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1. Introduction

In this paper, we improve and extend the local, global, and trace estimates for
the solutions of elliptic equations we developed in [6]. These estimates are de-
veloped for the solutions of elliptic second-order equations, with source terms,
with Dirichlet-Neumann boundary conditions and Dirichlet boundary condi-
tions. They are obtained under quasi-optimal regularity conditions on the source
terms. The previous trace estimates we developed in [6] are based on our im-
proved version of the estimates of Aleksandrov, Bakelman, and Pucci estimates
[1, 2]. They are improvement in the sense that they are independent of the low,
“relaxation,” term of the equations. These later estimates are important in many
applications, in particular, for the treatment of quasilinear and fully nonlinear
equations. The trace estimates we developed are themselves of great importance
in elliptic theory. They are also important in many other applications, in particu-
lar, for the study of fixed point methods, the treatment of contraction properties
for some operators, and also for the analysis of algorithms in numerical analysis.
We have already given some applications of the trace estimates of [6] in [4].
In Section 2, we state a local estimate for elliptic equations. In Section 3,
we introduce the first and second basic problems corresponding, respectively,
to elliptic equations with Dirichlet-Neumann and Dirichlet-Dirichlet boundary
conditions. In Section 4, we state our trace estimates for the first and second
basic problems. In Section 5, we state and prove various local and global es-
timates for the first basic problem. In Section 6, we prove the trace estimate
for the first basic problem. In Section 7, we state and prove various local and
global estimates for the second basic problem. In Section 8, we prove the trace
estimate for the second basic problem. In Section 9, we introduce the third basic
problem corresponding to elliptic equations with Dirichlet-Neumann boundary
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conditions. In Section 10, we give the trace estimates for the third basic prob-
lem. In Section 11, we state and prove various local and global estimates for the
third basic problem. In Section 12, we give indications on the proof of the trace
estimates for the third basic problem.

2. A local estimate

In this section, we present a local estimate that we have developed in [6] for
an arbitrary elliptic operator of second order satisfying some conditions to be
precised below.

Let L be an operator of the form

Lu :ai-i(x)Diju+bi(x)D,-u+c(x)u, 2.1

for any u in w2 (2), with  a bounded domain of R”. The coefficients a'/, b,
and c,i,j =1,...,n, are defined on 2. As usual, the repeated indices indicate
a summation from 1 to n.

We suppose that the operator L is strictly elliptic in €2 in the sense that the
matrix s of coefficients [a'/] is strictly positive everywhere in Q. Let A and A
denote the smallest and the largest eigenvalue of o, respectively. Let 9 denote
the determinant of the matrix s¢ and %* = %'/". We have

0<A<T*<A. (2.2)

We suppose, in addition, that the coefficients a'/, b', and ¢ are bounded in €,
and that there exist two positive real numbers y and § such that

A
0 <y, (L is uniformly elliptic),

() =

Our local estimate is stated in the following theorem.

(2.3)

THEOREM 2.1. Let u € W>"(2) and suppose that Lu > f with f € L"(Q) and
¢ <0. Then for all spheres B = Bag(y) of center y and radius 2R included in
Q and for all p > 0, we have

1 Vr R
sup u < CR{ <—/ (M+)p) +_||f||L”(B)}7 2.4
|B| Jp A

Br()

where the constant Cg depends on (n,y,8R?, p), but is independent of ¢, and
ut = max(u, 0).
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Figure 2.1. Description of the domain €2 and its splitting.

Remark 2.2. The statement of the same theorem can be found in [3], under the
assumption

oy (2.5)

However, in [3], the constant Cg depends indirectly on ¢ through &'. Our estimate
is independent on the low relaxation term c. This is very important for the
applications of these estimates to various problems.

Estimates of this type have many important applications to quasilinear elliptic
equations (and systems) and nonlinear elliptic equations (and systems). They
have also important applications to the problem of boundary regularity. We will
see in the next sections some applications of these estimates to the development
of new trace estimates for elliptic equations of second order. The new trace
estimates of the next sections are themselves important in elliptic theory. They
have important applications in proving contraction properties for some operator
and in the analysis of algorithms in numerical analysis. We refer to [5, 6] for
further details.

3. First and second basic problems

Let €2 and €2; be two connected domains of R” with €; C Q (Figure 2.1). Let
I'p, I';, and ', denote the boundaries of the two domains

', =0QNa; (internal boundary),
I =0Q;NQ2 (interface), 3.1
oo =0Q\I,  (farfield boundary).

Let n denote the external unit normal vector to Q2 or 9€2;. Let V € (L°°(2))"
be a given velocity field of an inviscid incompressible flow such that

divV=0 inQ, V.-n=0 only. (3.2)
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The first basic problem is a Dirichlet-Neumann problem,

Fv=—vAv+V- -Vo+cv=f inQQ, (3.3)
0

v=0 onT, —v=g on Iy, 3.4
on

where g is given in H~/2(I';), the coefficient ¢ is strictly positive, and v is
the diffusion coefficient. We assume that f € L"(2) N L%°($2). Let W be the
subspace of H!(2) defined by

W={weH" (Q)|w=0o0nTx}. (3.5)

We define two bilinear forms on W
a(v,w):/ vVva—i—/ div(Vo)w, (v,w):/ vw. (3.6)
Q Q Q

The weak formulation of the first basic problem (3.3) and (3.4) is to find v € W
satisfying

a(v,w)+c(v,w) = /

vgde‘—i—/ fw, YweW. 3.7
Iy Q

We write ¢ in the form ¢ = 1/t where t is positive and we assume that the
coefficients v and t satisfy

1
vt <-—, tT<Il. (3.8)
2
This hypothesis is not necessary but simplifies the proofs to come. Moreover, it
is not restrictive (see [4, 6]).
The second basic problem is a Dirichlet-Dirichlet problem,

Fv=—vAv+V-Vvo+cv=f inQy, (3.9
v=h only, v=0 onIy, (3.10)

where £ is given in H'/2(T";), the coefficient ¢ is strictly positive, and v is the
diffusion coefficient. We assume that f € L"(£2;) N L°°(£2;) and the velocity
field V is given by (3.2). We write the coefficient ¢ in the form ¢ = 1/7 and
we assume that the coefficients v and t satisfy (3.8). Let W be the subspace of
H'(Q) defined by

W={weH'(Q)|w=0o0nT,}. (3.11)

We introduce two bilinear forms on W

al(v,w)zv/ Vv-Vw—{—/ div(Vv)w, (v,w):/ vw. (3.12)
Q Q 2
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Figure 4.1. Description of the domain €2; and the splitting used in the
majorization of the local solution.

The weak formulation of the second basic problem (3.9) and (3.10) is to find
v € W such that

1 9
az(v,w)+(—>(v,w)=f v 2wt [ fw, Ywew, (3.13)
T T; on Q

olr, = h, (3.14)

where /4 is given in HY2(T)).

For the elliptic operators (3.3) and (3.9), the coefficients introduced in
Section 2 can be expressed explicitly. We have L = —%. Therefore, A = A =v
and we choose ¥y = 1, 8 = n(||V|loo/v)>.

4. Trace estimates I

We present in this section our trace estimates for the solutions of the first and
second basic problems. We first introduce some geometric notations. These are
necessary for the statement of the trace estimates and their proofs that will be
given in the next sections. Let d denote the distance between I', and T;. Let ©;
be the subdomain of €2; of width d/3 with external boundary I"; (Figure 4.1).
Let y € Q; and K, = B,/3(y) be the sphere of center y and radius d /3. There
exist yi, ..., y; € ; such that

Qi = Uyeq, Base(y) C Uj-:lej- “.1
We then define K by setting
!
K =U;_Ky;. (4.2)
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Assume that d satisfies 2d < dist(I'p, 'no). This assumption ensures that
Boq/3(y) C L2 for any point y € ;. It is not necessary since we can modify
the radius of the sphere Ky = By4/3(y) such that Bygq/3(y) C 2. However, it
simplifies the notations in the proof.

Let I'y be the center surface of €2; defined as the surface whose distance
from I'y, and I'; is at least d/2. Let 2;; be the subdomain of €2; of width d/6
centered at I'y. Let y € I'y and let K;, = By4(y) be the sphere of radius d /4.
We then introduce K; which is constructed in the same way as the set K above.
We also introduce a set €2, which is a subdomain of €2; whose internal boundary
is I'p and such that its external boundary is of constant distance from I'j, with a
distance of d /4.

Let 8 be a real number such that

3Jv
d b

0<B< “4.3)

and set

“4.4)
We now state the trace estimates.

THEOREM 4.1. The solution v of the first basic problem (3.7) satisfies

1Vl )" kd?
||v||1/2,r,-§C1«/3(d+T°°> exp (AL

1 d Cy
_ - SN ey +2 =201 f1lo,
X |:||g|| 12,1, + 5 Il fllo,+ » Il fllLn )+ T||f||w,9i|+ﬁ||f||0
(4.5)

where Cy and C» are constants, with Cy depending only on n and (||V ||sod /v)?,
but not on .

THEOREM 4.2. The solution v of the second basic problem (3.13) and (3.14)

satisfies
dv ) kd?
— < ClalazeXp<——>|lh|ll/z,ri
‘3” —1/2,T% 36

kd*\ 1 1
+o (Clazexp <— ¥>;+C2ﬁ> ”fl“o,szl

kd*\ d
+C10[1(X2€Xp —g ;Hf[

(4.6)

Lr(S2)

kd?
+Ciajazexp| — g)fuﬁ “oo,Qi’
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where C1 and C, are constants with Cy depending only on n and (n||V ||sod /v)?,
ar =[1+A/WVlloo,0+1/vT] and @y = Vd@d+ ||V |oo/v)'/%.

In these estimates we observe that the dependence in terms of the low re-
laxation terms (1/7) is completely explicit. The practical applications of these
estimates can be for example the study of approximations in time methods when
the time step (that can be taken here to be 7) goes to 0. They can also be applied
to the study of the convergence properties of operators [4, 5]. Moreover, they
can be used for other purposes such as proving existence results. We refer to
[4, 5] for more details.

5. Local and global estimates for the first basic problem

The first basic result states a global H'! estimate of the solution v of the first
basic problem (3.7) in terms of the boundary data g and the data f.

LEMMA 5.1. There exists a constant cy such that
1

lvlh.e = collgl-1/2.05+ S Il flo- (5.1)

Proof. Proceeding as in the proof of Lemma 3.1 of [6], we obtain
2 1\ 2| _
VIV = Jv = vgu+ | fu. (5.2)
Q T Ty Q

Using Cauchy-Schwarz inequality, the trace theorem, and (3.8) we obtain

1
2
llit.e = Igli-12r,llvllyzr, + S lolviio

X (5.3)
=< C(Q)||g||—1/2,rb||v||1,s2+;||f||0||v||0-
Hence we have
1
vl e 500”8”71/2,1}4‘;”]?”0‘ (5.4)
O

The next lemma states a local estimate of the solution v of the first basic
problem (3.7).

LEMMA 5.2. There exists a constant ci such that
d
IVlloo.x < Clllvllo,sz-l-cl;||f||L"(sz), (5.5)

where ¢ depends only on n and (| V || sod /v)?.
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Proof. The operator
L=-% (5.6)

satisfies the assumptions of Theorem 2.1 with ¢ = —1/7. Applying this theorem
with p =2, y € Q;, and Ky, = B;/3(y) (B24/3(y) C 2 since 2d < dist(I'p, I'so)),
we obtain

d
Vlloo,ky < ctllvllo, Byyss(y) +01;||f||L”(Q)- (5.7

Therefore we obtain
d
lvlloo,ky SCl||U||0,Q+Cl;||f||L"(Q), (5.8)

where ¢ is a constant depending only on n and (|| V||ood/v)2.
Applying (5.8) to each Ky, we obtain

d
[Vlloo,x < sup Clj(||U||0,Q+;||f||L"(Q)>- (5.9
=1,

J=1

Setting ¢; =sup;_; 1, we finally obtain

d
v]loo, & 5Cl||U||O,Q+01;||f||L"(Q)- (5.10)
And the lemma is proved. |

We now establish other local estimates for the solution v of the first basic
problem. For any M; in €2;, we introduce (see Figure 4.1) a ball B; centered at
M; of radius d/6 and v; = exp[k(r2 —d2/36)](||v||oo,;;3i +27 flloo, B;)-

We have the following result.

LEMMA 5.3. The solution v of the first basic problem satisfies

2

kd
vllo, = exp (— ¥>(|Ivlloo,33,- +2t1| fllco,5,)- (5.11)

Proof. To prove this lemma we use the same ideas we introduced to derive
Lemma 3.3 in [6]. For the convenience of the reader we give detailed proof.
The operator & applied to v; can be written in polar coordinates (with r =
M;M)
SPv; =4 —k“vr-—kv+=V.e,r+— |v;. (5.12)
2 47

Therefore

k 1
Sivj24(—k2vr2—5’V'£r|r+<z—k\))>vi- (5.13)
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We introduce the function

o(r. k) = a(k)r? +bk)r +c(k), (5.14)
with
2 k
a(k) = —k*v, b(k)=—§|V~e,, c(k) = ——kv. (5.15)
We seek to satisfy the following relation:
d
0<infe(r,k) forO0<r< & (5.16)

As ¢(r, k) decreases on RT, this will be satisfied if and only if

d
w(—) >0, (5.17)
6
that is, if and only if
kZvd? _kd|IV]| N kv > 0. (5.18)
36 12 8t '
Replacing k by its value, this becomes
2d? Bd||V
_ prdT Bd| I| _ By > 0. (5.19)
(36vT) 12vf v/T
Multiplying by /7, it follows that
1 (1 p%d? d|vi
— = - >B(1+——). 5.20
4ﬁ<2 9v )_'B< LT (5:20)
The constraint 8 < 3,/v/d finally yields after division
(r,k)y =0 iff ! >p l—i—d”V” Lpany (5.21)
re) = m —= = - — . .
v 4yt 12v |27 ov

From the relation (5.13), we deduce that for 8 < 3,/v/d and 7 satisfying (5.21),
we have

1
Lv; > —v; > Lv. (5.22)
2t
In addition, by construction,
vi>v ondbB;. (5.23)
Consequently, using the maximum principle we obtain

v<v inB;. (5.24)
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In particular

kd?
U(Mi)fexp( 36)[Ilv||ooag +27 | flloo, B |- (5.25)

Repeating the same process for —v, we finally obtain

kd?
|v(M;)| <exp| — [Ivllo,08; +2T 1 flloo,B; ], YMi € Qi (5.26)
36

‘We then obtain the estimate (5.11). O

We now give an H'! estimate of the solution v of the first basic problem on
the domain Q, = Q\ €2;.

LEMMA 5.4. There exist constants ¢y and c3 such that

IVl )2 Lo
vl 0. < c2llvllco.oVd d+—= Il fllo- (5.27)
f
Proof. Let & € H'(Q) be such that
£=11in Quo, suppé C Qi UQu. (5.28)

Proceeding as in the proof of Lemma 3.4 in [6], we obtain

/fg%:/ v(|Vv|2+|v|2)+/ u(yV(gv)}2+|.§v|2)
Q Qoo Q;

1
+/Q (? “’) 2”2_/9,. (v0?|VE +0%EV - VE).

Hence, we obtain

Vol o + f v(|VED)|P+18v?) + f( )s

s/ﬂ(wwswvsvvs /Sf+ /s

1

(5.29)

(5.30)

The relation (3.8) then yields

I€l0.2 IV
v||sv||%,goowis||v||§o,g,.|5|%,g,.(v+ gf;rl °°) /é 12 (531

If we take & bounded such that

&0, <1, 1E1,@; =c2d, (5.32)
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where ¢; is a constant, (5.31) then becomes

VIl 2 | e3
Ivlh.0x < e2lvlloVd(d+—=) +—=Iflo (5.33)
v Jv
and this concludes the proof. ]

6. Proof of Theorem 4.1

In this section we prove Theorem 4.1. Since dB; C K, we have

lvlloo,08; < IVlloo,k - (6.1)
Lemma 5.2 then yields
lvlloc,08; < ctllvllo,@ +CI%||f||L"(Q)- (6.2)
Using Lemma 5.3 we obtain
[vlloo,2; < exp (— %) [Ivll00,08 4271l flloo, 5 - (6.3)

Combining the last two estimates, we obtain

kd? d
[Vlloo,@ <crexp| ——— ||U||0,§2+;||f||L”(Q)+2'f||f||oo,Q,~- (6.4)

36
Applying Lemma 5.1 we get
kd? 1 d
[vlloo,@; <crexp | — 36 CO||8||—1/2,F;,+;||f||0+;||f||L”(Q)+2'f||f||oo,Qi :

(6.5)
An application of Lemma 5.4 yields

\% 1/2 kdz
||v||1,gm5cZﬁ(d+%) clexp(_¥>

1 d 1
_ - — n 2 . — .
X[Collgll 1/2.0+ ||f||0+v I f L+ T||f||oo,sz,:| +Csﬁ||f||o
(6.6)
To conclude we use the trace theorem which yields

lvll2,r; <callvlli, o

Vo \ /2 kd?
< c0c1C4C2x/3(d+w> exp<—¥>
v

X _ —+ n + 2T =+
8ll-1/2,Tp + 5 0,Q v L"(Q) 00,02 ﬁ 0
( . )

which corresponds to our theorem with C1 = cpcicacz and Co = c3c4. O
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We can obtain the explicit dependence of Cj in terms of n and (n|| V ||cod / v)2.
Since in our Lemmas 5.1, 5.2, 5.3, and 5.4 the constants are explicit, all we
need is to make explicit the dependence of Cy in terms of (n,y,8R?, p) in
Theorem 2.1 of [6]. This is possible by looking more closely at the proof of this
theorem [6]. However, our main goal here is to derive a trace estimate in which
the dependence in terms of T only is explicit. We observe that the trace estimate
and the other local and global estimates are obtained under no restrictions on t
or any other parameters (except those appearing in the statement of the first and
second basic problems).

In the case where f = 0 we obtain estimates which are improved versions
of the estimates we have developed in [6]. For f # 0, the estimates we obtain
here represent an extension of our previous estimates [6] to elliptic equations
with source terms.

7. Local and global estimates for the second basic problem

We first state a global estimate for the solution v of the second basic problem
(3.13) and (3.14).

LEmMA 7.1. The solution v of the second basic problem (3.13) and (3.14)
satisfies
c1 1 c1
vl < |1+ —Vle.o +—|IAll1/2,0; + — I fllo,e- (7.1)
) VT v

Proof. Choosing w = v in (3.13) we obtain

5 1 5 av 1 1 i
IVol°+— | v"=| —h+-[ fv——= [ vdiv(Vv). (7.2)
Q VT Jo, T; on vJo VJo

Using Cauchy-Schwarz inequality, (3.2), and (3.10), we obtain

1
|Vv|2+—/ v?
Q VT Jgy

1 1
<47 ||h||1/2,r,-+—||f||0,sz,||v||o,91+—‘/ V-nh?
nll_ypr, v 2viJr,
<& 121l +1||f|| vl +—1 1V -nlloo,r, 11T
- v ‘n ; .
— an _1/2’1"1. l/2,I‘, v O,Q[ O,Q] 2U OO,F, I/Z,Fi

(7.3)
The term ||dv/0n||—1,2,r; is estimated as follows. Using (3.2), (3.10), and
(3.13), we obtain

ad 1 1 1
—vw=/ Vva—i——/ wV-Vy—— fw+—/ vw. (7.4)
I; on Q VvV Jo Vv Jo VT Jo
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Using the trace theorem and (3.2), we obtain

dv 1 1 1
/ —w‘ = <<1+_||V||oo,§2/>||Vv||0,s2/+_||f||0,§2,+_||v||0,§21>||w||1,§21-
r v v VT

. on
(7.5)

Therefore, we have

dv

an

1 1 1
< (1 + - V||oo,sz,) Vullo,.e, +—llvllo. +=I1fllo.e- (7.6)

_1/2’1—*1 % VT %
Combining (7.3) and (7.6), and using (3.8) and the trace theorem, we obtain

2
vl o = H— IAll2,r;

on H—l/z,r,-

1 1
+ - v +—|V-n NANZ
vllfllo,sz,ll llo, N I oo, 12117 /2, 1,

: : 1.7)
< [(1+—||V||oo,sz,+—>|Ih||1/2,r,-
v VT
Cl Cl
+7||V||oo,szl||h||1/2,r,-+7||f||o,szz lvll1.e-
We finally obtain

Cl 1 Cl
Il < |1+ —11Vlleo, +— |I2ll12.0;, + — I fllo. (7.8)

v VT v
which is the required estimate. (]

Remark 7.2. Lemma 7.1 represents a major improvement over Lemmas 4.1 and
4.2 of [6] which required the following condition on the diffusion coefficient v,
the velocity field V and the coefficient 7: 1/t > v/2+ (1/2v)||V||gO.

Let K;y = Bg/4(y) be the sphere centered at y and of radius d/4, with y
belonging to I'y (see Figure 7.1). By construction, I'y is the center surface
of €;, and €2;; is the subdomain of width d/6 centered at ['y. We have the

following lemma.

LEMMA 7.3. There exists a constant ¢y such that
d
lvlloo,x, < c2llvllo, e +Cz;||f||Lﬂ(sz,), (7.9)

where ¢ depends only on n and (|| V||ood/v)2.
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Figure 7.1. Description of the local domain €2; and the splitting used
in the majorization of the global solution.

Proof of Lemma 7.3. See the proof of Lemma 5.2 in Section 5. (]

Next we establish another local estimate for the solution of the second basic
problem (3.13) and (3.14). For any M; € €2;;, we introduce (see Figure 7.1)
a ball B; centered at M; and of radius d/6 and the function v; = exp[k(r2 —
d?/36)111vlloo,08; +27 1| f 1 oo, 5,1

We then have the following result.

LEmMMA 7.4. The solution v of the second basic problem (3.13) and (3.14)
satisfies

kd?
lvlloo, iy <exp| — 36 [IVll0c.88; +27 1| f lloo. 5 ]- (7.10)
Proof of Lemma 7.4. See the proof of Lemma 5.3 in Section 5. |

Let 2 be the subdomain of €2; introduced in Section 4 and described in
Figure 7.1. The next result states an H' global estimate of the solution of the
second basic problem.
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LEmMMA 7.5. The solution v of the second basic problem (3.13) and (3.14)
satisfies

VI c3
|wmﬂwﬁb_qwmwmvﬁcu~—ff + 5l g D)
Proof of Lemma 7.5. See the proof of Lemma 5.4 in Section 5. ]

8. Proof of Theorem 4.2

In this section we prove Theorem 4.2. Since d B; C K; by construction, Lemmas
7.3 and 7.4 imply

2

d d
_)|:||U||O,Q,+;”f”L"(Q;)+2T||f||w,Bi]- 8.1

lv]loo, i < CzeXP(— 36

Furthermore, Lemma 7.1 yields

kd? cl 1
[vlloo, i <c2€XP 36 —||V||oo ST Al /2,r;
(8.2)
C1 d
1 o+ LAl @427 flloo. i ) -
Using Lemma 7.5 we obtain

Vi IVIeo\'?  c3
vl euue; < c3llvlioo,o;vVd d+— +ﬁ||f||0,szl

Vi \ /2 _ kd?
< CQC';\/_ d+— I exp
v 36

c1 1 8.3
qu_wWM@+—mwmui 83)
v VT

C1 d
+ W o+ Ul +2T||f||oo,52,-)
+- £
NG 0,9
Before concluding we establish an estimate of the term

v

’ o (8.4)

—1/2,T

Choosing w such that

we H' () withw=0o0ndQ,\dl, (8.5)
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and using (3.13) we obtain

/(—vAv—{—div(Vv)—i—E)w: fw. (8.6)
Qp T Qp

Applying Green’s formula and using (3.2), we obtain

Jav 1 1 1
—w:/ VoVw+ (- )V-Vvw+ —ovw | — — fw. (8.7)
r, on Q v VT v /g,

As in the proof of Lemma 7.1, we obtain

The completion of the proof of the theorem results from the combination of the
relations (8.3) with (8.8). We obtain

kd?
<cicc3ajoexp| — %

v

an

1 1 1
= [1 + =11V lloo., + —} vl + =11 fllo.q,- (8.8)
_l/z’rb Vv VT Vv

ov

an

—1/2,T

1 d
X <061||h||1/2,ri+;||f||0,sz,+;||f||L"(sz,)+2T||f||oo,sz,->

1 1
+c30 ﬁllfllo,sz, + ;”f”O,Q;,

kd?
< cla%azexp<—¥)nhnl/z,ri (8.9)

kd*\ 1 1
+aq| Crazexp T3 ;+C2ﬁ Il fllo,e

2

kd“\d
+ Ciajanexp ~ 36 ;Ilflan(sz,)

kd?
+Crajazexp | ——— )Tl flloo. -
36
We then obtain the theorem with C; = cjcac3 and Cp = ¢3 constants with Cy
depending only on n and (||V |leed/v)?, a1 = [1+ A/ WNV lloo,, +1/v7] and
@y =Vdd+Vlleo/v)/2. U

We notice that this theorem represents a major improvement as compared
with Theorem 4.1 of [6] which required the assumption 1 /7 >v/2+(1/2v) ||V||§O.
In the case where f = 0 we obtain estimates which are improved versions
of the estimates we have developed in [6]. For f # 0, the estimates we ob-

tain here are extensions of our previous estimates [6] to elliptic equations with
source terms.
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9. Third basic problem

Let © be a connected bounded domain of R”, such that its boundary 02 is
Lipschitzian. Let 2, and £2; be connected domains of R" with Q,U€2; = Q and
QN =¢.LetI'y = 92Ny, (internal boundary), I'; = 9 NQ = 3R, N,
(interface), I'oo = 0Q\I', = 02, N OS2 (farfield boundary). We denote by n the
external unit normal vector to 92 or 3€2;. Let V € (L°°(2))" be a velocity field
of an inviscid incompressible flow given by (3.2).

The third basic problem is a Dirichlet-Neumann problem

Pv=—vAv+V -Votcv=f inQ,, ©.1)
d

v=0 onTe, —L=g only, 9.2)
on

where g is given in H~'/2(I';), the coefficient c is strictly positive, and v is
the diffusion coefficient. We assume that f € L"(2,) N L*°(L2,). Let W be the
subspace of H'! (2,) defined by

W={weH"(Q)|w=0o0nT}. (9.3)

We define two bilinear forms on W

a(v,w):/ vVva—i—/ div(Vo)w, (v, w) :/ Vw. 9.4)
Qg Qg QS’

The weak formulation of the third basic problem (9.1) and (9.2) isto find v e W
satisfying

a(v,w)+c(, w) =/ vgwdl + fw, YweW. 9.5)
I; Qe
As in the previous sections we write ¢ in the form ¢ = 1/t where 7 is positive
and we assume that the coefficients v and 7 satisfy (3.8). This hypothesis is not
necessary but simplifies the proofs to come. Moreover, it is not restrictive (see
[4, 6]).

For the elliptic operators (9.1), the coefficients introduced in Section 2 can
be expressed explicitly. We have L = —%. Therefore . = A = v and we choose
y = 1,8 =n(|Vlloo/v)?.

10. Trace estimates II

We present in this section our trace estimates for the solutions of the third basic
problems. We first introduce some geometric notations. These are necessary for
the statement of the trace estimates and their proofs that will be given in the
next sections.

Let d denote the distance between I';, and I';. Let €2; be the subdomain
of ; of width d/3 with external boundary I'; (Figure 4.1). Let y € ; and



148  Local, global, and trace estimates

K, = Bg3(y) be the sphere of center y and radius d /3. There exist yi, ...,y €
; such that

Qi = Uyeq; Bass(y) C Ui Ky, (10.1)
We then define K by setting
l
K =U;_Ky,. (10.2)

Assume that d satisfies 2d < dist(I'p, 'so). This assumption ensures that
Boq/3(y) C €2 for any point y € £2;. It is not necessary since we can modify
the radius of the sphere Ky = By4/3(y) such that Bygzq/3(y) C €2. However, it
simplifies the notations in the proof.

Let B8 be a real number such that

3J/v

O s
<B < 7

(10.3)

and set

_ B
k=1

We now state the trace estimates.

(10.4)

THEOREM 10.1. The solution v of the third basic problem (9.5) satisfies

IVl 2 kd>
||v||1/2,r,-§C1«/c_i<d+T°°> exp (AL

2 d Cy

_ e — n 2 —_—
X |:||g|| 1/2.T; + . Il fllo,+ . Il fllLn )+ T||f||oo’9i|+ﬁ”f”0’
(10.5)

where C1 and Cy are constants, with C depending only on n and (||V ||ood/v)2,
but not on t.

In these estimates we observe that the dependence in terms of the low re-
laxation terms (1/7) is completely explicit. The practical applications of these
estimates can be for example the study of approximations in time methods when
the time step (that can be taken here to be 7) goes to 0. They can also be applied
to the study of the convergence properties of operators such as those in [4, 5].
Moreover, they can be used for other purposes such as proving existence results.
We refer to [4, 5] for more details.

11. Local and global estimates for the third basic problem

For the third basic problem we obtain similar local and global estimates as in
the case of the first basic problem. The proofs of these estimates are similar to
those for the first basic problem. The only exception is the global H! estimate
stated in Lemma 11.1 below.
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LEMMA 11.1. For t small there is

1
||v||1,sz560||g||71/2,ri+;||f||0, (11.1)

where cg is a constant.
Proof. Proceeding as in the proof of Lemma 3.1 of [6], we obtain

/{lev|2+V~Vvv+<l)v2}=/ vgv+/ fu. (11.2)
Q T T; Q

‘We then obtain

2v—t||V|?
B/ |Vv|2+M/v2=/ vgv-l—/ fu. (11.3)
2 Q 2vT Q I; Q

Using Cauchy-Schwarz inequality, the trace theorem, and (3.8) we obtain

2
2
Ivll1 o = 2lIgll—1/2,r; [Ivll1/2,m; + ;Ilfllollvllo

) (11.4)
< C(Q)“g”—l/z,l“,-||U||1,S2+;||f||0||v||0~
Hence we have
2
lvil,e < collgll-1/2,1; +;||f||o- (11.5)
O

The next lemma states a local estimate of the solution v of the third basic
problem (3.7).

LEMMA 11.2. There exists a constant c¢| such that

vlloo, & SC1I|v||o,sz+01%lIIfIILMsz), (11.6)
where ¢ depends only on n and (|V || sod /v)?.
Proof. See the proof of Lemma 5.2. |

We also have other local estimates for the solution v of the third basic prob-
lem. For any M; in Q;, we introduce (see Figure 4.1) a ball B; centered at M;
of radius d/6 and v; = explk(r2 — d*/36)1(Ivllo,55; + 27| flloo, 5,)-

We have the following result.

LeEMMA 11.3. The solution v of the first basic problem satisfies

2

kd
Ivlloc.0; = exp| — == (Ilvlloo,a8; + 271l flloo.B;)- (1L.7)
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Proof. See the proof of Lemma 5.3. ]

We now give an H'! estimate of the solution v of the third basic problem on
the domain Q,, = Q\ €2;.

LEMMA 11.4. There exist constants ¢y and c3 such that

IVIeo\* 3
vl e < c2llvllcogVdld+—=) +—=|flo. (11.8)
v ﬁ

Proof. See the proof of Lemma 5.4. ]

12. Proof of Theorem 10.1

The proof of Theorem 10.1 can be obtained following the same ideas as in the
proof of Theorem 4.1. It relies on the various local and global estimates derived
in the last section.
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