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We establish some new criteria for the oscillation of third-order difference equations of
the form A((1/ax(n))(A(1/a; (n))(Ax(n))*)*) + dq(n) f (x[g(n)]) = 0, where A is the for-
ward difference operator defined by Ax(n) = x(n+ 1) — x(n).

1. Introduction

In this paper, we are concerned with the oscillatory behavior of the third-order difference
equation

Lsx(n)+38q(n) f (x[g(n)]) =0, (1.1;0)

where § = =1, ne N ={0,1,2,...},

1 a

Lox(n) = x(n),  Lix(n) = (ALox(n))™,
ai(n) (1.2)

Lyx(n) = . (AL;x(n))™, Lsx(n) = AL,x(n).
ax(n)
In what follows, we will assume that
(i) {ai(n)},i=1,2,and {q(n)} are positive sequences and

> (ai(m) " =0, =12 (1.3)

(ii) {g(n)} is a nondecreasing sequence, and lim, .. g(n) = oo;

(iii) f € @(R,R),xf(x) >0, and f'(x) = 0 for x # 0;

(iv) a4, i = 1,2, are quotients of positive odd integers.

The domain %(Ls) of Ls is defined to be the set of all sequences {x(n)}, n > ny >0
such that {L;x(n)}, 0 < j < 3 exist for n > ny.

A nontrivial solution {x(n)} of (1.1;0) is called nonoscillatory if it is either eventually
positive or eventually negative and it is oscillatory otherwise. An equation (1.1;8) is called
oscillatory if all its nontrivial solutions are oscillatory.
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The oscillatory behavior of second-order half-linear difference equations of the form

A(al( )(Ax(n)) >+6q(n)f( [g(n)]) = (1.4;6)

where 8, a1, q, &, f, and & are as in (1.1;6) and/or related equations has been the sub-
ject of intensive study in the last decade. For typical results regarding (1.4;8), we refer
the reader to the monographs [1, 2, 4, 8, 12], the papers [3, 6, 11, 15], and the ref-
erences cited therein. However, compared to second-order difference equations of type
(1.4;9), the study of higher-order equations, and in particular third-order equations of
type (1.1;8) has received considerably less attention (see [9, 10, 14]). In fact, not much
has been established for equations with deviating arguments. The purpose of this paper
is to present a systematic study for the behavioral properties of solutions of (1.1;8), and
therefore, establish criteria for the oscillation of (1.1;6).

2. Properties of solutions of equation (1.1;1)

We will say that {x(n)} is of type By if

x(n) >0, Lix(n) <0, Lrx(n) >0, Lsx(n) <0 eventually, (2.1)
it is of type B, if

x(n) >0, Lix(n) >0, Lrx(n) >0, Lsx(n) <0  eventually. (2.2)

Clearly, any positive solution of (1.1;1) is either of type By or B,. In what follows, we
will present some criteria for the nonexistence of solutions of type B, for (1.1;1).

TaEOREM 2.1. Let conditions (i)—(iv) hold, g(n) < n for n = ny = 0, and

—f(=xy) = f(xy) = f(x)f(y) forxy>DO. (2.3)

Moreover, assume that there exists a nondecreasing sequence {&(n)} such that g(n) < &(n)
< n for n = ng. If all bounded solutions of the second-order half-linear difference equation

é(n)

A(azzn) (Ay(”))a2> “1(”)f< >, ﬂi/“l(k)) fEm]) =0 (2.4)

k=g(n)

are oscillatory, then (1.1;1) has no solution of type B.

Proof. Let {x(n)} be a solution of (1.1;1) of type By. There exists ny € N so large that
(2.1) holds for all n > ngy. For t > s > ng, we have

x(s) =x(t+1) Za}/“l(]) 1/a|

(]) (Z al/txl ) ( l/ou (t)) (2.5)
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Replacing s and t by g(n) and &(n) respectively in (2.5), we have

&(n)
2( . a%“’“(j))( L™ x[E(m)]) (2.6)

j=g(n)

for n = n; € N for some n; = ny. Now using (2.3) and (2.6) in (1.1;1) and letting y(n) =
—Lix(n) >0 for n = n;, we easily find

&(n
A(a(n)(Ay(n)) ) (Z al/txl ) <y1/0c1[£(n)])20 forn=n. (2.7)

j=g(n)

A special case of [16, Lemma 2.4] guarantees that (2.4) has a positive solution, a contra-
diction. This completes the proof. O

THEOREM 2.2. Let conditions (i)—(iv) and (2.3) hold, and assume that there exists a nonde-
creasing sequence {&(n)} such that g(n) < &(n) < n for n > ny. Then, (1.1;1) has no solution
of type By if either one of the following conditions holds:

(S1)
/(araz)
7].(“114 ) >1 foru+0, (2.8)
el £(k) En) Ve
limsup > q(k)f( > a}/“‘(j)) f (Z a;/“z(i)) >1,  (2.9)
e k=E(n) j=g(k) i=E(k)
(S2)
%0 asu—0, (2.10)
f(ul/(mlxz))

n-1 £(k) Em) Ve
limsup > q(k)f( > a}/“l(j))f ( > aé/“Z(i)) >0. (2.11)
TR k=&(n) j=g(k) i=&(k)

Proof. Let {x(n)} be a solution of (1.1;1) of type By. Proceeding as in the proof of
Theorem 2.1 to obtain the inequality (2.7), it is easy to check that y(n) >0and Ay(n) <0
for n > ny. Let np > n; be such that inf . ,, £(n) > ny. Now

T n 1 o 1/,
Y@=y 1) - 3 (az(])< yi)®)

(i o) s

(2.12)

1/(X2
04
y(1)) z) fort >0 > n,.
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Replacing o and 7 by &(k) and £(n) respectively in (2.12), we have

&(n) 1/
HGIE ( > a;/“Z(j)) <M(—Ay[f(n)])az) forn>=k=mn.  (2.13)

j=§k)

Summing (2.7) from &(n) to (n — 1) and letting Y(n) = (—Ay(n))%/a,(n) for n = n,, we
get

n—1 E(k)
Y[E(n)] = Y(n)+ Zq<k (Z . )

k=&(n j=g(k)

E(n) 1/
Xf([( Z l/ocz() Yl/az[f(l’l ]] ) for n > n,.
i=§(k)

Using condition (2.3) in (2.14), we have

(2.14)

Y[E(m)] = f(YV @) [E(m)])

-1 £(k) Em) Ve
<| 2 q(k)f< > ai““(j)) f (Z aé/‘“(i)) , nzm.
k=§(n) j=g(k) i=&(k)

(2.15)
Using (2.8) in (2.15) we have

n-1 &(k) E(n) 1/
1= > q(k)f( > ai/"”(j))f ( > ai/“z(i)) . (2.16)

k=E&(n) j=g(k) i=§ (k)

Taking limsup of both sides of the above inequality as n — oo, we obtain a contradiction
to condition (2.9).

Next, using (2.10) in (2.15) and taking limsup of the resulting inequality, we obtain a
contradiction to condition (2.11). This completes the proof. O

THEOREM 2.3. Let the hypotheses of Theorem 2.2 hold. Then, (1.1;1) has no solutions of type
By if one of the following conditions holds:
(O1)

fl/azg{ 1/a1) > 1 foru#O, (2‘17)

n-1 £G) e
limsup Z a;/“Z(k)(Z q(])f( > a}/“'(i))> >1, (2.18)

T k=t j=k i=g(j)
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(02)
u
W — 0 asu—20, (219)
n-1 £3j) Ve,
limsup Z ay/® (k) (Z q(j)f( Z al® (i) )) > 0. (2.20)
=0 k=E(n) j=k i=g(j)

Proof. Let {x(n)} be a solution of (1.1;1) of type By. As in the proof of Theorem 2.1, we
obtain the inequality (2.7) for n > n;. Also, we see that y(n) >0and Ay(n) < 0 for n > n;.
Next, we let n, = n; be as in the proof of Theorem 2.2, and summing inequality (2.7)
from s > n, to (n— 1), we have

1 . 1 n—1 (k)
(—Ay(s)” = (-Ay(m)™+ > qk)f ( > a%/m(j)) FOMYO[EMR]),
J

a(s) ax(n) P 7S
(2.21)
which implies

k=s

el &(k) 1/ay
—Ay(s) = 4" (s) (Z q(k) f ( > (j)) Flyre [E(k)])) : (222)

Now,

n—1 -

yw) =ym)+> (- Z —Ay(s)) forn—1=s>n,. (2.23)

S=v s=v

Substituting (2.23) in (2.22) and setting v = &(n), we have

_ a1 k) 1/ay
2 @)/ (s) (Z q(k)f( > ai/“‘(j))f(y”“l [E(k)]))

s=§(n k=s j=g(k)

o nml £(k) Ve
Zfl/otz (yl/m[f(n)]) Z a;/m(s) (z q(k)f ( z a%/‘xl(]‘))) .
k=s j=g(k)

s=&(n) i=g(

(2.24)

The rest of the proof is similar to that of Theorem 2.2 and hence is omitted. O
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THEOREM 2.4. Let conditions (i)—(iv), (2.3) hold, g(n) = n — 7, where 7 is a positive integer
and assume that there exist two positive integers such that T > T > 7. If the first-order delay
equation

_ 1/
Ay(n)+q(n)f ( Z al®(j ) (( Z ) ( 1)) )f(yl/(“'a”[n—f]) =0
j=n-1

i=n—T
(2.25)
is oscillatory, then (1.1;1) has no solution of type By.

Proof. Let {x(n)} be a solution of (1.1;1) of type By. As in the proof of Theorem 2.1, we
obtain (2.6) for n > n;, which takes the form

[n—1] = ( Z al®(j ) (—L}/"“x[n—f]) for n = n. (2.26)
j=n-t
Similarly, we find
—Lix[n-7] = ( > a%/“z(i)) (L;/“Zx[n - i’]) for n = n, = n,. (2.27)

Combining (2.26) with (2.27) we have

n-t 1/(X1
( Z 1/“‘ ) ( Z awz( ) Lé/(“”mx[n —17] form=n;=>n,.
i=n—T

. (2.28)
Using (2.3) and (2.28) in (1.1;1) and setting Z(n) = L,x(n), we have

n-7 _ 1/ay
v E(3))

X f(ZzV®) [ —F]) <0 forn= ns.

By a known result in [2, 12], we see that (2.25) has a positive solution which is a contra-
diction. This completes the proof. O

As an application of Theorem 2.4, we have the following result.
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CoROLLARY 2.5. Let conditions (i)—(iv), (2.3) hold, g(n) = n— 1, 7 is a positive integer and
let there exist two positive integers T, T such that T >7T > 7. Then, (1.1;1) has no solution of
type By if either one of the following conditions holds:

() in addition to (2.8),

n—1 k-7 - Ve PN
11m1nf Z qk) f ( al® ( ) ( Z Ve z)) > (l+f> , (2.30)
j i=k-7

k=n-7T j=k—1 i=k—

(I)

du
[e¢]

Lo f (uV/(@e)) =%
) k-7 k—7 /ey
> q<k)f< > a™ (j)) f (( > aé/‘“(i)) ) = o, (2.32)
j T =k

(2.31)

1

k=nq j=k— -7

Next, we will present some criteria for the nonexistence of solutions of type B, of
(1.1;1).
THEOREM 2.6. Let conditions (i)—(iv) and (2.3) hold. If

0 g(j)*l
Zq(j)f( > a}/“'u)) = oo, (2.33)

i:no
then (1.1;1) has no solution of type B,.

Proof. Let {x(n)} be a solution of (1.1;1). There exists an integer ny € N so large that
(2.2) holds for n = ng. From (2.2), there exist a constant ¢ > 0 and an integer n; > ng such
that

ﬁ (ALox(m)® = Lyx(n) > c, (2.34)

or
Ax(n) = (cal(n))l/‘x1 for n = n. (2.35)
Summing (2.35) from n,; to g(n) — 1(= n;) we obtain

g(n)—1

x[gm] =" > a’™(j). (2.36)

j=m
Using (2.3) and (2.36) in (1.1;1) we have
—Lsx(n) = q(n) f (x[g(n)])

g(n)—1

zq(n)f(cl/"")f( > ai/“l(j)) forn = ny > n.

j=m

(2.37)
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Summing (2.37) from n; to n— 1(> n,) we obtain
00 > Lrx(ny) = —Lyx(n) + Lyx(ny)
n—1 g(k)-1
2.38
() S gk f ( S al ) e a2
k=n, j=m
a contradiction. This completes the proof. O

THEOREM 2.7. Let conditions (i)—(iv) and (2.3) hold, and g(n) = n — 1, n = ny = 0, where
T is a positive integer. If the first-order delay equation

n—-1—1 k-1 Ve
Ay(n) +q(n)f( > (m(k) > aé/“z(j)) )f(yl/(“‘“”[n— T]) =0 (2.39)

k=ny j=no

is oscillatory, then (1.1;1) has no solution of type B,.

Proof. Let {x(n)} be asolution of (1.1;1) of type B,. There exists an integer 1y > 0 so large
that (2.2) holds for n > ny. Now,

LlX(l’l le 7’10 Z Ale

j=no

= Lix(np) Z ay* (j) (a; V" (j)AL1x(j) )

] no

1 (2.40)
= Lix(no) + > &/ (j)L;*x(j)
j=no
1/“2 x(n) z al/“z for n > ny,
j=no
or
! (Ax(n)™ = LY*x(n) z al/”‘2 (2.41)
a1 (n) j=no
Thus,
o1 1/
Ax(n) = (al(n) > a%/“z(j)) LY@ () for n= ny. (2.42)
j=no

Summing (2.42) from ng to g(n) — 1 > ny, we have

g(n)-1 k-1 Ve
x[gm)]=| > (al(k) > aé/“z(j)> [Y(wez) x[g(n)] forn=n; >ny  (2.43)

k=ng Jj=no
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Using (2.3), (2.43), g(n) = n — 7, and letting y(n) = L,x(n), n = n;, we obtain

k—

-1 k-1 Ve
> (al(k) > aé/“z(j)) )f(yl/(“‘“Z)[n— T]) <0. (2.44)
k=ng

Ay(n)+q(n)f(
j=no

The rest of the proof is similar to that of Theorem 2.4 and hence is omitted. O

TaEOREM 2.8. Let conditions (i)—(iv) and (2.3) hold and g(n) > n+1 for n = ny € N. If the
half-linear difference equation

A(l Ay(n)™ ) + g(nz 7 Vei(n)) =0 2.45
oy 0™ g A ()] F(mm) =0 (245)

is oscillatory, then (1.1;1) has no solution of type B,.

Proof. Let {x(n)} be a solution of (1.1;1) of type B,. Then there exists an #ny € N suffi-
ciently large so that (2.2) holds for n > ny. Now, for m > s > ny we get

m—1
x(m)—x(s) = > a'" (jILY" x(j), (2.46)
j=s

or

(deoﬂlm() (2.47)

]j=s

Replacing m and s in (2.47) by g(n) and n, respectively, we have

g(n)—-1
x[g(n)] = ( > ay® (j)) LV“x(n) forg(n)=n+1=n = n. (2.48)
j=n

Using (2.3) and (2.48) in (1.1;1) and letting Z(n) = L1x(n) for n = n,, we obtain

g(n)—1

1 o oy o
A(a2(n) (AZ(n)) )+q(n)f( S aY (]))f(Zl/l(n))SO forn>n. (249

j=n

By [16, Lemma 2.3], we see that (2.45) has a positive solution, a contradiction. This com-
pletes the proof. O

Remark 2.9. We note that a corollary similar to Corollary 2.5 can be deduced from
Theorem 2.7. Here, we omit the details.

Remark 2.10. We note that the conclusion of Theorems 2.1-2.4 can be replaced by “all
bounded solutions of (1.1;1) are oscillatory.”

Next, we will combine our earlier results to obtain some sufficient conditions for the
oscillation of (1.1;1).
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THEOREM 2.11. Let conditions (i)—(iv) and (2.3) hold, g(n) < n for n = ny € N. Moreover,
assume that there exists a nondecreasing sequence {&(n)} such that g(n) < &(n) <n forn >
no. If either conditions (S1) or (S2) of Theorem 2.2 and condition (2.33) hold, the equation
(1.1;1) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of (1.1;1), say, x(n) >0 for n = ny € N.
Then, {x(n)} is either of type By or B,. By Theorem 2.2, {x(n)} is not of type By and by
Theorem 2.6, {x(n)} is not of type B,. This completes the proof. O

THEOREM 2.12. Let conditions (i)—(iv), (2.3) hold, g(n) = n— 1, n = ny € N, where 7 is
a positive integer. Moreover, assume that there exist two positive integers T and T such that
T >7 > T. If both first-order delay equations (2.25) and (2.39) are oscillatory, then (1.1;1) is
oscillatory.

Proof. The proof follows from Theorems 2.4 and 2.7. O

Next, we will apply Theorems 2.11 and 2.12 to a special case of (1.1;1), namely, the
equation

1 1 o a© 3 -
Mt (Am(n) (axn)™) ") +qOnelgtn)] =0, (2.50)

where « is the ratio of positive odd integers.

CoROLLARY 2.13. Let conditions (i)—(iv) hold, g(n) < n for n = ny € N, and assume that
there exists a nondecreasing sequence {&(n)} such that g(n) < &(n) < n for n = ny. Equation
(2.50) is oscillatory if either one of the following conditions holds:

(A1) a=ara,

IS ¢(j)-1 o
2. q(j)< > ai/“‘(i)) = oo, (2.51)

Jj=no=0 i=ng
n-1 £(j) V{0 *
limsup > q()| > a/™G)] | D a6 | >1, (2.52)
nTe L j=En) i=g(j) i=£(j)

(Az) a < oy and condition (2.51) hold, and

n—1 &) * k) e
limsup > q(j)( > a}/“l(i)) ( > a;/“Z(i)) > 0. (2.53)

nTe j=En) i=g(j) i=E(j)

COROLLARY 2.14. Let conditions (i)—(iv) hold, g(n) = n— 1, n = ny € N, where 7 is a pos-
itive integer, and assume that there exist two positive integers T, T such that v >7 > 7. If
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the first-order delay equations

Ay(n)+q(n)( nir ai/“l(j)> ( i Ve ) ZY¥@mo) [y 5] =0, (2.54)

j=n-t i=n-T

n—1—1 j=1 Ve
AZ<n>+q<n)( > (m(j)Zaé/“%i)) ) 7@ [n 7] =0 (2.55)

j:no i:f’lo

are oscillatory, then (2.50) is oscillatory.

For the mixed difference equations of the form

Lsx(t) + qi(t) fi (x[g1(m)]) + q2(n) fo (x[g2(n)]) = (2.56)

where L3 is defined as in (1.1;1), {a;(n)}, i = 1,2 are as in (i) satisfying (1.3), &) and a,
are as in (iv), {gi(n)}, i = 1,2 are positive sequences, {gi(n)}, i = 1,2 are nondecreasing
sequences with lim, .« gi(n) = c0, i = 1,2, fi € ‘6(R,R), xfi(x) >0 and fi(x) = 0 forx # 0
and i = 1,2. Also, fi, f, satisfy condition (2.3) by replacing f by f; and/or f.

Now, we combine Theorems 2.1 and 2.8 and obtain the following interesting result.

THEOREM 2.15. Let the above hypotheses hold for (2.56), g1(n) < n and g,(n) >n+1 for
n = ng € N and assume that there exists a nondecreasing sequence {&(n)} such that g(n) <
&(n) < n for n = ny. If all bounded solutions of the equation

&(n)
(a( y (Aym)* )W)fl( 2 ai/“'(k))ﬁ(y”“l[f(n)])=0 (2.57)
k=gi(n)
are oscillatory and all solutions of the equation
1 g(n)—
A(az(n) (AZ(m)* )*‘JZ ( > ai/“l(J))fz(Z”“l () = (2.58)

are oscillatory, then (2.56) is oscillatory.

3. Properties of solutions of equation (1.1;-1)

We will say that {x(n)} is of type By if
x(n) >0, Lix(n) >0, Lrx(n) <0, Lsx(n) =0 eventually, (3.1)
it is of type B if
x(n) >0, Lix(n) >0, i=1,2, Lsx(n) =0 eventually. (3.2)

Clearly, any positive solution of (1.1;-1) is either of type B; or Bs. In what follows, we
will give some criteria for the nonexistence of solutions of type B for (1.1;-1).
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THEOREM 3.1. Assume that conditions (i)—(iv) hold. If

>q(j) =, (3.3)

then (1.1;-1) has no solution of type B.

Proof. Let {x(n)} be a solution of (1.1;-1) of type B;. Then there exists an ny € N suf-
ficiently large so that (3.1) holds for n > ny. Next, there exist an integer n; > ng and a
constant ¢ > 0 such that

x[g(n)] = ¢ forn=n;. (3.4)

Summing (1.1;-1) from n; to n — 1 = n; and using (3.4), we have

Lyx(n) — Lox(ni) = gq(j)f(x[g(j)]), (3.5)
j=m
or
00 > —Lyx(ny) f(c)Zq ) — o0 asn— oo, (3.6)
j=m
a contradiction. This completes the proof. O

THEOREM 3.2. Let conditions (i)—(iv) and (2.3) hold and g(n) < n for n = ny € N. If all
bounded solutions of the half-linear equation

g(n)—1

(g5 900" ) = a0 ( 2 ai/“‘U))f(y”“' gm]) =0  (7)

j=no

are oscillatory, then (1.1;-1) has no solutions of type B.

Proof. Let {x(n)} be a solution of (1.1;-1) of type B;. There exists an 1y € N such that
(3.1) holds for n > ng. Now

x(n) = x(no) = Z Ax(j Z @™ (LY x(). (3.8)
Jj=no j=no
Thus,
n—1
> (Z al/® (j)) LY*x(n) forn = ny. (3.9)
Jj=no

There exists an n; > ny such that

g(n)—1
(Z al® (j ) L/ x[g(n)] forn=n. (3.10)

j=no
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Using (2.3) and (3.10) in (1.1;-1) and letting y(n) = L1x(n) for n > n;, we have

g(n)—-1

A( ! (Ay(n))az)Zq(n (2 al/"‘1 ) (yValg(n)]) forn=n. (3.11)

ax(n) o

The rest of the proof is similar to that of Theorem 2.1 and hence is omitted. O

Next, we state the following criteria which are similar to Theorems 2.2, 2.3, and 2.4.
Here, we omit the proofs.

THEOREM 3.3. Let conditions (i)—(iv) and (2.3) hold, and g(n) < n for n = ny € N. Then,
(1.1;-1) has no solution of type By if either one of the following conditions holds:
(C1) condition (2.8) holds, and

-1 g1 gln) Ve
limsup > 1q(k) f( > a{/“l(j)) f (Z a;/“Z(i)> >1, (3.12)
=0 k=g(n) j=n9=0 i=g(k)

(Cy) condition (2.10) holds, and

el gh-1 g(n) Ve
limsup > 1 q(k) f( > ai/m(j)) f (z a;/“Z(i)> >0. (3.13)
= k=g(n) j=no=0 i=g(k)

TaEOREM 3.4. Let the hypotheses of Theorem 3.3 be satisfied. Then, (1.1;-1) has no solutions
of type By if either one of the following conditions holds:
(D1) condition (2.17) holds, and

n—1 n—1 g(j)-1 Ve
limsup Z ay® (k )(Zq(j)f( Z ai”’”(i))) >1, (3.14)

= k=g(n) j=k i=np=0

(D) condition (2.19) holds, and

n—1 n—1 g(j)- Ve,
limsup > a;/“Z(k)(Z ( > a]/“l(z)) > 0. (3.15)

=0 k=g(n) j=k i=np=0
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THEOREM 3.5. Let conditions (i)—(iv) and (2.3) hold, g(n) =n —1,n = ng € N where tisa
positive integer, and assume that there exists an integer T > 0 such that v > 7. If the first-order
delay equation

n—-1—1 n-7 Ve
y(n)+q(n) f (2 7 )f((Zaé/”(j)) )f(yl/(m“z)[n—f]):o

j=no j=n-t
(3.16)
is oscillatory, then (1.1;-1) has no solution of type B;.

Next, we will present some results for the nonexistence of solutions of type Bs for
(1.15-1).

THEOREM 3.6. Let conditions (i)—(iv) and (2.3) hold, g(n) >n+1 for n = ny € N, and
assume that there exists a nondecreasing sequence {1(n)} such that g(n) >#y(n) >n+1 for
n = ng. Then, (1.1;-1) has no solution of type Bs if either one of the following conditions
holds:

(E1) condition (2.8) holds, and

(-1 o(k)-1 (k-1 Ve
limsup Z q(k)f( Z al®(j ) (( Z al/"‘2 ) )>1, (3.17)

n=©  k=n j=n(k) j=n(n)
(E2)
u
W — 0 asu— oo, (318)
n(n)—1 o(k)-1 (k) -1 Ve
limsup > q(k)f( S ay(j ) ( > ay ])> > 0. (3.19)
T ke=n j=nk)

Proof. Let {x(n)} be a solution of (1.1;-1) of type Bs. Then there exists a large integer
ny € N such that (3.2) holds for n > ny. Now

o—1
x(0) = x(1)+ > Ax(j) = x(7) + Z ay™ (G)LY ™ x(j)
I I (3.20)
(Z a’® (])) LY x(r) foro =12 ny.
j=T
Letting 0 = g(n), T = 5(n) in (3.20), we see that
g(n)—1
x[g(n)] = ( > a}/“‘(j)> LY“x[n(n)] forn=n; = n,. (3.21)
j=n(n)
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Using (3.21) in (1.1;-1) and letting y(n) = L1x(n), n = n; we have

1 “ g(n)—-1 .
A(az(n) (Ay(n)) >zq(n)f (j%n)a}“g)) FOY[m]) forn=m. (3.22)

Clearly, y(n) >0 and Ay(n) >0 for n > n,. As in the above proof, we can easily find

n(k)—
yn(k ( > aé/“z(])) (LY*2y[n(n)]) fork=n—1=n, (3.23)

j=n(n)

where Ly(n) = (Ay(n))*/a,(n). Using (2.3) and (3.23) in (3.22), we have

j=n(k) j=n(k)

g(k)-1 nk)—1 Ve
A(Ly(k)) zq(k)f( > ai““(j))f(( > aé/‘“(j)) )f(L”(“““’y[n(n)])
(3.24)

for k = n—1 = n;. Summing (3.24) from n to #(n) — 1 = n, we have

Lyln(n)] = Ly[n(n)] - Ly(n)
q(kH g(k)-1 Ve
> ( Z al/m ) (( Z a;/az(j)) )f(Ll/(alocz)y[rl(k)]))
)

k=n j=n(k) j=n(n
(3.25)
or
Ly[n(k)] (i & W Y -
> k “( © . (3.26
F (LY@ y[n(n)]) kgn q(k) f (j%n) ) (; %n ay " (j) ) (3.26)

Taking limsup of both sides of (3.26) as n — oo and applying the hypotheses, we arrive at
the desired contradiction. O

THEOREM 3.7. Let the hypotheses of Theorem 3.6 be satisfied. Then, (1.1;-1) has no solution
of type Bs if either one of the following conditions holds:
(F1) condition (2.17) holds, and

n(n)—1

k-1 ¢(j)-1 Ve
limsup > a;/“Z(k)(Z q(j) f( > a}/“l(i)>> >1, (3.27)
j=n

— 00
n k=n
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(F2)
%0 asu— 0, (3.28)
fl/ocz (ul/fxl)
n(n)—1 k-1 g(j)—1 Ve
limsup > ay*® (k) (Z q(j) f ( > a}/“l(i))) > 0. (3.29)
n—eo k=n j=n i=n(j)

Proof. Let {x(n)} be a solution of (1.1;-1) of type Bs. As in the proof of
Theorem 3.6, we obtain the inequality (3.22) and we see that y(n) >0 and Ay(n) >0
for n = n;. Summing inequality (3.22) from nto k — 1 = n > n, > n;, we have

k-1 g(j)-1
Ly =S aif | S a6 ] £(y e n())) (3.30)
a2(k) j=n i=n(j)
which implies that

k-1 ¢(j)-1 Va;
Ay(k) = ay® (k) (Z q(j)f( > a}/“l(i)) f(y”"“[n(j)])) forn>mn,  (3.31)

j=n i=n(j)

Combining (3.31) with the relation
y(s) = Z Ay(k) fors—1zn=mn, (3.32)

and setting s = 5(n), we have

y[n(n)] n(n)—1 y k—1 - 1/ 1/ay
fVa (yi/a [ (n)]) > > af*(k) (J;q(ﬂf( z )) for n > n,.

k=n i=n(j
(3.33)

Taking limsup of both sides of (3.33) as n — oo, we arrive at the desired contradiction.
O

TaEOREM 3.8. Let conditions (i)—(iv) and (3.2) hold, g(n) = n+ o for n = ny € N, where o
is a positive integer, and assume that there exist two positive integers ¢ and ¢ > 1 such that
0—2>0—1>4. If the first-order advanced equation

n+o—1 n+o—1 Van
Ay(n) —q(”)f( Z ai/(X} (])) f (( Z d%/az(].)) )f(yl/(otlaz)[n+5~]) =0

j=n+o j=n+o
(3.34)
is oscillatory, then (1.1;-1) has no solution of type Bs.
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Proof. Let {x(n)} be a solution of (1.1;-1) of type Bs. As in the proof of Theorem 3.6, we
obtain the inequality (3.21) for n > n, that is,

n+o—1
x[n+o] = ( > a}/“‘(j)) L x[n+7] forn=n. (3.35)

j=nto
Similarly, we see that

n+o—1

Lix[n+7] = ( > a)®(j ) ( ]/“Zx[n+a]> for n = ny, = n,. (3.36)

] n+ao

Combining (3.35) and (3.36), we have

n+o—1 n+o—1 Ve
x[n+o] 2( > a%/“l(j)) ( > ay®(j ) LV %5+ 5] fornz=mny (3.37)

j=n+o j=n+o6

Using (2.3) and (3.37) in (1.1;-1) and letting Z(n) = L1x(n), n = n,, we have

n+o—1 n+o—1 Veq
AZ(n) = n)f(Z ai”’“(j))f (Z ““Zm) f(ZV 9 (n+5]).  (3.38)

j=n+o j=n+o
By a known result in [2, 12], we see that (3.34) has an eventually positive solution, a
contradiction. This completes the proof. O

Next, we will combine our earlier results to obtain some sufficient conditions for the
oscillation of (1.1;-1), as an example, we state the following result.

THEOREM 3.9. Let conditions (i)—(iv) and (2.3) hold, g(n) = n+ o for n = ny € N, and
assume that there exist two positive integers o, ¢ such that 0 —2 >7 — 1 > 6. If condition
(3.3) holds and equation (3.34) is oscillatory, then (1.1;-1) is oscillatory.

Proof. The proof follows from Theorems 3.1 and 3.8. O

Now, we apply Theorem 3.9 to a special case of (1.1;-1), namely, the equation

A( ! (A ! (Ax(n))“')“z)—q(n)x“[nw]:o, (3.39)

a(m) \" ai(n)

where « is the ratio of positive odd integers and o is a positive integer, and obtain the
following immediate result.

CoroLLARY 3.10. Let conditions (i)—(iv) hold and assume that there exist two positive in-
tegers @ and ¢ > 1 such that 0 —2 >0 — 1 > &. Then, (3.39) is oscillatory if either one of the
following conditions is satisfied:
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(J1) condition (3.3) holds, and

no—1 k+o—1 & [k+o-1 © 5—1\°
S 0 (3 a0 (S to0)) (75 amwen

k=n+1 j=k+o

(J2) condition (3.3) holds, and

n+a—1 k+o—1 k-1 a/a
limsup Z q(k)( Z ai/a'(]’)) ( Z aé/“z(j)) >0 ifa>aa. (3.41)

n= k=n+l j=k+G j=k+d

Now we will combine Theorems 3.5 and 3.8 to obtain some interesting oscillation
criteria for the mixed type of equations

Lsx(n) — qi(n) fi (x[g1(m)]) = q2(n) fo(x[g2(n)]) = (3.42)

where L3, g;, gi» and f;, i = 1,2 are as in (2.56).

TaEOREM 3.11. Let the sequences {q;(n)}, {gi(n)}, and fi(x), i = 1,2 be as in (2.56), let L3
be defined as in (1.1;6), and {ai(n)}, ai, i = 1,2 are as in (i) and (iv), g§1(n) = n— 7 and
o(n) =n+o,n=ny €N, where T and o are positive integers. Moreover, assume that there
exist positive integers T, 0, and & such that T >7 and 0 —2 >0 — 1> 4. If (3.16) with q
and f replaced by q, and fi, respectively, and (3.34) with q and f replaced by q and f,,
respectively, are oscillatory, then (3.42) is oscillatory.

Remark 3.12. The results of this paper are presented in a form which is essentially new
evenifa; = ay = 1.
4. Applications

We can apply our results to neutral equations of the form

Ls (x(n) + p(m)x[t(n)]) + 6 f (x[g(n)]) = (4.1;6)

where {p(n)} and {7(n)} are real sequences, 7(n) is increasing, 7! (n) exists, and
lim,_« 7(n) = oo. Here, we set

y(n) = x(n) + p(n)x[r(n)]. (4.2)

If x(n) >0and p(n) = 0forn = ng = 0, then y(n) >0forn = n; = ny. Welet0 < p(n) <1,
p(n) # 1 for n = ngy, and consider either (P;) 7(n) < n when Ay(n) >0 for n > ny, or (Py)
7(n) > n when Ay(n) <0 for n = n;. In both cases we see that

x(n) = y(n) — p(n)x[t(n)] = y(n) — p(n)[y[z(n)] - p[z(n)]x[7 o 7(n)]] (43)
n ( '

> y(n)— p(n)y[r(n)] = y(n)[1-p(n)] forn=>n,.
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Next, welet p(n) > 1, p(n) # 1 for n > ng and consider either (P3) 7(n) > nif Ay(n) >0
for n = ny, or (P4) 7(n) <nif Ay(n) <0 for n = n,;. In both cases we see that

_ 1 -1 _ -1
x(n)—p[T_l(n)](y[T (m] -x[r7'(m)])
ylrtw] y[rlow(nu_x[r—lor—l(n)])
ol ] ple I \plrTer i w)] T plr o r ()] (44
1 1 -

Using (4.3) or (4.4) in (4.1;0), we see that the resulting inequalities are of type (1.1;0).
Therefore, we can apply our earlier results to obtain oscillation criteria for (4.1;8). The
formulation of such results are left to the reader.

In the case when p(n) < 0 for n = ny, we let p1(n) = —p(n) and so

y(n) = x(n) — pr(n)x[z(n)]. (4.5)

Here, we may have y(n) >0, or y(n) <0 for n = n; = ny. If y(n) >0 for n = ny, we see
that

x(n) = y(n) forn=n. (4.6)

On the other hand, if y(n) <0 for n = n;, we have

1 y(n)
x[t(n)] = e [y(n)+x(n)] = ) (4.7)
or
-1
x(n) > % forn > n, > ny. (4.8)

Next, using (4.6) or (4.8) in (4.1;8), we see that the resulting inequalities are of the type
(1.1;6). Therefore, by applying our earlier results, we obtain oscillation results for (4.1;6).
The formulation of such results are left to the reader.

Next, we will present some oscillation results for all bounded solutions of (4.1;1) when
p(n) <0and 7(n) = n — 0, n = ny and o is a positive integer.

THEOREM 4.1. Let 7(n) = n — 0, 0 is a positive integer, py(n) = —p(n) and 0 < p1(n) < p<
1, n = ny, p is a constant, and g(n) < n for n = ny. If

u
MTz)(u) <1 fOT u =,'é 0, (49)

f

n—1

a1 - Va, | Vu
limsup Z [al(k) Z (az(j) q(i)) ] > 1, (4.10)
j=k i=j

n=e p o)

then all bounded solutions of (4.1;1) are oscillatory.
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Proof. Let {x(n)} be a bounded nonoscillatory solution of (4.1;1), say, x(n) >0 for n >
ng = 0. Set

y(n) =x(n) — p1(n)x[n—o] forn=n; = n,,. (4.11)

Then,

Lyy(n) = —q(n) f(x[g(n)]) <0 forn=>n,. (4.12)

It is easy to see that y(n), L, y(n), and L, y(n) are of one sign for n > n, = n;. Now, we
have two cases to consider: (M;) y(n) <0 for n = ny, and (M;) y(n) >0 for n = n,.

(M) Let y(n) < 0 for n = ny. Then either Ay(n) < 0,0r Ay(n) >0forn = n,. If Ay(n) <
0 for n = n,, then

x(n) < px[n—o] < p*x[n—20] < -+ < p"x[n—mo] (4.13)

for n = ny + mo, which implies that lim,_.. x(#) = 0. Consequently, lim,_.., y(n) =0, a
contradiction.
Now, we have y(n) <0 and Ay(n) >0 for n = n,. Set Z(n) = —y(n) for n = n,. Then,

L3Z(n) =q(n)f(x[g(n)]) =0 forn=n, (4.14)

and AZ(n) < 0 for n = n,. It is easy to derive at a contradiction if either L,Z(n) >0 or
L,Z(n) <0 for n = n,. The details are left to the reader.
(M3) Let y(n) >0 for n = ny. Then, x(n) = y(n) for n = n, and from (4.12), we have

Lyy(n) < —q(n)f(y[g(n)]) forn = n,. (4.15)

We claim that Ay(n) < 0 for n = n,. Otherwise, Ay(n) > 0 for n > n, and hence we see that
y(n) — co as n — co, a contradiction. Thus, we have y(n) >0 and Ay(n) <0 for n > n,.
Summing (4.15) from n = n, to u and letting u — o, we have

1/
A(alz )( y(n))* ) Flle(y [g(n)])<az(n)iznq(i)) . (4.16)
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Again summing (4.16) twice from j = k to n — 1, and from k = g(n) to n — 1, we obtain

Ve 1/
y[g(n)] n—1 n—1 ' ) .
1> > Z al(k)z az(])Zq(z) . (4.17)
/(a10)

free (ylgml) =g, j=k i=j
Taking limsup of both sides of the above inequality as #n — co, we arrive at the desired
contradiction. This completes the proof. O

In the case when p(n) = —1, we have the following result.
THEOREM 4.2. Let 7(n) = n— 0, 0 is a positive integer, p(n) = —1, and g(n) < n for n = n,.

If

1/0(2 1/0(1

> (m(k)z (azU)Zq(i)) ) = oo, (4.18)
j=k i=j

then all bounded solutions of (4.1;1) are oscillatory.
Proof. Let {x(n)} be a nonoscillatory solution of (4.1;1), say, x(1n) >0 for n > ny > 0. Set
y(n) =x(n) —x[n—0] forn=mn = n. (4.19)
Then,
Lyy(n) = —q(n) f(x[g(n)]) <0 forn=>ny. (4.20)
It is easy to check that there are two possibilities to consider: (Z,) L, y(n) = 0, Ay(n) <0,
and y(n) <0 for n = ny, = ny, or (Z) Lyy(n) = 0, Ay(n) <0, and y(n) >0 for n = n,.

In case (Z,), there exists a finite constant b > 0 such that lim,_ y(n) = —b. Thus,
there exists an n3 > 1, such that

—b<y(n)<—g for n > nj. (4.21)
Hence,
x[n—o] > for n > ns, (4.22)
then there exists an n4 > n3 such that

for n > ny. (4.23)

From (4.20), we have

L3y(n) < —f(—)q(n) for n > ny. (4.24)
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In case (Z,), we have
x(n)=x[n—1] forn=n,. (4.25)
Then there exist a constant b; >0 and an integer n3 > 1, such that
x[g(n)] = by forn > ns. (4.26)
Hence,
Lsy(n) < —f(b1)q(n) forn=ny = ns. (4.27)

In both cases we are lead to the same inequality (4.27). Summing (4.27) from n > n4 to
u = n and letting u — co, we get

1/ay
A By = 17 (b) (az(m;nq(i)) . (428)

Once again, summing the above inequality from # > n4 to T = n and letting T — o0, we
have

1/

1/0(2
~Ay(n) = fY@®) ()| a)(n) Z ( (k) > q( )) ) (4.29)
i=k

Summing the above inequality from n4 to n — 1 = n4, we get

Ve 1/
00 > y(ng) > —y(n)+ y(ng) = fY/@%) (b)) Z ai (k) Z (az )Zq(i))
k= Ny ] k j=i
— 00 asn— oo,
(4.30)
which is a contradiction. This completes the proof. O

Acknowledgment

The authors are grateful to Professors M. Migda and Z. Dosla for their comments on the
first draft of this paper.

References

[1] R.P. Agarwal, Difference Equations and Inequalities, 2nd ed., Monographs and Textbooks in
Pure and Applied Mathematics, vol. 228, Marcel Dekker, New York, 2000.

[2] R.P. Agarwal, M. Bohner, S. R. Grace, and D. O’Regan, Discrete Oscillation Theory, Hindawi
Publishing, New York, in press.

[3] R.P. Agarwal and S. R. Grace, Oscillation criteria for certain higher order difference equations,
Math. Sci. Res. J. 6 (2002), no. 1, 60—64.

[4] R. P Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Difference and Functional
Differential Equations, Kluwer Academic, Dordrecht, 2000.



Ravi P. Agarwal etal. 367

, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dy-
namic Equations, Kluwer Academic, Dordrecht, 2002.
, On the oscillation of certain second order difference equations, J. Differ. Equations Appl.
9 (2003), no. 1, 109-119.
, Oscillation Theory for Second Order Dynamic Equations, Series in Mathematical Anal-
ysis and Applications, vol. 5, Taylor & Francis, London, 2003.
[8] R.P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Mathematics and Its
Applications, vol. 404, Kluwer Academic, Dordrecht, 1997.
[9] Z.Doslaand A. Kobza, Global asymptotic properties of third-order difference equations, Comput.
Math. Appl. 48 (2004), no. 1-2, 191-200.
, Oscillatory properties of third order linear adjoint difference equations, to appear.
[11] S. R. Grace and B. S. Lalli, Oscillation theorems for second order delay and neutral difference
equations, Utilitas Math. 45 (1994), 197-211.
[12] 1. Gy6ri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications,
Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York,
1991.
[13] Ch. G. Philos, On Oscillations of Some Difference Equations, Funkcial. Ekvac. 34 (1991), no. 1,
157-172.
[14] B. Smith, Oscillation and nonoscillation theorems for third order quasi-adjoint difference equa-
tions, Portugal. Math. 45 (1988), no. 3, 229-243.
[15] P.J.Y. Wong and R. P. Agarwal, Oscillation theorems for certain second order nonlinear difference
equations, J. Math. Anal. Appl. 204 (1996), no. 3, 813-829.
[16] X. Zhou and J. Yan, Oscillatory and asymptotic properties of higher order nonlinear difference
equations, Nonlinear Anal. 31 (1998), no. 3-4, 493-502.

Ravi P. Agarwal: Department of Mathematical Sciences, Florida Institute of Technology, Mel-
bourne, FL 32901-6975, USA
E-mail address: agarwal@fit.edu

Said R. Grace: Department of Engineering Mathematics, Faculty of Engineering, Cairo University,
Orman, Giza 12221, Egypt
E-mail address: srgrace@eng.cu.edu.eg

Donal O’Regan: Department of Mathematics, National University of Ireland, Galway, University
Road, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie


mailto:agarwal@fit.edu
mailto:srgrace@eng.cu.edu.eg
mailto:donal.oregan@nuigalway.ie

Boundary Value Problems

Special Issue on

Singular Boundary Value Problems for Ordinary

Differential Equations

Call for Papers

The purpose of this special issue is to study singular
boundary value problems arising in differential equations
and dynamical systems. Survey articles dealing with interac-
tions between different fields, applications, and approaches
of boundary value problems and singular problems are
welcome.

This Special Issue will focus on any type of singularities
that appear in the study of boundary value problems. It
includes:

e Theory and methods

e Mathematical Models

e Engineering applications

e Biological applications

e Medical Applications

e Finance applications

e Numerical and simulation applications

Before submission authors should carefully read over
the journal’s Author Guidelines, which are located at
http://www.hindawi.com/journals/bvp/guidelines.html. Au-
thors should follow the Boundary Value Problems manu-
script format described at the journal site http://www
.hindawi.com/journals/bvp/. Articles published in this Spe-
cial Issue shall be subject to a reduced Article Proc-
essing Charge of €200 per article. Prospective authors
should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/ according to the following
timetable:

Manuscript Due May 1, 2009

First Round of Reviews | August 1, 2009

Publication Date November 1, 2009

Lead Guest Editor

Juan J. Nieto, Departamento de Analisis Matematico,
Facultad de Matemiticas, Universidad de Santiago de

Compostela, Santiago de Compostela 15782, Spain;
juanjose.nieto.roig@usc.es

Guest Editor

Donal O’'Regan, Department of Mathematics, National
University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/bvp/guidelines.html
http://www.hindawi.com/journals/bvp/
http://www.hindawi.com/journals/bvp/
http://mts.hindawi.com/
mailto:juanjose.nieto.roig@usc.es
mailto:donal.oregan@nuigalway.ie

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

