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On the basis of G-convergence we prove an averaging result for nonlinear abstract
parabolic equations, the operator coefficient of which is a stationary stochastic process.

1. Introduction

It is well known that the averaging principle is a powerful tool of investigation of or-
dinary differential equations, containing high frequency time oscillations, and a vast
work was done in this direction (cf. [1]). This principle was extended to many other
problems, like ordinary differential equations in Banach spaces, delayed differential
equations, and so forth (for the simplest result of such kind we refer to [2]). It seems
to be very natural to apply such an approach to the case of parabolic equations, ei-
ther partial differential, or abstract ones. However, only a few papers deal with such
equations. Most of them deal with linear and quasilinear equations in the case when
high oscillations in coefficients and/or forcing term are of periodic or almost periodic
nature [4, 6, 9, 8, 13, 14, 18]. Moreover, many applications give rise naturally to par-
abolic equations with highly oscillating random coefficients. For linear equations of
such kind the averaging principle was studied in [15, 16, 17]. Note that, in [17] the
so-called spatial and space-time averaging (homogenization) is investigated, while the
time averaging is also considered.

In the present paper, we study the averaging problem for an abstract monotone
parabolic equation, the operator coefficient of which is a stationary (operator valued)
stochastic process. We prove that in this case the averaging takes place almost surely,
that is, with probability 1. As a consequence, we get an averaging result for the case of
almost periodic coefficients (almost periodic functions may be regarded as a particular
case of a stationary process). This result is, so to speak, individual, in contrast to the
main theorem which is statistical in its nature. Our approach differs from those used
in the references we pointed out above, except [17], and is based on the theory of
G-convergence of abstract parabolic operators. The last theory was developed in [7] in
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2 Time averaging for random nonlinear abstract parabolic equations

connection with homogenization of nonlinear parabolic equations (see [11] for detailed
presentation). Note that, in [7, 11] a simple result on time averaging in the periodic
case is obtained as well.

We point out that in this paper we make use of a characterization of stationary
processes from the point of view of dynamical systems, which is equivalent to the
standard definition [5], but seems to be more analytical.

The paper is organized as follows. Section 2 is devoted to the precise statement of the
problem and the formulation of the main result. In Section 3, we present some prelim-
inaries on G-convergence of abstract parabolic operators. Most of them are borrowed
from [11]. The proof of the main result is contained in Section 4. In Section 5, we
prove an averaging result for almost periodic parabolic equations. In Sections 6 and 7,
we present a simple example and discuss some immediate extensions of our results,
respectively.

2. Statement of the problem and the main result

Let Q2 be a probability space, with a probability measure P. Assume that on € it is
given an action of a measure preserving dynamical system 7 (), that is, for each r € R
a self-map T'(¢) : @ — 2 is defined such that

T +1)=T(1)T () (t1,12 € R) and T (0) = I, where [ is the identity map,

(2) the map Q2 x R — , defined by (w, t) — T (t)w is measurable,

3) P(T(1H)U) = P(WU) (t € R) for every measurable set U C 2.

In addition, we always assume the dynamical system 7 (¢) to be ergodic. Recall that

T (¢) is called ergodic if for each measurable function f(w) on 2 such that (T (t)w) =
f(w) almost everywhere (a.e.) one has f(w) = const. a.e. In what follows we use
standard notations for the Lebesgue spaces, as well as for the space of continuous
functions. Moreover, (f) stands for a mean value of measurable function f on :

(f) = /Q F(@)dP@). .1

Let V be a separable reflexive Banach space over the field R of reals, and let V* be
its dual space and H a Hilbert space identified with its dual, H* = H. It is assumed
that V. C H C V* and all the embeddings here are dense and compact. We denote by
l-1I,1-1, and | - ||+ the norms in V, H, and V*, respectively, and (-, -) stands for the
inner product in H and the canonical bilinear form on V* x V (the duality pairing).

Let p > land 1/p+1/p’ = 1. We fix nonnegative constants n, m1, and m, positive
constants ¢y, ¢z, c3, and ¢4, and reals «, 8 such that

0<a§min{§,p—l}, B > max{p,2}. (2.2)

Consider a family A(w) : V — V* (0w € Q) of operators satisfying the Carathéodory
condition
(C) for almost all w € Q the operator A(w) : V — V* is continuous, while A(w)u
is a measurable V*-valued function for every u € V,
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and the following inequalities

lA@)ulll <mi+c1(A@u,u), 2.3)
(A(@u,u) = cal|ull” —ma, (2.4)
|A(@u1 — Az, < 307~/ P (A(@)ur — A(@uz, ur —u2)*?, (2.5
(A(a))u1 — A(w)un, uj —uz) >, ®P=PA/p ||u1 —u2| ﬂ, (2.6)

for every u,uy,u; € V and almost all (a.a.) w € 2, where
D =0(uj,u2) =m+(A(@ur, ur)+ (A@uz, uz). 2.7

It is always assumed that m > 2m, which implies ®(u1,u2) > 0 provided |lu1]| +
luz]| > 0.
Now, we introduce a family A, (¢) (w € Q) of operator valued functions defined by

Ao =A(T(Hw), 1€R. 2.8)

It is not difficult to verify (cf. [11]) that for a.a. @ € Q the operator function A, (?)
is well defined, and satisfies the Carathéodory condition (on the real line now) and
inequalities (3.1), (3.2), (3.3), and (3.4) below which are similar to (2.3), (2.4), (2.5),
and (2.6). In particular, the operator A,(¢) is bounded, coercive, and strictly mono-
tone uniformly with respect to w and ¢. Therefore, due to standard results on abstract
monotone parabolic equations (cf. [10]), for a.a. @ € Q2 the following Cauchy problem:

u/+Aw(£)u = feL?(0,7;V*), 2.9)
u@©)=upe H (2.10)

has a unique solution
u=ugye€LP0,1;V)NC([0,7]; H) (2.11)

such that u’ = u;, , € LY (0, 7; V*). Here T > 0 is an arbitrary, but fixed, real number.
We remark that at this point the whole set of assumptions (2.3), (2.4), (2.5), and (2.6)
is not needed. We use them only to apply the results on G-convergence [11].

Let A:V — V* be an operator defined by

Au:(Au):/ A(w)ud P(w), (2.12)
Q

the mean value of A(w)u. It is easily seen that A acts continuously from V into V*
and satisfies inequalities (3.1), (3.2), (3.3), and (3.4). By the Birkhoff ergodic theorem
(cf. [3]), for a.a. w € 2 one has

N
~

1 1S
Au=lim — | A(T()w)udt = lim —/ A(T (Hw)udt. (2.13)
s—>002s J_o

s—>o00 s Jo

The following result justifies in the case we consider the principle of averaging.
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THEOREM 2.1. Fora.a. w € 2, u, o — t weakly in L? Q,t;V), strongly in C([0,7]; H),
and uy, , — ' weakly in LP(0,7; V*) as € — 0, where ii is the unique solution of the
problem

i +Ab = f, (2.14)
1(0) = uo. (2.15)

3. G-convergence of abstract parabolic operators

To prove Theorem 2.1, we need certain preliminary results on G-convergence (we refer
to [11] for more details). First, we recall some definitions.

Let Ax(¢), t € [0,7], (k=0,1,...) be operators acting from V into V*. Assume
that they satisfy the Carathéodory condition on [0, 7] and inequalities

AR < mi+c1 (A (Ou, u), 3.1)
(Ak(®u,u) = callull? —mo, (3.2)

| Ak @ur — ADuz|), < 3PP (Arur — Ak @Ouz,ur —uz)P, (3.3)

(Ax Oy — Ap@®uz, ur —uz) = ca® PP ||uy —us | g (3.4)
forall u,u;,ur € V and a.a. t € [0, t], where
O =m+ (Ar(Our, ur) + (Ar(Duz, uz). (3.5)
Consider parabolic operators
Liu=u"+Ar(u, (*k=0,1,...), (3.6)
acting from the space
Wo={u e LP(0,7;V¥) [u' € L” (0,7; V*), u(0) =0} 3.7)
into L?’ (0, 7; V*). Endowed with the graph norm
leelhwy = el Loo,ev) + 14| Lo o000y (3.8)

Wy becomes a reflexive Banach space. As it was already mentioned, due to our assump-

tions the operators Ly are invertible. One says that Lg is a G-limit of Ly, k=0,1,...,

(in symbols, L N Lo) if Lk_lf — Lalf weakly in Wy for all f € L”/(O, T; V*).
We have the following results [11].

THEOREM 3.1. Let Ly (k =0,1,...) be a sequence of parabolic operators satisfying
(3.1), (3.2), (3.3), and (3.4). Then there exists a subsequence Lj and a parabolic
operator L satisfying (3.1), (3.2), (3.3), and (3.4), with possibly different values of

G
m,mj,my,cy,cCa,c3, and ca4, such that L, — L.
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We now point out that, in fact, our parabolic operators act on a larger space consisting
of all functions from L” (0, t; V) which have first derivative in L? (0, 7; V*). Such
functions are not necessarily vanishing at 0.

THEOREM 3.2. Let Ly i) L, up € LP(0,7; V) with u) € L”/(O, T; V¥). Assume that
Lyuy — f strongly in L”/(O,t; V*), up — u weakly in LP,(O,‘L'; V), and u;c —u
weakly in LP (0, 7; V*). Then Lu = f and Ag(t)uy — A(t)u weakly in L?' (0, 7; V*).

PrROPOSITION 3.3. Assume that Ly i> L, fe Lp/(O, T; V*), and ug € H. Let uy €
LP?(0,t; V) be a (unique) solution of the Cauchy problem

Liug = up+ A (Dug = f, ug(0) = uo, (3.9)

such that u;( € Lp/(O,l'; V*). Then uy — u weakly in LP(0,t; V) and strongly in
C(0,7]; H), u;( — u’ weakly in LP,(O, T; V*), where u is a (unique) solution of the
Cauchy problem for L with the same initial data uy.

Proof. Multiplying (3.9) by u; and integrating, we obtain

1 1 t t
§|Mk(t)|2—§|u0|2+ fo (Ak()ur(s), ux(s)) ds = /0 (f($),ux(s))ds.  (3.10)

Now due to assumption (3.2), we see that uy is a bounded sequence in L? (0, t; V) and
C([0,t]; H). Using (3.1) and (3.9), we obtain from the last observation the boundedness
ofu;c inL? (0, 7; V*). Since L?(0,; V) and LY (0, T; V*) are reflexive spaces, passing
to a subsequence, we can assume that uy — u weakly in L?(0,t; V) and u;( —u'
weakly in LY (0, 7; V*). In addition, due to Lemma 1.3.4 of [11], we can also assume
that uy, — u strongly in C ([0, t]; H). (In fact, this lemma is stated in [11] only under a
stronger assumption uo = 0. However, the proof works equally well if we assume only
that u (0) = ug € H.) By Theorem 3.1, u is a solution of Lu = f, while u(0) = ug due
to convergence of uy in C ([0, t]; H). Since such a solution u is unique, the passage to
a subsequence above is unnecessary and the proof is complete. (]

In Section 5, we also use the following result (see [11, Corollary 1.3.1]).

ProOPOSITION 3.4. Let

Llu=u'+AlOu (n,k=0,1,2,..)) 3.11)

. G
be a double sequence of parabolic operators. Assume that L} — Ly as k — oo for
alln=1,2,..., and

. | AL (t)u— AL (t)u
lim esssup sup * =

3.12)
n—o00 te[0,7] ueV 1+ ”””p_]

uniformly with respect to k =0,1,2,.... Then Lg g, Lg.
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4. Proof of Theorem 2.1

Consider parabolic operators L,  and L generated by the left-hand sides of (2.9) and
(2.14), respectively. First, we point out that for a.a. w € 2 the operators L,, . satisfy all
the assumptions of Section 3.

THEOREM 4.1. For each t > 0 and for a.a. w € Q, we have

Los 251 ase—s0. 4.1

Theorem 4.1 together with Proposition 3.3 imply obviously Theorem 2.1. To prove
Theorem 4.1 we need to introduce an operator of “differentiation” along trajectories
of our dynamical system 7 (¢) (see [11, Section 3.1], for more details). Associated to
T (1), there exists a one-parameter groups of operators G (¢) acting in all the spaces
L' (Q,E), where E=V,H or V*,1 <r < 0.

The operator G(¢) is defined by

(GO ) =f(THw), 1€R, weQ. 4.2)
It is easily seen that G(f) is an isometric operator in each space under consideration.
Moreover,
G*(t)=G(-1), teR. 4.3)
Now G(¢) is considered as an operator in L"(2; E) (1 < r < 00), hence, G*(¢) acts in
L’/(Q; E*). In particular, G(¢) is a group of unitary operator in L3(Q; H).

The group G(¢) is strongly continuous in L" (2; E), with 1 <r < oco. The generator 9
of this group is a closed linear operator in L" (2; E). Due to (4.3), 9 is skew-symmetric:

(0f.9)=—((f.09)), VfeD(d,L'(E)),VgeD(0, L (R E*), (44

where D (9, L"(£2; E)) is the domain of 9 in L"(2; E), 1 <r < 0.
However, for our purpose we need to consider d as an (unbounded) operator from
LP(2; V) into Lp/(Q; V*). Denote by W (£2) the completion of

D(8; LP(2; V)N D(3; LP (; V¥)) (4.5)
with respect to the norm

Ifllw = N f e vy H 101 Lo .y (4.6)

This is a reflexive Banach space densely embedded into L?”(€2; V). Now the action
of 9 can be extended to W(2) and we get the desired operator from L”(€2; V) into
Lf’/(SZ; V*), with the domain W (£2). Making use of the same smoothing arguments
in [11, Section 3.1], we see that this operator, still denoted by 9, is skew-symmetric:
0* = —0. Moreover, if f € W (), then, for a.a. w € 2, f(T(H)w) € Lﬁ)C(R; V). For
its distributional derivative we have

[£(T(o)] = @) (T 1)) € LT (R; V*). 4.7

We also remark that, due to ergodicity assumption, the kernel ker 0 consists of constant
functions on €.
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Proof of Theorem 4.1. Independently of t, for a.a. w € 2 the operators L, . satisfy
the assumptions of Theorem 3.1. Hence, for any sequence of ¢’s converging to 0, there
exists a subsequence, still denoted by ¢, and a parabolic operator

Lou =u'+ Ag(t)u (4.8)

such that L,, ¢ i) Lo, w € Qq, where 2 is a set of measure 1. To prove the theorem
it suffices now to show that Ay(7) = Aforaa.te [0, T]. In particular, this means that
the passage to a subsequence above is superfluous.

Fix u € V and consider the following identity:

<u+ewa(§)) +Aw<§) (u+ewa<§)) —Autdestves, (49

o] ()

¢ € (4.10)
t t t
£ £ &

Now we specify the function ws. Since 9 is skew self-adjoint and ker d is just the
space of constant functions, the image of d is dense in the subspace

where

[feLr(2:v*):(f)=0}. (4.11)
Therefore, for every § > 0 there exist Ws € W (), bl e LP,(Q; V*) such that

(1) = (") =0, Au—A(@u=b"@) -, W=D’

4.12)
B
e ”Lﬂ’(gz;v*) =Ll
Moreover, one can assume that (Ws) = 0.
We set
ws(t) = Ws (T(t)w). (4.13)
Now
¢ 14 T t p T/e
‘w(;(—) =/ u)g(—) dt:s/ ||w5(t)}|€dt
e/ lLrovy  Jo e/l 0 4.14)
T/e ’
e /0 [Ws(T (1)) |, dt.
Hence, by the Birkhoff ergodic theorem,
t\|? »
ws | - — 7| Ws ||L,,(Q,v) (4.15)
€/ lLr©,7;v) ’
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()L,

LP(0,7;V)

[swa(é)}/=(3ﬂk)<T(é>w>. (4.17)
[,

Thus, by (4.16), ews(t/e) — 0 strongly in L?(0, 7; V) for any fixed § > 0.

Now choose a sequence of §’s converging to 0. Then, to each such § one can as-
sign ¢ = ¢(8) such that ¢ — 0 and sws(t/e) — O strongly in LP(0,7;V) as 6 — O.
Since, due to (4.18), [ews(t/€)]’ remains bounded in LY (0, 7; V*) we conclude that
[ews(t/e)] — O weakly in this space. At the same time, inequality (2.5) implies that
Ye.s — O strongly in LY (0, T; V*). Finally, we have, evidently, ¢, s = C‘S(T(t/s)a)).
Using again the Birkhoff ergodic theorem, we see that || sl OV 0asé§— 0,
uniformly with respect to ¢.

Now, applying Theorem 3.2, we deduce from (4.9)

as ¢ — 0. Therefore,

<C|Wws (4.16)

||€P(Q;V)'

Due to (4.7),

Hence, as above

=,
LP (0,T;V*)

(4.18)

KRN

u + Ag(Hu = Au. (4.19)

Since u is independent of ¢, we complete the proof. O

5. Almost periodic averaging

We now consider the averaging problem for the equation
t ’
u’—f—A(—)u:feLp (O,T;V*). (5.1)
€

We assume that the operator function A(z) : V — V* satisfies inequalities (3.1),
(3.2), (3.3), and (3.4), and the function

A(t)v

P V9 5.2
T+ o1 V€ ©:2)

is almost periodic, in the sense of Bohr, in # € R uniformly with respect to v € V [12].
More precisely, continuous operators from V into V*, having power growth of order
p—1, form a metric space, with the metric

Alv—A
d(A1,A2) — supM

: 5.3
vev 1+]vllP~! )

Thus, we assume that A(¢) is an almost periodic function with values in this metric
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space, that is, for every sequence 7; — oo there exist a subsequence #; and an operator
function A’(¢) such that

lim supd(A(t+1), A'(1)) =0. (5.4)
k'—o00 teR
To apply Theorem 2.1, we recall the notion of Bohr compactification Rp of R [12].
There exist a compact abelian group Rp and a dense continuous embedding R C Rp of
abelian groups such that every almost periodic function on R is, in fact, a restriction to
R of a continuous function on R g. Moreover, each continuous function on R g restricted
to R gives rise to an almost periodic function. We refer to [12] for detailed presentation
of the theory of almost periodic functions from this point of view.
Now we set 2 = Rp and denote by P the normalized Haar measure on Rp. We
define the dynamical system 7 () by

THw=w+t, weQ=Rp, te RCRp. (5.5)

Denote by A(w) a (unique) extension of A(¢) to Rp. Then (5.1) results from (2.9) after
a substitution @ = 0. Theorem 2.1 implies averaging for a.a. € Rp, but not for w =0,
in general. Nevertheless, we have the following theorem.

THEOREM 5.1. Let ug be a solution of Cauchy problem (5.1), (2.10), and u a solution
of (2.14), (2.15), where
. 1 (3 I
Av= lim — A®)vdt = lim — A(t)vdt. (5.6)
5—>0028 J_g

S— o0 0

Then ugs — U weakly in LP(0,t; V) and strongly in C([0,t]; H), u,, — u’ weakly in
LP'(0,7; V*).

Proof. By Theorem 4.1, there exists a measurable set 290 C Rp of measure 1 such that
G » . .

L, . —> L for all w € 9. However, each set of measure 1 in Rp is dense. Therefore,

there exists a sequence w, € ¢ such that w, — 0. Moreover,

lim supd(Aq, (1), A1) = 0. (5.7)

n—-oo teR

Due to Proposition 3.4, we have Lo ¢ N L. Applying Proposition 3.3, we obtain the
result. (]

6. An example

Now we consider a simple example. Let O C R" be a bounded open set and a(w, t) a
stationary stochastic process a.a. realizations of which are contained between two pos-
itive constants. The last assumption may be expressed as follows: a(w, t) = a(T (t)w),
where a(w) € L*°(2) and a(w) > ap > 0. The equation

M—V(a(w,é)WV’_zVu) =f, 6.1)
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together with the homogeneous Dirichlet condition on d Q, reduces to (2.9), with V =

W(:’p (Q) (the Sobolev space) and H = L%(Q), provided p > 2. All assumptions (2.3),
(2.4), (2.5), and (2.6) are easy to verify. The averaged equation is

0’ —av(|\va|P=*vi) = f, (6.2)

where 4 is the mean value of the process a.

7. Some generalizations

First of all, we note that in (2.9) we can consider the forcing term f of the form
fo®) + f1(T(t/e)w), where fo € LP (0,7;V*) and fi € LP'(Q; V*). This situation
reduces immediately to the case of Theorem 2.1 if we replace the operator A(w) by
a new operator Alw) = A(w) — fi(w). Tt is easily seen that A(w) satisfies all the
assumptions of Section 2 whenever A(w) does.

Moreover, one can extend Theorem 2.1 to the case when the equation under consid-
eration contains the slow variable ¢ as well as the fast one 7 /¢, that is, is of the form

u’+Aw(t, é)u:f, (7.1

where f = f(t), oreven f = f,(t,t/¢e). To do this we need only to consider instead
of A(w) an operator function A(¢,w) defined on [0, 7] x 2 and satisfying the same
assumption as in Section 2, with €2 replaced by [0, ] x 2. Certainly, in this case

()1}

A similar remark concerns with f = f,(¢,t/¢).
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