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The numerical solution of partial differential equations with finite differences mimetic
methods that satisfy properties of the continuum differential operators and mimic dis-
crete versions of appropriate integral identities is more likely to produce better approxi-
mations. Recently, one of the authors developed a systematic approach to obtain mimetic
finite difference discretizations for divergence and gradient operators, which achieves
the same order of accuracy on the boundary and inner grid points. This paper uses
the second-order version of those operators to develop a new mimetic finite difference
method for the steady-state diffusion equation. A complete theoretical and numerical
analysis of this new method is presented, including an original and nonstandard proof
of the quadratic convergence rate of this new method. The numerical results agree in all
cases with our theoretical analysis, providing strong evidence that the new method is a
better choice than the standard finite difference method.

Copyright © 2007 J. M. Guevara-Jordan et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Nowadays much effort has been devoted to create a discrete analog of vector and tensor
calculus that could be used to accurately approximate continuum models for a wide range
of physical and engineering problems which preserves, in a discrete sense, symmetries
and conservation laws that are true in the continuum [1, 2]. This endeavor has led to the
formulation of a set of mimetic finite difference discretization schemes to find high-order
numerical solution of partial differential equations [3, 4]. These discretizations have been
considered challenging even in the simplest case of one dimension on a uniform grid.
Particularly, in a recent article [5] a systematic way of constructing high-order mimetic
discretizations for gradient, divergence operators with the same order of approximation
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at the boundary and inner region was presented. A key point of mimetic discretizations is
to build discrete versions of these operators satisfying a discrete analog of the divergence
or Green-Gauss theorem which implies that the discrete operators will satisfy a global
conservation law. This condition also ensures that the discretizations of the boundary
conditions and of the differential equation are compatible. In addition to having the ad-
vantage that its formulation is not more complex than standard finite differences, it has
been known for some time that numerical methods based on mimetic discretization pro-
duce better results than standard finite differences.

In this article, we will provide a rigorous proof of quadratic convergence for a partic-
ular and unique mimetic finite difference method for the steady-state diffusion equation
based on the second-order discrete gradient and divergence operators obtained and stud-
ied in [5-7]. Although the literature on second-order mimetic methods for the steady-
state diffusion is fairly well established, our new method is not standard. Consequently,
the theoretical analysis of convergence presented in this article is different from those
reported previously, therefore representing a new contribution.

Comparative studies of the new method and other mimetic schemes have been re-
ported previously [7, 8]. Those studies give evidence that the second-order gradient ap-
proximations of our scheme on the boundaries produce, in the worst cases, more accurate
solution. However, all second-order mimetic schemes achieve quadratic convergence rate,
which is not the situation for standard finite difference methods based on ghost points
and extended grids. Comparison of the new scheme against sophisticated or very elabo-
rated numerical techniques such as mixed finite elements is a current research topic but
it is out the scope of this paper.

Without lose of generality and for methodological reasons, our analysis will be devel-
oped for the one-dimensional steady-state diffusion equation. In this case, the divergence
theorem takes the form

01 %fdx+ﬁv%dx=v(l)f(l)—v(O)f(O) (1.1)

on which dv/dx plays the role of the divergence of the vector field v(x), while df/dx
plays the role of the gradient of the scalar field f(x). Our numerical studies give evidence
that theoretical results hold in several dimensions and the new scheme produces better
approximations than standard finite difference methods.

The rest of this article is organized as follows. In Section 2, we introduce the continum
model for the steady-state diffusion equation with its respective boundary conditions rel-
evant to this work. After that, in Section 3, the second-order discretized mimetic scheme
for the gradient and divergence operators is presented. In Section 4, the new mimetic fi-
nite difference method for the steady-state diffusion equation is developed and described.
Then, in Section 5 we present the proof of the quadratic convergence rate of the new
method. Next, the solution and analysis of illustrative numerical test problems are given
in Section 6. Finally, the conclusions and recommendations are summarized in Section 7.

2. The continuum model

Our model problem will be presented in terms of the steady diffusion equation. Being
one of the most important and widely used equations of the mathematical physics, the
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Figure 3.1. Uniform staggered (nonuniform point distributed) grid (f; = f(x;)).

range of physical and engineering problems modeled by this equation includes heat trans-
fer, flow through porous medium, and the pricing of some financial instruments [9-11].
Accordingly, the wide range of applications of the diffusion equation justify the effort
and time devoted in finding ways of obtaining high-quality numerical solution of it on
different contexts.

In the one-dimensional case, the diffusion equation takes the form

d (o df@) _
a(K(x) Ix )—F(x), (2.1)

where f(x) is an unknown function, F(x) is a given source term, and K(x) is a positive
function. To have a properly posed boundary value problem by (2.1), we will be imposing
boundary conditions of the Robin (mixed) type

a0 f(0) = f'(x) | ,_y = Yos (2.2a)
ar f(D)+f (%)) =15 (2.2b)

where ag, a1, Yo, and y; are known constants. In this article, we are analyzing the case
where K(x) is the identity. In this situation, it has been reported that the problem posed
by (2.1) and (2.2) has a unique solution when «’s coefficients are not null [12, 13].

3. The mimetic discretization

The description of the mimetic discretization will be presented by using the one-dimen-
sional uniform staggered or nonuniform point distributed grid represented in Figure 3.1 in
the interval [xg = 0, x,, = 1].

In this context, the region of interest (interval [0,1]) is partitioned into n equally
spaced cells [x;,x:41] with 0 <i <n— 1. The end points of each cell are called nodes,
being the boundary of the grid the nodes x; and x,, respectively. The center of each cell
is indexed with half integer, namely xi11/2 = (1/2)(x; + Xi11).

In this grid, the vector field v of (1.1) can be considered as a vector whose components
are the vector field v evaluated at the grid’s nodes including the boundary, while the
scalar function f(x) can be considered as a vector having components corresponding to
the evaluation of the function f at the center of each cell and at the boundary nodes

v= (v(xo),v(xl),v(xz),...,v(xn_l),v(xn))T, (3.1a)

F=(F0)s f (x12)s f (K32)seos £ (no12), f () (3.1b)
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On uniform grids, following the notation of Figure 3.1, the approach of [5, 7] can be
applied to obtain second-order mimetic discretizations D and G for the divergence and
gradient continuum operators, respectively, yielding that the gradient at the boundary
points x and x,, has the form

(Gf), = ~B/f +3,2/2 (3 fn (3.20)

(Gf). - (8/3) fu = 3 fu- Z2+(1/3)fn 3/2 (3.2b)

while at the inner points (cell or edges), represented as crosses in Figure 3.1, the gradient
and divergence approximations coincide with standard central difference schemes

(Gf), = f+1/z fz 1/2 = 1m—1, (3.32)

(Df)is12 = f"“h_ S im0 (3.3b)

It should be noted that the discretized divergence operator (3.3b) is only defined at the
inner nodes or cell centers, while the gradient is defined at nodal points. As is worked out
by [5], the construction of the discretized mimetic gradient G follows from the discretized
mimetic divergence D as a consequence of imposing that both operators must satisfy a
discrete version of Green-Gauss theorem. This can be seen by defining an extension of
D, denoted by D, which satisfies (D)o = 0, (Df), = 0, and (Df)is1/2 = (Df)is1/2. The
discrete expression for the fundamental equation (1.1) can be written in the form

<lA)V’f>Q +(1,Gf)p = (ﬁ"’f>p (3.4)

where (a,b)y = b"Ma defines a generalized weighted inner product, Q and P are weight-
ing diagonal matrices, I is the identity matrix, and B is a matrix called boundary oper-
ator. It is shown in [7] that matrix Q is the identity, and the diagonal coefficients of P
satisfy P(1,1) = P(n+2,n+2) = 3/8, P(2,2) = P(n+1,n+ 1) = 9/8 with P(i,i) = 1 for
2 <i<n+1. Similarly, it can be proved that boundary operator B is an n+2 X n+ 1 ma-
trix define by B = QD + (G)P. This operator is just an algebraic expression determined
by (3.4) which allows the inner product (Bv, f)1 to be second-order consistence with
v(1) f(1) = v(0) f(0) under mesh refinement. Moreover, a simple calculation indicates
that if v or f vectors, in (3.1a) or (3.1b), are constant then the following relation holds:

(B, £) (f(1) = f(1)) - vif v = constant (35)

Bv, = . . 3.5
I (v(1) =v(1)) - fif f = constant

This means that (3.4) becomes a discrete version of the fundamental theorem of Calculus.
Since gradient, divergence, and boundary operator discretizatons presented in this sec-

tion satisfy (3.4) and (3.5), then they are called mimetic discretizations. Moreover, any

numerical scheme based exclusively on them is conservative.
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4. Mimetic method for the steady diffusion equation

Our continuum model problem of Section 2, given by (2.1) and (2.2), can be approxi-
mated by using the results of Section 3, in the following form:

(MI=A+BG+DKG)f =b. (4.1)

In this expression A is the (n+2) X (n+2) matrix having as nonzero entries those el-
ements in its diagonal which corresponds to the boundary nodes. The values in those
entries are the associated « value given by (2.2). In the one-dimensional case its only non
null entries are K(l, 1) = ag and K(n +2,n+2) = a;. The operator K is a diagonal ten-
sor whose known values are positive and evaluated at grid block edges. Sometimes the
product (KG)f is called flux. The operators G, D, and B are the mimetic discretizations
for gradient, divergence, and normal boundary conditions presented in previous section.
The right-hand side, vector b, has the form

T
b = (yo,F1/2,F3/25- > Fu_1/2,71) (4.2)

and f represents the mimetic approximation. Since all differential operators in (2.1) and
(2.2) are approximated by mimetic discretizations in (4.1) then it represents a mimetic
method for the steady state diffusion equations. The original idea of introducing (4.1) as
a mimetic method for Poisson equation was given in [7]. However, a rigorous proof of its
convergence has not been provided yet. In this article we are filling this gap.

The mimetic method for the steady diffusion equations (4.1) is too general for the
purpose of our theoretical analysis. Therefore two simplifications are in order. They are
the assumption that K is the identity operator and the restriction to one-dimensional
problems. The first assumption is widely used in numerical analysis, because the ten-
sor coefficient K is usually differentiable and it is well known that lower-order terms do
not play any role in convergence analysis [1]. Restriction to one-dimensional problems
for purposes of studying new numerical schemes on uniform, logical rectangular, Carte-
sian grids is a standard restriction. This is justified by the fact that all techniques and
arguments of the one-dimensional proof can be translated without change to the higher
dimensional cases by analogy [1, 2, 5].

Under these two simplifications we proceed to develop the explicit equations for the
new mimetic method (4.1), which represents an n +2 X n + 2 linear system. Its first equa-
tion represents the discretization of the boundary condition given by (2.2a), it is of the
form

8 3 1
<% + oc0>fo - zfl/2 + ﬁfa/z = Y0 (4.3)

The second equation comes from the discretization of the one-dimensional stationary
diffusion equation at the cell center xy,3,

8 1 4 1 4 1
(ﬁ_ﬁ)ﬁ)_ <ﬁ_ﬁ)ﬁ/2+(ﬁ_@>ﬁ/2:ﬂﬂ' (4~4)
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Notice that the coefficients in this equation contain terms of the form (const/h) which
are not common in standard finite differences discretizations. The third equation, at the
cell center x3/,, has the form

1 1 1 2 1 1
ﬁfo+ <ﬁ_ﬁ>f‘/2_ (ﬁ—@)fyfrﬁfwz:&/z- (4.5)

This is an extremely unusual equation, which is a major distinction of the mimetic fi-
nite difference discretization scheme with other discretization approaches. The next set
of difference equations, at cell centers x;.1/, for i = 2,...,n — 3, takes the form of standard
second-order central finite difference discretization for the second derivative. To close
the system of difference equations arisen from the mimetic discretization of the one di-
mensional steady diffusion equation, three more equations are obtained from (4.1) at the
points x,,_3/2, X172, and x, = 1. However, they are symmetric to (4.3), (4.4), (4.5) so they
will not be written down.

It is important to note that standard Taylor expansions of these equations around their
associated points lead to truncation errors of order O(h) for (4.4), (4.5), and their sym-
metric associates. On the other hand (4.3), its symmetric, and the remaining equations
have truncation errors of order O(h?).

5. Analysis of convergence

Standard finite difference analysis does not provide optimum convergence rate for the
mimetic method described in this article. Consequently, its convergence analysis will be
divided in two parts. In the first part a finite difference scheme associated to the mimetic
method is developed. Truncations analysis and optimum convergence results for this as-
sociated scheme can be obtained by traditional techniques. The second section gives the
nonstandard convergence proof for the mimetic method based on the convergence of the
associated scheme.

5.1. Associated finite difference scheme equations. As it was stated in the mimetic
method description, all its equations are standard with the exception of (4.4) and (4.5),
which contains nonstandard (const/h) terms. It can be easily shown that if those terms are
omitted then an associated finite difference scheme results. This associated scheme can be
represented in function of the fundamental operators G, D, A described previously, and
a boundary operator B with non null entries, B(1,1) = —1 and B(n+2,n+1) = 1. With
these operators the associated scheme can be represented by the following expression:

(M=A+BG+DG)f, = b, (5.1)

where f, refers to the associated finite difference approximation. This scheme is conser-
vative and new, but it is not mimetic. Its analysis has been recently developed in [14]. It
is proved, by an application of the modulus maximum principle, that it has an optimum
second-order convergence rate

| fx = ful < O(R?), (5.2)
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where f., denotes the exact solution to the continuum problem and | - | refers to the max-
imum norm. This order of convergence is not evident, because two of the n + 2 equations
n (5.1) have linear truncation errors.
A relation between the mimetic method and the associated scheme is obtained through
operator E defined as follows:

E=(B-B)G. (5.3)

It can be established by inspection that operators MI and M, in (4.1) and (5.1), satisfy the
relation

MI=M+E (5.4)

This means that the mimetic method is a perturbation of the associated scheme by the
operator E.
In was proved in [7] that operators M~! and E satisfy the following estimate:

IM™'E| < O(h). (5.5)

5.2. Convergence of mimetic method. In order to establish the convergence of the
mimetic method, its proof will be divided in two parts. In the first one it will be shown
that the scheme converges. After that, in the second part, it will be proved that its optimal
convergence rate is quadratic.

Let us begin by combining (4.1), (5.1), (5.4) to obtain

M(fa— fex) = (M+E) (f — fo) + Efex. (5.6)

After multiplication by M~!, taking norm and applying the triangle inequality, we obtain
the expression

|f = fel = 1 fa= fx| + IMTTE[ | f = fex| + [MTE| | fux . (5.7)

On the other hand, using (5.2), (5.5), and (5.7) the following estimated expression
always holds:

|f = fx| =O(R?) +OM) | f = fex| + OM)| fex |- (5.8)
This inequality is solved for | f — fi| and the convergence estimate results
| f = fex| = O(h). (5.9)

This expression shows a linear convergence rate for the mimetic method although it is
not the best possible estimate.
To continue with the second part of the proof, let us consider the following identity:

(Efex) = (B - B)Gfex (5.10)
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Table 6.1. Numerical errors for 1D problem maximum norm.

Grid Error Error
size finite difference mimetic method
16 1.3666 0.7654
64 0.3469 0.0507
256 0.0946 0.0032
Convergence rate 0.9689 1.9995

which takes the following form:

(Efex) _ <0’ fexl(xo) _fexé;(xl) +O(h2) ’ _fex, (xo) +fe§, (Xl) +O(h2) ’

_ﬁax, (Xn—l) +fex, (xn) + O(hz) fex, (xn—l) - fex, (xn) + O(hz) O)T
8 ’ 8 ’ ’

0,...,0,

(5.11)

second-order terms in this expression come from the truncation error for mimetic gra-
dient approximation G. Since the exact solution fe is assumed to be smooth and infinity
differentiable, then differences fex'(xo) - fex'(xl), fex'(xy,,l) - fex'(xn), and their oppo-
sites can be interpreted as central differences to obtain an optimum estimate. Therefore,
the vector (E fex) satisfies the simplified relation

(Efex) = O(K*)w, (5.12)

where w = (0,1,1,0,...,0,1,1,0).
By substitution of (5.10) and (5.12) into the identity relation (5.6), we have the fol-
lowing relation:

(f = fe) = (fi = fex) = MT'E) (f = fex) — O(R)M™'w. (5.13)
After taking norm and applying the triangle inequality, we obtain the estimate
|f = fex| < [ fo= fox| + IMT'E] | f = fex| +O(H?) Iw. (5.14)

On the other hand, we know from (5.2), (5.5), and (5.9) that the following inequality,
derived from (5.14), will hold:

| f = fex| = O(K?). (5.15)
The last estimate shows that the mimetic method has a quadratic convergence rate, which
is the best possible result.
6. Numerical study

This section will present the numerical study of two boundary value problems in one
and two dimensions, computed via the mimetic method developed in previous sections
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and the standard finite difference method. The main parameters analyzed in these test
problems are the rate of convergence and the number of exact digits in the approximated
solutions. Additional numerical studies, which differ in details and objectives from the
ones presented in this article, can be found in [7, 8]. Those studies give evidence that
our new second-order mimetic scheme produces, in some cases, better solutions than
well-known mimetic schemes with first-order one-side gradient approximation at the
boundary. However, this affirmation is problem dependent. In general, all the mimetic
schemes produce comparable solutions. On the other hand, comparison of our new
scheme against standard finite differences schemes based on ghost points and extended
staggered grids has not been fully analyzed previously. Numerical results show that our
new mimetic scheme always produces better approximations than standard finite differ-
ences method. Therefore, that comparison will be developed in this numerical study.

The one-dimensional boundary value problem in this test is formulated in terms of
the ordinary differential equation " (x) = A(A — 1)((1 — x)*~? — x4=2)) defined on the
interval (0, 1), and its solution must satisfy Robin boundary conditions shown in (2.2).
A well-posed problem is obtained with ap = &) = 1 and yo = —y; = (A + 1), A being an
arbitrary nonnull integer number. This problem has a unique analytical solution given
by f(x) = (1 —x)* — x*, representing a boundary layer for large values of 1. Correspond-
ingly, it is an excellent test problem to evaluate numerical schemes with different dis-
cretization alternatives for boundary conditions. Numerical results for this test problem
are presented in Table 6.1, after implementing both numerical methods on the staggered
grid described in Figure 3.1 and setting A = 25 (similar results and conclusions are ob-
tained for even larger values of 1). The shown numerical errors, computed in the maxi-
mum norm, indicate that on refined grids the mimetic method achieved at least two exact
digits in its approximation, while standard finite difference methods obtained only one
exact digit. Such results indicate a clear advantage of the mimetic scheme. In the same
table at the bottom, the numerical convergence rates for each method are also presented.
A quadratic convergence rate was obtained for the mimetic method, as one would expect
from previous theoretical analysis on the convergence rate of the method. Standard finite
differences schemes get a first-order numerical convergence rate, which is a direct effect
of having a first-order discretization for the Laplacian at nodes x;, and X41/2. In the
extended ghost point grid, those two nodes become internal nodes away from the ghost
boundary. Consequently, modulus maximum principle implies that first-order trunca-
tion error in the Laplacian will be transferred completely to the convergence rate and it
cannot be canceled or balanced with second order discretizations at boundary nodes.

Though our theoretical results were established for one-dimensional problem, they
also hold on higher dimensional logical rectangular Cartesian grids. This paragraph
presents the numerical study of a two-dimensional test problem, defined by the two-
dimensional Poisson equation Au = (128/(exp(16) — 1)) exp(8(x + y)) on the region
Q=(0,1)x(0,1). Its solution is given by expression u(x, y) = (1/(exp(16) — 1)) (exp(8(x +
y)) — 1), satisfying the corresponding Robin boundary condition with coefficient o =
(—16exp(16))/(exp(16) — 1). The solution behavior is that of a boundary layer toward
the (1,1) corner along the main diagonal of Q. Details of the staggered grid implemen-
tation used in this problem are fully developed in [8]. Table 6.2 provides a summary of
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Table 6.2. Numerical errors for 2D problem maximum norm.

Grid Error Error
size finite difference mimetic method
3x3 0.0645 0.0084
10x 10 0.0255 0.0010
20 %20 0.0137 0.0002
Convergence rate 0.8176 1.9702

numerical errors computed with the maximum norm. As in the one-dimensional case,
the errors obtained by the mimetic method are smaller than those obtained by standard
finite differences. Also, the numerical convergence rate for each method in the last row
of the table is shown. It gives a second-order convergence rate for the mimetic scheme
as was predicted by our theoretical analysis in the one dimensional problem. In addition,
it can be noticed that for the same reasons given in the previous 1D problem, the first-
order truncation error associated to standard finite differences on the two-dimensional
staggered grid is passed to the convergence rate.

It is important to note that it is possible to improve the convergence rate of the stan-
dard finite difference method by using a different grid configuration such as block center
grids. However, in all cases the same mimetic method always produce a solution that is
comparable to or better than standard finite differences. This means that the mimetic
method is very robust and systematic, which is a great advantage and improvement for a
numerical method based on finite differences molecules.

At this point it is of interest to mention that there is an important property related to
the mimetic scheme, which cannot be matched by standard finite difference approxima-
tion. It is essentially the rigorous treatment given in the mimetic discretization method to
both the boundary conditions and the differential equation. This advantage can easily be
observed if the nonhomogeneous term in the differential equation has a singularity at the
boundary. In such case, the mimetic method produces a robust code whose numerical
results are of high accuracy. On the contrary, standard finite difference codes developed
on any grid based on ghost point will break down because they require the regularity
of the nonhomogeneous term up to the boundary. This last condition is artificial and it
is one of the main deficiencies of standard second-order finite difference schemes. Such
deficiencies are eliminated in the mimetic scheme.

7. Remarks and conclusions

A complete analytical and numerical study for a new second-order mimetic finite differ-
ence scheme for the diffusion equation has been presented. Theoretical and numerical
analysis of its quadratic convergence rate is a new contribution. This is not an obvious
result in view of the first-order truncation errors and the nonstandard linear equations
in its mathematical formulation.

The convergence proof gives a possible strategy to obtain similar results for higher
order mimetic methods based on the mimetic operators given in [5].
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The new method was applied to a selected set of test problems. The numerical results
indicate its main advantages over the most common second-order standard finite differ-
ence methods based on ghost points and extended grids. In addition, the numerical study
ratifies the theoretical quadratic converge rate of the new scheme.

The most important advantages of the numerical method developed in this article are:
it is mimetic or conservative; its formulations at inner and boundary nodes are consistent;
its numerical implementation is more robust than most common second-order finite
differences schemes, it is not based on ghost point techniques, and it gives a rigorous
discretization of both the boundary conditions and the differential equation.

In view, of the above considerations it is fair to say that our new second-order mimetic
scheme is a better choice than standard finite differences schemes for solving the static
diffusion equation.
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