ)w ∀w ∈W. (1.9)

It is known (see [2, 3, 4]) that if there is a subsolution ψ and a supersolution φ of (1.1)
such that ψ ≤ φ in Ω then (1.1) has a C1(Ω) solution u such that ψ ≤ u≤ φ in Ω.

For the semipositone case, it has always been a challenge to find a nonnegative subso-
lution. Here we employ a method similar to that developed in [5, 6] to construct a positive
subsolution. Namely, we decompose the domain Ω by using the properties of eigenfunc-
tion corresponding to the first eigenvalue of −∆p with Dirichlet boundary conditions to
construct a subsolution. We will prove Theorem 1.1 in Section 2.

2. Proof of Theorem 1.1

First we construct a positive subsolution of (1.1). For this, we let ψ = l1σ p/(1−p)φ
p/(p−1)
1 .

Since∇ψ = p/(p− 1)l1σ p/(1−p)φ
1/(p−1)
1 ∇φ1,

∫
Ω
|∇ψ|p−2∇ψ.∇w

=
(

p

p− 1
l1σ

p/(1−p)
)p−1∫

Ω
φ1
∣∣∇φ1

∣∣p−2∇φ1 ·∇w

=
(

p

p− 1
l1σ

p/(1−p)
)p−1∫

Ω

∣∣∇φ1|p−2∇φ1
[∇(φ1w

)−w∇φ1
]

=
(

p

p− 1
l1σ

p/(1−p)
)p−1∫

Ω

∣∣∇φ1
∣∣p−2∇φ1.∇

(
φ1w

)−
(

p

p− 1
l1σ

p/(1−p)
)p−1

×
∫
Ω

∣∣∇φ1
∣∣pw

=
(

p

p− 1
l1σ

p/(1−p)
)p−1∫

Ω
λ1
∣∣φ1

∣∣p−2
φ1
(
φ1w

)
−
(

p

p− 1
l1σ

p/(1−p)
)p−1

×
∫
Ω
|∇φ1|pw

(
by (1.2)

)

=
(

p

p− 1
l1σ

p/(1−p)
)p−1∫

Ω

[
λ1
∣∣φ1

∣∣p−∣∣∇φ1
∣∣p]w ∀w ∈W.

(2.1)

Thus ψ is a subsolution if

(
p

p− 1
l1σ

p/(1−p)
)p−1∫

Ω

[
λ1φ

p
1 −

∣∣∇φ1
∣∣p]w ≤ λ

∫
Ω
f (ψ)w. (2.2)
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On Ωδ

∣∣∇φ1
∣∣p− λφp1 ≥m (2.3)

and therefore

(
p

p− 1
l1σ

p/(1−p)
)p−1[

λ1φ
p
1 −

∣∣∇φ1
∣∣p]≤−m

(
p

p− 1
l1σ

p/(1−p)
)p−1

≤ λ f (ψ) (2.4)

if

λ≤ λ̃ := m
((
p/(p− 1)

)
l1σ p/(1−p)

)p−1

∣∣ f (0)
∣∣ . (2.5)

On Ω \Ωδ we have φ1 ≥ σ and therefore

ψ = l1σ p/(1−p)φ
p/(p−1)
1 ≥ l1σ p/(1−p)σ p/(p−1) = l1. (2.6)

Thus

(
p

p− 1
l1σ

p/(1−p)
)p−1[

λ1φ
p
1 −

∣∣∇φ1
∣∣p]≤ λ f (ψ) (2.7)

if

λ≥ λ̂ := λ1
(
p/(1− p)l1σ p/(1−p)

)p−1

f
(
l1
) . (2.8)

We get λ̂ < λ̃ by using (b). Therefore ψ is a subsolution for λ̂≤ λ≤ λ̃.
Next we construct a supersolution. Let φ = l2/(‖e‖∞)e. Then φ is a supersolution if

∫
Ω

∣∣∇φ∣∣p−2∇φ.∇w =
∫
Ω

(
l2

‖e‖∞
)p−1

w ≥ λ
∫
Ω
f (φ)w ∀w ∈W. (2.9)

But f (φ)≤ f (l2) and hence φ is a super solution if

λ≤ λ := l
p−1
2

‖e‖p−1
∞ f

(
l2
) . (2.10)

Recalling (c), we easily see that λ̂ < λ. Finally, using (2.1), (2.9) and the weak comparison
principle [3], we see that ψ ≤ φ in Ω when (a) is satisfied. Therefore (1.1) has a positive
solution for λ̂≤ λ≤ λ∗ where λ∗ =min{λ̃,λ}.
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