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We consider Borel measures on a locally compact Hausdorff space whose values are
linear functionals on a locally convex cone. We define integrals for cone-valued func-
tions and verify that continuous linear functionals on certain spaces of continuous
cone-valued functions endowed with an inductive limit topology may be represented
by such integrals.

1. Introduction

The theory of locally convex cones, as developed in [3], deals with ordered cones that
are not necessarily embeddable in vector spaces. A topological structure is introduced
using order theoretical concepts. We will review some of the main concepts and globally
refer to [3] for details and proofs.

An ordered cone is a set P endowed with an addition and a scalar multiplication for
nonnegative real numbers. The addition is associative and commutative, and there is a
neutral element 0 € %. For the scalar multiplication the usual associative and distributive
properties hold, that is, a¢(Ba) = (@B)a, (¢ + B)a = aa+ Ba, a(a +b) = aa + ab,
la =a and Oa =0 for all a,b € P and «, B > 0. The cancellation law, stating that
a—+c = b+ c implies a = b, however, is not required in general. It holds if and only
if the cone P may be embedded into a real vector space. Also, P carries a (partial)
order, that is, a reflexive transitive relation < such that a < b implies a +c¢ < b—+c and
aa <ab forall a,b,c € P and o > 0. As equality in P is such a relation, all results
about ordered cones apply to cones without order structures as well.

A linear functional on a cone P is a mapping 1 : ? — R = RU {400} such that
w(a +b) = pu(a) + u®d) and p(ea) = au(a) for all a,b € P and « > 0. In R we
consider the usual algebraic operations, in particular « 4+ oo = 400 for all € R,
o - (+00) = 400 for all @ > 0 and 0 - (+o00) = 0. Note that linear functionals can
assume only finite values at invertible elements of P.
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A full locally convex cone (%,%) is an ordered cone % that contains an abstract
neighborhood system V', that is, a subset of positive elements which is directed down-
ward, closed for addition and multiplication by strictly positive scalars. The elements
v of V" define upper, respectively lower neighborhoods for the elements of ? by

va)={be®P|b<a+v}, respectively (@)v={beP|a<b+v}, (1.1)

creating the upper, respectively lower topologies on %. Their common refinement is
called the symmetric topology. All elements of P are supposed to be bounded below,
that is, for every a € % and v € V" we have 0 < a 4+ Av for some A > 0. Finally, a locally
convex cone (P, V) is a subcone of a full locally convex cone not necessarily containing
the abstract neighborhood system %". Every locally convex ordered topological vector
space is a locally convex cone in this sense, as it may be canonically embedded into
a full locally convex cone (see [3, Example 1.2.7]). Endowed with the neighborhood
system W = {e¢ € R | ¢ > 0}, R is a full locally convex cone.

The polar v° of a neighborhood v € V" consists of all linear functionals y« on a locally
convex cone (P, V) satisfying u(a) < u(b)+ 1, whenever a < b+ v for a,b € P. The
union of all polars of neighborhoods forms the dual cone P* of %. The functionals
belonging to P* are said to be (uniformly) continuous. Continuity requires that p is
monotone, and for a full cone % it means just that i (v) < 1 holds for some v € ¥ in
addition. We endow P* with the topology w(®*, P) of pointwise convergence of the
elements of P, considered as functions on #* with values in R with its usual topology.
The polar v° of a neighborhood v € V" is seen to be w(P*, P)-compact and convex (see
[3, Theorem I1.2.4]). Hahn-Banach type extension and separation theorems for locally
convex cones were established in [3, 6]. Theorem I1.2.9 from [3] (a more general
version is Theorem 4.1 from [6]) states that, for a subcone (2, V") of (P, V") every linear
functional in v° C 2* extends to an element of v° C P*.

While all elements of a locally convex cone are bounded below, they need not to be
bounded above. An element a € P is called bounded (above) (see [3, Section 1.2.3])
if for every v € V there is A > 0 such that a < Av. All invertible elements of % are
bounded. Continuous linear functionals in particular take only finite values on bounded
elements.

In Section 2, we introduce functional-valued Borel measures on a locally compact
Hausdorff space and measurable cone-valued functions. We take advantage of the fact
that every locally convex cone, hence every locally convex vector space, may be em-
bedded in a full cone which contains sufficiently many positive elements in order to
apply the concepts of measure theory for real-valued functions. In Section 3, we inves-
tigate integrals for cone-valued functions. In Section 4, we derive a generalized Riesz
representation theorem for spaces of continuous cone-valued functions endowed with
an inductive limit topology, our main result.

2. Measures and measurable functions

Throughout the following, let X be a locally compact Hausdorff space, & the o -algebra
of all Borel subsets of X, and ¥ the family of all compact subsets of X. Let (%,¥’) be
a locally convex cone, ?* its dual. Endowed with the pointwise algebraic operations
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and order the %-valued functions on X form again a cone, denoted by F(X,%). The
support of f € F(X,P) is the closure supp(f) in X of the set {x € X | f(x) # 0}. Fora
positive real-valued function ¢ on X and f € F(X, %), we denote by ¢ ® f € F(X,P)
the mapping

X— X)) fx): X — P. 2.1

For an element a € # we also use its symbol to denote the constant function x +— a,
hence ¢ ®a for x — ¢(x)a. Note that even if ¢ is continuous real-valued, the mapping
9p®a € F(X,?P) need not to be continuous with respect to any of our topologies on &
if the element a is not bounded. We denote the subcone of % (X, %) of those functions,
that are continuous with respect to the symmetric topology of P, by €(X, P).

As usual, x, stands for the characteristic function on X of a subset £ C X, and
F(X, P) is the subcone of F(X, P) of all P-valued step functions on X; that is, functions
h = Z?:l X, ®a; with E; € B and a; € P. If the sets E; are pairwise disjoint and
their union is X, we call the above the standard representation for the step function 4.

2.1. Inductive limit neighborhoods for cone-valued functions. We may adjoin infi-
nite elements vy, to the neighborhood system V" in the following way: for v € V" and
a,be P, weseta <b+uvs if a < b+ lv for some A > 0. Also we use a maximal
element oo such thata < b+oo for all a, b € . We may add and multiply these infinite
elements in a canonical way, that is, @ - Voo = Voo for all @ > 0, Voo + Woo = (V+ W) oo,
etc. We obtain the extended neighborhood system Voo = VU{v+weo | v, w € V'}U{00}.
An inductive limit neighborhood for (X, %) is a convex set v of V' ,-valued functions
on X, such that for every K € ¥ there is vg € ¥ and s € v such that x, ® vk <s. For
functions f, g € F(X,P) we say that

f<g+v if f <g+s forsomes ev. (2.2)
We denote by 20 the family of all inductive limit neighborhoods for & (X, ).

2.2. Functional-valued measures. Let By denote the ring of all relatively compact
Borel subsets of X. A P*-valued Borel measure ¥ on X is a set function

E+— 9 : By — P* (2.3)

such that 9 (¥) = 0 and for each a € P the R-valued set function ¢, that is,
E+—— 09(E)=0g(): By — R (2.4)
is o-additive on %y, namely 9 (U2 E;) = Z?il 94(E;) holds for all a € ¥ and
disjoint sets E; € By, such that U?il E; € By, If the neighborhood v € V" is an element

of P, then for every E € By it is clear that ¥Y(E) = 9g(v) is the infimum of all
constants 0 < p < 4-00 such that

Y 0i(E) <) 0P (Ei)+p 2.5)
i=1 i=1
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holds for any choice of disjoint Borel sets E; C E and a;, b; € P suchthata; < b; +v.If,
on the other hand, the neighborhood v ¢ %, then we may use the above to define ¥V (E)
as the infimum of all such constants p. With this definition, it is straightforward to check
that for fixed v and varying E € By, ¥V is also o-additive on RBg;. Moreover, for fixed
E and v we may use the above to define an R-valued monotone linear functional ¥
on the full cone % = {a+Xrv|ae®P, »>0}. (The order and the algebraic operations
for & are canonical.) We set

O (a+rv) = 09 (E) = 04(E)+ A9V (E) (2.6)

for a € % and A > 0. In a similar way, ¥ may be extended to an R-valued monotone
linear functional on a full cone that contains all neighborhoods of % (see [3, Chapter
1.5]). However, for this linear functional to be continuous, hence an element of the dual
of this full cone, we need to require that ¥ is bounded on E, namely that 9 g (v) < +00
for at least one neighborhood v € V.

In this vein, we say that a P*-valued Borel measure ¢ is J-bounded if it is bounded on
all compact subsets, hence also on all relatively compact subsets of X. This requirement
for a P*-valued measure corresponds to Dieudonné’s notion of p-domination in [1] and
to Prolla’s of finite p-semivariation in [5, Chapter 5.5] for measures with values in the
dual of a locally convex vector space.

In what follows, we will always require functional-valued measures to be J{-bounded.
We may therefore assume, without loss of generality, that the locally convex cone
(P, V) is full, as otherwise the measure ¢ may be extended to a larger full cone. We
take advantage of the fact that full cones contain sufficiently many positive elements.
For a fixed positive element 0 < a € P, for example, #¢ may be canonically extended
to an R-valued Borel measure on X, setting for every Borel set E € B

9 (E) =sup{9*(F)| F CE, F € ®By}. 2.7

Note, however, that for a fixed nonrelatively compact Borel set £ and varying0 <a € %
the above formula defines a monotone linear functional on the positive cone in P, but
this functional might not be extendable into an element of %*.

2.3. R-continuous cone-valued functions. For the remainder of Section 2 and for
Section 3, let (%, 7) be a full locally convex cone, and let % denote the subcone of
all positive elements of %. Due to the presence of unbounded elements, continuity with
respect to the symmetric topology of % is a rather restrictive requirement for cone-
valued functions. We will therefore use the following slightly more generous concept:
a positive function f € F(X, %) is said to be relatively continuous (r-continuous, for
short) on X if for every x € X, v € ¥, and y > 1 there is a neighborhood U of x
such that

S =yvfM+v, fO)yfx)+v, Vyel. (2.8)

A not necessarily positive function f € F(X, P) is r-continuous if for every v € V" there
is a positive real-valued continuous function ¢ on X such that f 4 ¢ ® v is positive
and satisfies the above definition. We denote the cone of all r-continuous functions in
F(X,P) by €"(X,P). For a function f € €(X,%) and for v € ¥ we may choose the
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continuous real-valued function ¢(x) = 1 +inf{p > 0| f(x)+ pv > 0} and realize that
f + ¢ ® v satisfies our definition. Thus €(X,%) C 6" (X, %), and both cones indeed
coincide if all elements of % are bounded. For a positive real-valued continuous function
¢ and an unbounded element a € P, the function ¢ ® a € F(X,?P) is generally not
continuous, but r-continuous at all points x € X, where ¢(x) > 0. For the latter, assume
first that a € P . For ¢(x) > 0, v € ¥, and y > 1 there is a neighborhood U of x such
that (y) < ye(z) forall y,z € U. Then ¢ ®a(y) = ¢(y)a < y¢(z)a = yp ®a(z). For
any a € % thereis A > O such thatb = a+Av > 0. The function p ®b = pQa+ (Lp) Qv
is r-continuous at x by the above, thus ¢ ® a is also r-continuous by our definition.

For an illustration of this, let % be the cone of all real-valued continuous functions on
R which are uniformly bounded below, endowed with the pointwise algebraic operations
and order. With the neighborhood system " consisting of all strictly positive constant
functions in %, then (%,¥’) becomes a full locally convex cone. The function f € %
such that f(t) =% fort € R is obviously not bounded in %. If we choose X = [0, 1)
and the real-valued function ¢(x) = x on X, then the P-valued function ¢ ® f is
r-continuous on (0, 1) but not at x = 0. Continuity with respect to any of the given
locally convex topologies on % fails at all points of X.

To further illustrate some implications of r-continuity, let us consider the following:
for a fixed neighborhood v € V,and a, b € % we say that b is v-bounded relative to a and
write b € By(a) if there are A, p > 0 such that b < Aa + pv. Thus, 0 € B, (a) for every
a € P, and Nyey By (0) consists of all bounded elements of %. It is straightforward
to verify that By,(a) is a subcone and a face in P, closed with respect to the lower
topology of P. Moreover, B, (a) consists exactly of those elements b € % such that
w(b) < 400 whenever u(a) < +oo for a linear functional u € v°. Likewise, the
set (a)By, = {b € P | a € By(b)} is closed with respect to the upper topology, and
aa+b € (a)B, whenever a € (a)By, b € P and o > 0. Moreover, (a)B, consists
exactly of those elements b € % such that u(b) = +0o whenever u(a) = +oo for
some p € v°. As an immediate consequence of our definition we realize that for an
r-continuous function the inverse images of all sets By, (a) and (a) B, are both open and
closed in X.

2.4. Measurable cone-valued functions. Measurability for vector-valued functions
has been introduced in various places (cf. Dunford et al. [2, Definition II1.2.10]). A
suitable adaptation for cone-valued functions needs to consider the presence of un-
bounded elements in % and the absence of negatives. We will therefore define measura-
bility only for positive-valued functions. As % is a full cone, hence contains sufficiently
many positive elements, this concept will prove adequate for our upcoming integration
theory.

For a sequence of functions (f;;),en and f in F(X,?P) and a subset E of X, we
will write f,, /' f on E if (f,),eN converges to f pointwise on E with respect to the
lower topology of P, that is, if for every x € E and v € V" there is nog € N such that
f(x) < fu(x)+v forall n > ng.

A function f € F(X,%P,) is said to be (Borel) measurable if for every K € K,
v e, and y > 1 there is a sequence (4,),cN of step functions in ¥(X, %) such that

hy, /1 f onKk, hy <yf+v. (2.9)
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For an element a € % and a neighborhood v € V" we denote
@a:{be@’|b§ya+sv\7’y>land€>0}. (2.10)

This set is decreasing and closed with respect to the lower topology of % and coincides
with the set of all b € % such that @ (b) < u(a) for all u € v°. The latter follows from
a Hahn-Banach type separation theorem (see [6, Corollary 4.6]). Likewise, the set

ta={be®|(1/y)a<b+evVy >1ande >0} (2.11)

is increasing, closed with respect to the upper topology and coincides with the set of
all b € P such that u(b) > p(a) for all u € v°. Moreover, it is straightforward to check
that for an r-continuous function f € €" (X, %), the inverse images of sets §a and fa
are closed in X.

LEMMA 2.1. If f € F(X,P,.) is measurable, then f~'(Ya) € B and f~'(§a) € B for
allae Py andv .

Proof. Letae P, veV,and K € H. For m e N, set ¢, = 1/m and y,,, = 1+ ¢,
and choose a sequence (h)}'),cN of step functions such that 4} 7 f on K and A! <
VYm [ +emv. Set

F'={xe K |hT(x) <yia+2env} € B (2.12)
and F =) e B. As b (x) < Y f(x) +epv for all x € K, we realize that

m,neN ‘' n
f(x) € ¢a implies that x € F)" for all m,n € N, hence x € F. On the other hand, for
x € F and every m € N there is n € N such that f(x) <A (x)+e,v < ynzla—i—Semv,
hence f(x) € ¢a. Thus f~'(4a)NK = F € B. This holds for all K € I, hence

f ~1(a) € B (see [7, Lemma 13.9]). Similarly, for the second statement set

1

E?:{xeK | (—)afh:’f(x)—i—Zemv} eR (2.13)
m

and E = (),,en(U,en EX). As for every x € K and m € N there is n € N such that

f(x) < ht(x)+epv, clearly f(x) € $a implies that x € E. On the other hand, for

x € E and every m € N we have (1/y;,)a < h}} (x) +28,v < Y f (x) +3&,,v for some

n €N, hence f(x) € $a. This shows that f~1(§a)NK € %B. (]

LEMMA 2.2. A function f € %(X,R,) is measurable if and only if it is Borel measurable
in the usual sense.

Proof. Let f € F(X,R,). If f is Borel measurable in the usual sense, then it is the
pointwise limit of an increasing sequence ()N of real-valued step functions. For any
K € X, the EJr-valued step functions A, (x) = ¥, (x) if f(x) < 400 and h,(x) = +o0
else, then fulfill our criterion. If, on the other hand, f is measurable in our sense, then
' (ta) e B and f~'($a) € B for all a € R4 by Lemma 2.1. But $a = (—00, a] and
$a = [a, +oc]. Thus f is Borel measurable in the usual sense. O
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LEMMA 2.3. The measurable functions form a subcone of (X, P.), closed with respect
to the symmetric topology of compact convergence.

Proof. The first statement is obvious. For the second, let f € F(X, %) be an accumu-
lation point of the subcone of measurable functions, let K e H, v eV, and 1 <y <2.
There is a measurable function g € (X, P, ) such that g(x) < f(x)+v and f(x) <
g(x)+v for all x € K. We find a sequence (4,),cn in (X, P) such that h,, ' g on K
and i, < yg+v. We may assume that the step functions 4,, are supported by K and set
ly=hp+veS(X,P).Thenl, / fonK andl, <y(x, ®g) +2v <y(x, ®f)+4v,
demonstrating that f is indeed measurable. O

THEOREM 2.4. For a function f € F(X,P ), the following statements are equivalent:

(a) f is measurable.

(b) For every K € X, v €V, and y > 1 there is a sequence (f,)neN of measurable
functions in F(X,P) such that f,, /' f on K and f, <yf +v.

(c) For every K € H, v €V, and y > 1 there are E; € By such that U;eNE; = K
and f(x) <yf(y)+v whenever x,y € E; for some i € N.

Proof. (b) follows from (a) trivially with f;, = f. Now suppose that (b) holds and
let K € H. For v e ¥V and 1 < y < 2, there is a sequence (f;),cy of measurable
functions such that f;, /' f on K and f, < yf +v. By our definition of measurability,
for every f, there is a sequence (h}'),,en of step functions such that A} 7 f, on
K and A' < yf, +v. We may assume that supp(h)') C K and represent each of
these step functions through finitely many characteristic functions of disjoint Borel sets
whose union is K. Altogether, there are only countably many terms x r ®ai involved
in building these step functions. Consider the corresponding family {(F;,a;) | i € N}.
Thus

ai =h' () < yfux)+v <y (yf ) +v)+v <y f(x)+3v (2.14)

holds for all x € F;. We set E]' = fn_] A (ya; +5v))NF; € By and E; = NyenE! €
By Then for every x € K there is k € N such that f(x) < fix(x)+v, and for f; there
is (Fj,a;) such that x € F; and fi(x) < a; +v. Thus f(x) < a; +2v and f,(x) <
yf(x)4+v < ya; +5v for all n € N. This shows x € E;, hence U;cNE; = K. Second,
for any choice of x, y € E; we have f(x) < g,(x)+v for some n € N, hence

f@) <y(yai+5v)+v <y2a+11v

2.15

<y2(y2f () +30)+11v < y* £ () +23. @1

Thus (b) implies (c), indeed. Now suppose that (c) holds and let K € ¥, v € ¥, and
1 < y < 2. By (c) there is a disjoint partition of K into Borel sets (E;);en such
that f(x) < yf(y)+ v holds for all x,y € E;. We choose the step functions h, =
ZLIX% ® a;, where a; = yf(x;) + v for some x; € E;. Then h,, / f on K and
ha(x) < y? f(x)+3vforall x € K, hence h, < y? f+3v. Thus f is indeed measurable.
O
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We proceed to identify some measurable functions in F(X, P).
THEOREM 2.5. Every [ € €"(X,PL) is measurable.

Proof. Let K C ¥. Given v € ¥ and y > 1, a simple compactness argument shows

that there are finitely many disjoint Borel sets E, ..., E,;, whose union is K such that
f() <yf(x)+vwheneverx,y € E; foranyi =1, ..., n. Criterion (c) of Theorem 2.4
is therefore satisfied. U

THEOREM 2.6. If f € F(X,Py) is measurable and ¢ is a positive real-valued Borel
measurable function on X, then the function ¢ ® f € F(X,P,) is also measurable.

Proof. Our claim is obvious if ¢ is a real-valued step function, as for any sequence
(hn)nen of set functions approaching f, the sequence (¢ ® k)N Will approach ¢ ® f
in the same manner. Generally, there is an increasing sequence (V,,), N of real-valued
step functions that converges pointwise to ¢. For y > 1 set f, = y (¥, ® f). All the
functions f,, are measurable by the above, and ¥, < y(¢ ® f) holds for all n € N.
Moreover, for every x € X there is ng € N such that y,,(x) > ¢(x), hence f,(x) >
o ® f, for all n > ng. This shows f, /" ¢ ® f, and by Theorem 2.4(b) the function
¢ ® f is seen to be measurable. O

3. Integrals for cone-valued functions

We may now define integrals for measurable functions in %(X,%,) with respect to
%-bounded Borel measure . The values of these integrals will be in R. Corresponding
to ¥ we identify an inductive limit neighborhood vy € 27 as follows: for each K € ¥
we choose a neighborhood vk € V" such that ¥ (vg) < 1, and let vy be the convex
hull of the functions x, ® vg € F(X,V). We denote the cone of all P-valued step
functions with compact support by ¥ (X, %). First for a function h =Y /_, x £ ®ai €

F%(X,P4+) with E; € By and a; € P4, we define the R-valued integral with respect
to ¥ by

n

Lhdﬁ:iﬁEi(ai)=20“f(Ei). (3.1)

i=1 i=1

It is straightforward to check that the sum on the right-hand side is independent of
the representation for 2. Moreover, the integral is monotone and linear on ¥ (X, %),
and [y h1d¥ < [, hod® + 1 holds whenever hy < hy +vy for hy, hy € Sy (X, P).
Indeed, the latter means h; < hy +s for some s = Z?:l )"'(XK,- ®vk;) € vy, that is,
0<X; <1and Z?:l)‘i = 1. Thus fXSdﬁ = Z?:l )»l'ﬁ[(i (v[(l.) <1 and

/hldﬁs/ (hz—i—s)dﬁ:/hzdﬁ—i-/sdl?s/hgdl?—i—l. (3.2)
X X X X X
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Using this, for an arbitrary measurable function f € % (X, %) we define its integral
over X as

/ fdo = inf sup{/ hd® | he Sy (X, P1), h < f+n}. (3.3)
X ve X

We will verify that this formula defines a monotone linear functional on the subcone of
measurable functions in %(X, %), continuous relative to the neighborhood vy € 20.
For a Borel subset Y of X and a measurable function f € % (X, %) we set f y fdo =
f ¥ Xy ® fd¥ and infer as an immediate consequence of our definition.

LEmMA 3.1. fX fd¥ =supgy fK f dv for every measurable function f € F(X,P,).

LEmMA 3.2. fX fdo < fngz? + 1 whenever f < g+ vy for measurable functions
/.8 € F(X, D).

Proof. Let f < g+4vy, thatis, f < g+s for some s € vy. For e >0 and y > 1, let
u € 20 such that u < evy and

sup{/ hdd | h e Sy (X, PL), h Sg—i-u} < / gdd +e. (3.4)
X X

Now, let [ € ¥%(X,P+) be any step function with compact support K € K such that
[ < f+u,thatis, [ < f+t for some ¢ € eby. Both s and ¢ are */'-valued step functions
and szdz? <1 and fxtdl? < ¢&. There is a function x, ® v € u for some v € V', and
by Theorem 2.4(c) there are disjoint Borel sets E; € RBy such that U;cnE; = K and
g(x) < yg(y)+v whenever x,y € E; for some i € N. We set a; = g(x;) for some
x; € E;. Then

[(x) < g(0) +5(0) +1(x) < yai +s@)+1(x)+v  Vx € Er. (3.5)
We define step functions in $y (X, P)

1 n n
hn = (;) D xp ®ai =Y x. ®L (3.6)
i=1 i=1

Using the o-additivity of the involved measures we infer f x[d¥ =limy, o0 f xlnd?.
Moreover, h,(x) < g(x)+ v holds for all x € K, thus 4, < g+ u and thndz? <
fchh? + ¢ by our choice of the neighborhood u. Then I, < y2h, +s+1+ Xe QU
yields

flndﬁfythndﬂ+l+28§y2</ gd19+8)+1+28 vneN. (3.7)
X X X

By the definition of the integral, this shows that

/fdz?fyz(/ gdz?+8>+1+28. (3.8)
X X

As y > 1 and ¢ > 0 are arbitrary, our claim follows. O



218 A Riesz representation theorem for cone-valued functions

We may now prove a version of Fatou’s lemma.

THEOREM 3.3. Let (f,)neN be a sequence of measurable functions in F(X,PL) such
that f, /' f for a measurable function f € F(X,P). Then

/fdl‘} §1i_m/ fodo. (3.9)
X n JX

Proof. For ¢ > 0 let u € 20 be such that u < gvy. Let

n
h=Y X ®a € Fy(X,Py) (3.10)

i=1

be a step function supported by the compact set K € ¥ such that 2z < f +u, that is,
h < f+s for some s € evy. There is x, ® v € u for some v € V, that is, 9x (v) < &.
The functions g, = f,, +5+ x, ® v are also measurable and

gn S fHSs+xc®v,  gn < fut2u (3.11)

Now fori =1,...,n and k € N, we set Fl.k = gk_lwai)ﬂE,- € RBy;. Then for every x €

E; there is m € N such that x € Fl.k for all k > m. Thus if we set E;" = Mk>m F,é € By,
then E; = U, enE]". We set

n
hn = Xpm ®di (3.12)
i=1
and have (1/y)h,;, < gk +u < fy+3uforall k > m and y > 1. Thus, using Lemma 3.2,

n
/hmdﬁ=2ﬁ“i(E;")§y(/ fkdz?+3e) Yk >m, y > 1. (3.13)
X X

i=1
Therefore,

n
> 0% (ED) fli_m/ fod®d +3e (3.14)
n X

i=1
holds as well. From the o-additivity of the measures ¥% we deduce that 9% (E;) =
limyy, — 00 4 (E}"). Thus

n n
/thz? = ;#“i (Ei) = lim_ (i;f}“f(E;")) 5h7m/X fad®+3e.  (3.15)

By the definition of the integral for the function f € %(X,%®), and as ¢ > 0 was
arbitrary, this shows that

ffdz? 511_m/ fud® (3.16)
X n JX

as claimed. O
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THEOREM 3.4. Let f, g € F(X,P) be measurable functions, 0 < o € R. Then

@ [yafdd=af, fdV,
(b) [x(f+8)dV = [y fdV+ [ygdD.

Proof. Part (a) is trivial. For (b), let f, g € F(X, ?4) be measurable functions and let K
be a compact subset of X. Given ¢ > 0 and y > 1 we choose u € 20 such that u < gvy.
There are sequences (h,),en and (I;)eN in Py (X, Py) such that b, 7 x, ® f and
hy <y(xx ® f)+u,aswellasl, 7 x, ®gandl;, <y(x, ®g)+u. Thus (h,+1,) /
Xx ®(f+g) and (h,+1,) <y x, ®(f+g)+20. Using Theorem 3.3 and the additivity
of the integral for step functions with compact support, we obtain

/(f+g)d19 sli_mf (hn+1n)dv sm/ hndﬁ+m/ L, dv
K n JK nJk nJk

5)// fdz?—i—y/ gdd +2e,
K K

(3.17)
/ fdz?—i—/ gdv gli_m/ h,ldz?—l—li_m/ l,dv sli_m/ (hn+1,)dv
K K n JK n JK n JK
=< Vf (f +8)dv +2e,
K
for any choice of ¢ > 0 and y > 1. Using Lemma 3.1, this proves our claim. ]

Now we are in a position to define integrability for nonpositive functions as well. We
say that a function f € F(X,P) is integrable with respect to ¥ if there is a measurable
function g € F(X, %) such that [, gd¥ < 400, and f + g is in F(X,P) and

measurable. We set
ffdz?z/(f+g)dl9—/gdz9. (3.18)
X X X

The integral is well defined and Theorem 3.3 and Lemma 3.2 yield the following
theorem.

THEOREM 3.5. The integrable functions form a subcone of (X, ®P). If f,g € F(X,P)
are integrable and 0 < o € R, then

@ [ylaf)dd =afy fdo,
b) [y(f+g)dd = [y fdd+ [y gdD,
(¢) f <g+vy implies [ fd¥ < [, gd¥+]1.

THEOREM 3.6. If f € € (X, P) attains nonpositive values only on a relatively compact
subset of X, then f is integrable.

Proof. There is E € By such that f(x) > 0 for all x € X\ E and vg € V" such that
VE(VE) = fX Xr ®VEdU < +o0o. Now a simple compactness argument shows that
r-continuity implies that f is uniformly bounded below on E, that is, to say there is
A > 0 such that f +A(x, ® vg) > 0. This function is measurable by Theorem 2.5,
hence our claim follows. O



220 A Riesz representation theorem for cone-valued functions

THEOREM 3.7. If f € F(X,P) is integrable and ¢ is a bounded positive real-valued
Borel measurable function on X, then the function ¢ ® f € F(X,P) is also integrable.

Proof. There is a measurable function g € F(X, ? ) suchthat f+g € F(X, P, ) isalso
measurable and f x 8dV¥ < +00. As ¢ is bounded, there is p > 0 such that0 < ¢(x) < p
for all x € X. The functions ¢ ® g and ¢ ® f + ¢ ® g are positive and measurable by
Theorem 2.6. Our claim follows, as ¢ ® g < pg implies that fx pRgdd <+oo0. O

THEOREM 3.8. Leta € P and let ¢ be a positive real-valued Borel measurable function
with compact support. Then

/(¢®a)d19=/ pdv. (3.19)
X X

Proof. The function ¢ ® a is measurable by Theorem 2.6. There is an increasing se-
quence (V)N of real-valued step functions with compact support that converges point-
wise to ¢. Then for every y > 1 we have

y(¥n®a) /o®a, Y,Qa<¢Qa. (3.20)

Following Theorem 3.3 this shows that

/(w@a)dﬁsyli_m/ (wn®a)dﬂsyﬁf (Vn ®a)do
X n JX nJx

(3.21)
fy/(<p®a)dz? vy > 1.
X
Hence
/(gﬂ@a)dz?: lim / (1/fn®a)d19= lim / d/ndz?“zf pdv?. (3.22)

3.1. Regularity of functional-valued Borel measures. Following the usual terminol-
ogy, we say that a functional-valued Borel measure o : By — P* is inner regular on
By if

9 (E) =sup{9*(K) | K CE, K €} (3.23)
holds for all @ € P and E € By. Correspondingly, ¥ is outer regular on Ry if
94(E) = inf{ﬂ“(O) |EC O, Oe®By open}. (3.24)

An outer regular measure which is also inner regular for all open sets in By is called
quasiregular. An inner regular measure may be extended to all Borel sets by

9(E) =sup{90“(F)| F CE, F e By} forevery E€®, aeP,. (3.25)

For a quasiregular measure the corresponding procedure requires two steps: fora € P
we set

99(0) =sup{9*(K) | K CE, K €9} (3.26)
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for all open sets O C X and
9“(E) =inf {9“(0) | E C O, O open} (3.27)

for any Borel set E € RB. For a nonrelatively compact Borel set E, ¥ is just a monotone
linear functional on %, not necessarily contained in the dual of %. Note that all possible
extension for ¢ coincide if X is o-compact.

Example 3.9. (a) We obtain classical integration theory if we choose = R with the
canonical order and the neighborhoods ¥ = {¢ € R | ¢ > 0}. The dual R* of R consists
of all positive reals (via the usual multiplication) and the singular functional 0 such
that O(ex) = O for all @ € R and 0(+00) = +00. The monotone linear functionals on
the positive cone R in R further include the element +00. A ¥-bounded %*-valued
Borel measure ¢ on a locally compact space may therefore take only real values on
compact subsets of X, whereas an extension to all Borel sets may take the value +oo0.
Any such extension is the sum of an R -valued Borel measure 9, in the usual sense
and a measure ¥ that takes only the values 0 and 0. The only unbounded element of
the locally convex cone R is 400, which remains unchanged under multiplication by
scalars ¥ > 0. Thus the concepts of continuity and r-continuity coincide for R-valued
functions. A continuous function may take the value +o0o only on a subset of X which
is both open and closed.

(b) Let (E, || ||) be a normed space with unit ball B and dual E’. Since E is generally
not a full cone, nor carries a canonical order structure, we shall use the full cone
containing £

P={a+ABlacE, »>0} with¥ ={eB|e >0} (3.28)

and the set inclusion as order, that is, a+AB < b+ pB if ||a —b|| < p —A. In particular,
a+AB e P, if ||a]| < A. The dual of P is

P ={u®plnek, llul=p} (3.29)

such that (L@ p)(a+AB) = w(a)+ pi. A P*-valued measure ¥ : By — E’ is required
to be o-additive on By,. In this case, JH-boundedness means that for every K € ¥,
hence for every E € By, there is p > 0 such that Z?:] 0% (E;) < p for every choice
of disjoint Borel sets E; C E and a; € B. Correspondingly, we define 92(E) to be
the infimum of all these constants p > 0 (see Subsection 2.2). Thus for a step function
h=>7", Xg, ® (ai +1;iB) € Fy(X,P,), that is, [la;|| < A; forall i =1,...,n, we
have [\ hd® = Y7 (9% (E;) + 1 9B(E;)). Let f : X — E be a bounded function
with compact support, that is, || f(x)|| < p for all x € X. Then f + pB € F(X,P4),
and an inspection of our definition of measurability in Subsection 2.4 shows that this
function is measurable if and only if f may be uniformly approximated by a sequence
of E-valued step functions. Hence the integral of f over X is the limit of the integrals
for such a sequence.
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4. A Riesz representation theorem

4.1. Lower semicontinuous inductive limit topologies. Let (%,%") be a (not neces-
sarily full) locally convex cone, and let X, %, and J be as before. An inductive limit
neighborhood v for (X, %) is called lower semicontinuous if all its elements s € v
are V' -valued functions of the following type: s(x) = 0o on an open subset O; of X,
and s(x) = > i, @i (x)y; for all x € X\ O, where the ¢; are R -valued lower semi-
continuous functions and v; € V. In this context, +o00 - v represents the infinite element
Voo € V' as defined in Subsection 2.1. An inductive limit topology on F(X,?P) is
generated by a system U of inductive limit neighborhoods, closed for addition and
multiplication by strictly positive scalars and directed downward with respect to the
order relation

v <u if for every s € v there is ¢ € u such that s <t. “.1)

This topology is called lower semicontinuous if it contains a base of lower semicontin-
uous neighborhoods. Let Fog3(X, P) be the subcone of F(X, %) of all functions f that
are bounded below with respect to all neighborhoods in U, that is, for every v € U there
is A > 0 such that 0 < f + Av. In this way (Fy(X,P), ) becomes a locally convex
cone.

We obtain a wide variety of topologies, the finest of which is the standard inductive
limit topology for functions on a locally compact space, that is, ¥ = 20, consisting
of all inductive limit neighborhoods. 20 is lower semicontinuous, as for every v € 20
there is a lower semicontinuous neighborhood u € 20 such that u < v. Indeed, for every
relatively compact open set O C X choose vp € V" such that x, ® vp < s for some
s € v, and let u consist of all convex combinations of the functions x, @ vo.

If, for another example, the elements of ¥ are just the singleton sets containing
the constant mappings x +— v for v € V, then U generates the topology of uniform
convergence. If these singleton sets consist of mappings x — v for x € K and x > oo
else, for some K € J, then we obtain the topology of compact convergence. If we
use finite sets instead of compact ones in the last example, the topology of pointwise
convergence emerges. All these topologies are obviously lower semicontinuous.

We consider certain subcones of r-continuous functions in Fg(X,%P). A simple
compactness argument shows that every r-continuous %-valued function with compact
support is bounded below with respect to all neighborhoods in 20, hence the cone
@3, (X, P) of these functions is contained in Fo3(X, P). Finally, by €5;(X,P) we de-
note the closure of 65, (X, %) in 6" (X, %) with respect to the symmetric topology
generated by U, that is, the cone of all f € €” (X, %) such that for every v € U there is
g € 65 (X, P) such that f < g+vand g < f +v. Obviously €, (X,P) C Fy(X,P).
Reviewing the above examples we observe that ‘65,;(X, ) = 63,(X, P). For the topol-
ogy of uniform convergence, on the other hand, €%;(X, %) consists of the functions
f € € (X, P) that vanish at infinity, that is, functions f such that for every v € V" there
is a compact subset K of X such that

f(x)<v, 0<f(x)+v, V¥xeX\K. (4.2)

For the topologies of compact and of pointwise convergence we have €5;(X, %) =
€ (X, P).
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We say that a P*-valued Borel measure © on X is U-continuous if it is continuous
relative to a neighborhood v € 3, that is, if

/fdﬂf/gdﬁ—i—l whenever f < g+t 4.3)
X X

for integrable functions f,g € F(X,%). Every such measure is J-bounded, as for
K € ¥ there is x, ® v < v for some v € V', hence for disjoint Borel subsets E; of
K and a;,b; € P such that a; < b; +v, we have ) 7, Xg, ®ai < Yo Xe, ®bi+v,
hence Y 7_, 9% (E;) < Y1, 9% (E;) + 1. This shows 9(K) < 1. Every ¥-bounded
measure, on the other hand, is continuous relative to some inductive limit neighborhood,
as shown in Theorem 3.5(c).

LEMMA 4.1. Let ¥ be continuous relative to the neighborhood v € *U.
(a) If for E € RBy; there is s € v such that s(x) = oo for all x € E, then 9 (E) = 0.
(b) If for E € By, and v € V there is s € v such that s(x) > v for all x € E, then
VY (E)=0.
(¢c) If v is lower semicontinuous, then every f € 6" (X, P)NFy(X,P) is integrable.

Proof. Suppose that ¥ is continuous relative to v € *U. For s € v, a relatively compact
Borel set E C X such that s(x) = oo forall x € E, and a € % we have x, ®a < es and
0<x,®a+es forall e > 0. Thus [, x, ®ad? <eand 0 < [, x, ®adv +¢. This
shows that 94(E) = f x Xg ®ad?® =0, as claimed in (a). Part (b) follows in similar
fashion. For (c), let b be lower semicontinuous and let f € €" (X, ?)NFy(X,P). Then
f+pv >0 for some p > 0, that is, f +s > 0 for some s € pv. We have s(x) =
Z?:l @i (x)v; for all x € X\ Oy and s(x) = 0o on Oy. By our definition of r-continuity
there are continuous positive real-valued functions v; such that f +1; @ v; > 0. Set
¢i(x) = min{g; (x), ¥;(x)} for x € X\ Oy and ¢;(x) = ¥;(x) on Oy. The function
1(x) = > i, ¢i(x)v; is measurable, 1 < s implies fxtdﬁ < p,and f+1t > 0. This
demonstrates that f is indeed integrable. O

In this way, a U-continuous Borel measure ¢ defines a continuous linear functional
on the subcone of integrable functions in & (X, ). If ¥ is continuous relative to v € U,
then this functional is in the polar of v. Conversely, we demonstrate in our main result
that for a lower semicontinuous topology, every continuous linear functional on the
locally convex cone (‘€5;(X, %), ) is of this type.

THEOREM 4.2. Every continuous linear functional on (64;(X, %), T) may be repre-
sented as an integral with respect to a U-continuous quasiregular P*-valued Borel
measure on X. More precisely, for a lower semicontinuous neighborhood v € U and
W € v° there is a quasiregular P*-valued Borel measure ¥, which is continuous relative
to v and

/;(fdﬂzu(f) Vf eCyuy(X,P). 4.4)
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Proof. As every locally convex cone may be embedded into a full cone, and as con-
tinuous linear functionals on locally convex cones (hence on cone-valued functions)
may be suitably extended, we may assume that (%,%") is a full locally convex cone.
Now, under the assumptions of the theorem, let i be a continuous linear functional
on (€ (X, ?), V), contained in the polar of some lower semicontinuous neighborhood
v € °U. The functional i may be extended (see [3, Theorem I1.2.9]) to a linear functional
on the larger cone (Fgy(X, P), ), also denoted by u and contained in the polar of v;
that is, 1 (f) < u(g)+1 holds whenever f < g+v for f, g € Fy(X,P). Using this,
we proceed to construct a U-continuous quasiregular #*-valued Borel measure © on
X. We will follow some of the main lines of the standard proof for the Riesz repre-
sentation theorem (cf. [7]), though the presence of unbounded elements in %, hence
nonfinite measures, will complicate matters. For a fixed element a € % we define an
ﬁ;valued set function 9% on By as follows: for an open set O € By we set

9(0) =sup{u(x, ®a) | U C O, U open}. 4.5)
(As usual, U denotes the topological closure of U.) Then
94 (E) =inf{z9“(0) |EC O, OeRBy open} (4.6)

for E € By, defines a o-additive set function on %Bgy,. We omit the details of this
procedure which may be easily checked. We shall however list a few observations. Let
us denote by Fy (X) the cone of all real-valued functions on X with compact support,
and by €9 (X) the subcone of all continuous functions in Fg (X). For a subset £ C X
and ¢ € Fy(X) wewrite E < ¢ if x, <¢,and ¢ < Eif 0 < ¢ < x, and supp(¢) C E.
Then
(1) 99(0) =sup{u(p®a) | ¢ € € (X), ¢ < O} < u(x, ®a)

for all open O € RBy;.

(ii)) v4(K) =inf{u(p®a) | ¢ € €3 (X), K < ¢} > u(x, ®a) for all K € X.

(iii) 94(E) =inf{09(0) | E C O, O € By open} for all E € By.

@iv) 94(0) =sup{v*(K) | K C O, K € I}
for all open O € RBy;.

Conditions (iii) and (vi) represent quasiregularity. Furthermore,

(v) 09tP(E) = 99(E) +9*(E) and 9“(E) = a9*(E) for all a,b € P4, a > 0,
and E € RBy.

(vi) 99(E) < 9P(E) whenever a <b for a,b € P4+ and E € RBy.

Statements (v) and (vi) show that for a fixed E € By, the mapping a — Jg(a) =
1 (E) defines a monotone linear functional on ?_ . Moreover, for any E € By we may
choose an open set O € By such that £ C O. There is vg € 1 such that x,  vg < v,
hence w(x, ® vg) < 1. Thus ¥'E(E) < 9Y2(0) < u(x, ® vg) < 1 by (i). For an
arbitrary (not necessarily positive) element a €  we choose p > 0 such that 0 <
a—+ pvg and set

OE(a) = 09(E) = 0 “TPUE) (E) — poVE (E). (4.7)

In this way, g becomes a continuous linear functional on %, that is, to say an element
of vy, and ¥ is indeed a J{-bounded quasiregular #*-valued Borel measure on X.
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(vii) |, 9 ®add < pu(p ®a) for every positive real-valued lower semicontinuous
function ¢ on X and a € P,..

We may assume that (¢ ® a) < +00, as there is nothing to prove otherwise. Mea-
surability, hence integrability for the positive function ¢ ® a was shown in Theorem 2.6.
In a first step, assume that the support of ¢ is compact and that 0 < ¢ < 1. We fixn > 2
in N, and for i > 1 define relatively compact open sets

O;={xeX|npx)>i}. 4.8)

Then O;+1 C O; and O, = @. As Xo, ®a =< n(p ® a), we conclude, using (i), that
94(01) < u( Xo, ®a) <nu(p®a) < +oo. We define lower semicontinuous functions
Vi € 6y (X) by

1, if x € OH_]
Yi(x) = ynpx)—i, ifx € 0;\ Ot (4.9)
0, if x ¢ 0.

Thus O;y1 < ¥i. We set ¢, = (1/n)Y_7_; ¥;. Then ¢,(x) = 0 if ¢(x) < 1/n and
on(x) = @(x)—(1/n) if ¢(x) > 1/n. Furthermore

Xo,,, ®a < Vi®a < x,, ®a. hence 9°(0i41) < (xo,,, ®a) < u(i ®a).
(4.10)
We choose the step function h = (1/n) >, Xo, ®a € Py (X, P). Then ¢, ®a < h
by the above, and

/X<0n®ad19§/;(hdz9=%i:0“(05)=%(anﬁa(O,-Jr])—H?“(O]))

i=l1 4.11)

< % (Xn:u(wi®a)+0“(01)> =u(¢n®a)+%0“(01).

i=l

As 99(0y) is finite, this yields fx 0 ®ady < pu(p, ®a) < u(p®a). Now, as ¢, < ¢
and ¢, /" ¢, Theorem 3.3 yields

/sﬂdﬁ Sﬁﬂ/ Pnd? < plp®a). (4.12)
X n JX

Now, in a second step we still assume that ¢ has compact support, but is not necessarily
bounded. Then we set ¢, (x) = ¢(x) if ¢(x) < n and ¢, (x) = n else. The preceding
yields [y ¢d?¥ <lim, [, ¢,d¥ < (¢ ® a). Again using Theorem 3.3, we infer that
[x9dv <lim, [, p,d9 < j1(¢ ®a) holds in this case as well. Finally, if the support
of ¢ is not compact, we consider the lower semicontinuous functions ¢, for relatively
compact open subsets O. We have fx VX, ®add < pulpx, ®a) < u(p @a) by the
above. Using Lemma 3.1, this yields

/(p@ddt?: sup/goXK(X)adﬁ: sup /(pxo®ad19§,u((p®a) (4.13)
X KeitJX 0By J X
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as well. A similar but slightly simpler argument leads to a dual statement for upper
semicontinuous functions. We omit the details.

(viii) [, y®®add > u(p ®a) for every positive real-valued upper semicontinuous
function ¢ with compact support K C X and a € P4 such that 9(K) < +o0.

(ix) [y fd® = p(f) forall f €€l (X,P).

Let f € 65, (X, %) be supported by K € ¥. Let U be a relatively compact open set
containing K and choose v € ¥ such that ¥¥(U) < u(x, ®v) < 1. By our definition of
r-continuity there is a positive function ¥ € €% (X) such that g = f 4 ®v satisfies the
definition of a positive r-continuous function in Section 2.3. We may assume that the
support of ¥ is contained in U and that v is bounded above by some p > 0. Statements
(vii) and (viii) yield

/Xw®vdz9=u(w®v)§pu(xy®v)Sp. (4.14)

The function g is therefore integrable, supp(g) C U, and we proceed to verify that
fngb‘ = u(g). For this, first suppose that there is an open subset O of U and y > 1
such that

g(x) <yg(y)+v wheneverx,yeO, (4.15)

and that 9 (0) = +o0o fora = g(x) for some x € O. Then h = x, ®a < yg+ x, v,
and both

19”(0)=fhd1951//gd19+1, 9(0) < u(x, ®a) <yu(g)+1, (4.16)
X X

hence fx gdv = u(g) = +oo. If, on the other hand, there is no such open set O C U,
then for every choice of y > 1 and 0 < ¢ < 1 there are open sets O1,..., 0, in U
whose union contains supp(g) such that g(y) < yg(x)+ev whenever x, y € O; for any
i =1,...,n. There is a corresponding set ¢y, ..., ¢, of positive functions in 6y (X)
such that ¢; < O; and Z?=1‘Pi (x) =1 for all x € supp(g). We choose a; = g(x;)
for some x; € O; and set h = Z?:lﬁ”i Qa; € 6y (X,P). As 9% (0;) < 400 for all
i=1,...,n, we know from (vii) and (viii) that fx hd® = u(h). We have

pi(x)a; <ypi(x)gx)+ev, @i(x)gx) <ygi(x)aj+ev VxeU. 4.17)
This yields

h<yg+e(x,®v),  g=vh+e(x,®v). (4.18)
Therefore
/hdl‘}fyf gd?d +e¢, /gdl‘/‘fy/ hd?d +e, 4.19)
X X X X
and likewise
p(h) <yu(g)+e, wu(g) <yu(h)+e. (4.20)

Thus fx gd?d = u(g), indeed. Now from

/fdﬁ+/ Y @vdd = u(f)+p(¥ ®v), @.21)
X X

we conclude that [, fd¥ = u(f).
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(x) ¥ is continuous relative to v.

Suppose that f < g+ v holds for integrable functions f, g € F(X,P). Then f <
g+ s for some s € v. The set Oy = {x € X | s(x) = oo} is open in X and there
are lower semicontinuous E;valued functions ¢; such that s(x) = Z?:l @i (x)v; for
all x € X\ Os. For every relatively compact subset £ of Oy there is a relatively
compact open set U such that E C U C Oy, and for every a € P and ¢ > 0 we
have 0 < #%(E) < 99(U) < u(x, ®a) < ¢ as x, ®a < es. Thus ¥*(E) = 0. This
implies [, hd? =0, hence [y hd¥ = [, x\0,) 1 d? for every integrable function h €
F(X,P). Next, for every m € N we set s, = Y 7_; ¢ ® v;, where ¢ (x) = m for
x € Oy and ¢!"(x) = inf{g;(x),m} for x € X \ Os. The functions ¢!" are positive
real-valued, bounded and lower semicontinuous, and (vii) yields f x Sm dv < u(sy) <
1. Furthermore, we observe that (g +s,,) / f on X\ O, as a consequence of our
definition of the infinite neighborhoods v, in Subsection 2.1. Now Theorem 3.3 yields
[y fdv <lim, [, (g+sm)d¥ < [, gd¥+1, as claimed.

Thus finally, both ¢ and u represent continuous linear functionals on the subcone
of integrable functions in Fy(X, ). Both functionals coincide on 63, (X, %), hence on
its closure:

(ix) [y fdo =u(f) forall f € Chy(X,P). O

4.2. Examples. (a) The case P = R. We already observed in Example 3.9(a) that the
concepts of continuity and r-continuity coincide in this case and that an R"-valued Borel
measure ¥ on X is the sum of an ordinary R -valued Borel measure 9| and a measure
¥ that takes only the values 0 and 0. ¥ is finite on compact subsets of X. Lower
semicontinuous neighborhoods v for F(X ,R) contain functions s of the following
type: s(x) = oo on an open set Oy C X, and s(x) = ¢(x) - 1 (the latter represents
the neighborhood 1 € %) for all x € X\ O for a lower semicontinuous R -valued
function on X. Recall that a < b+oo for all a, b € R, whereas a < b+ 1+, means that a
is finite if b is finite. If the measure ¢ is continuous relative to a lower semicontinuous
neighborhood v € U, then ¥ (E) = $2(E) = 0 for every relatively compact Borel set
E C Oy for some s € v. Likewise, 1 (E) = 0 whenever s(x) > 1 for all x € E for a
function s € v (see Lemma 4.1(a) and (b)). Thus, following Theorem 4.2, a continuous
linear functional p on €{;(X, R) may be represented as an integral

u(f) = / fdv+ / £ ds. (4.22)
X X

Moreover, [y fd¥, = +oo, if 92(0) = 0, where O = {x € X | f(x) = +o0}, and
[y fdv2=0else.

(b) Weighted spaces of functions. For locally convex vector spaces % the following
is due to Nachbin [4] and Prolla [5]: let X be a locally compact Hausdorff space, (%, V")
a locally convex cone. A family €2 of nonnegative real-valued upper semicontinuous
functions on X is called a family of weights (see [4, 5]) if for all w1, w> € Q2 there are
w3 € Q and p > 0 such that w; < pw3z and wy < pw3. With any family of weights Q
we associate the cone of continuous %-valued functions on X

6a(X,?) ={f €6(X,P) | wf vanishes at infinity for all w € Q}. (4.23)
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The weighted topology on €q (X, %) is given by the neighborhoods v, for v € 9" and
w € 2, such that

f<g+v, fox)fx)<wkx)gx)+vVxelX. 4.24)

A simple compactness argument shows that every f € €q (X, %) is bounded below with
respect to these neighborhoods. With V'q = {v, | v € V', ® € 2}, then (€ (X, P),Vq)
forms a locally convex cone of weighted P-valued functions. Examples for such cones
may be found in [3, Chapter V.1]. We may reformulate this setting as a lower semicon-
tinuous inductive limit topology in the sense of Section 4.1: for v € V" and w € Q
let O, be the complement of the support of w and set s, ,(x) = oo for x € O
and s, (x) = (1/w(x))v else; that is, in particular, s, ,(X) = v if w(x) = 0 for
x € supp(w). Then v, , = {sx.»} is a lower semicontinuous neighborhood, as for ev-
ery compact subset K of X there is p > 0 such that w(x) < p for all x € K, hence
(1/p)(xx ®v) < 5. Thus Vg = {vyy | v €V, w € Q} forms a basis for a lower
semicontinuous inductive limit topology. Clearly f < g+ v, , implies f < g+ v,
for f, g € F(X,?P). The reverse holds true if both functions f and g are continuous.
Indeed, for f < g+v, we have f(x) < g(x)+s(x) for all x € O and all x such that
w(x) > 0. If, on the other hand, x € supp(w) and w(x) = 0, we choose a neighborhood
U(x) of x such that f(x) < f(y)4v and g(y) < g(x)+v for all y € U(x). There is
such an element y with w(y) > 0. Then

1
fO<fM+v=gn+ (m+1>v
Y (4.25)

o(y)

as §(x) = Veo. This shows that f < g+ v, ,. The inductive limit and the weighted
topologies therefore coincide for continuous functions, and the locally convex cone
(6q(X,P),Vq) is a subcone of ((G%Q(X, P), V). Following Theorem 4.2, every con-
tinuous linear functional © on € (X, %) may be represented as a U-continuous quasi-
regular functional-valued Borel measure ¢ on X, that is,

1
<gx)+ <—+2>v <gx)+s(x)

u(f):/xfdﬁ Vf e Ca(X,P). (4.26)

If u € vy, ,, then ¥ is continuous relative to v, . Prolla’s result in [5], on the other

hand, yields a functional-valued Borel measure ¥, such that 9?(X) < 1 and
;L(f):/(ufd@ VfebaX,P). 4.27)
X

This measure o may be constructed from # in an obvious way: let ¢, (x) = inf{l/w(x),
n}, and for E € B set

H(E)= lim | @.x,do, thatis, 9*(E)= lim / Xy ®ad?d (4.28)
X n—o0 X

n—oo

for every a € . It is straightforward to check that this limit exists and that 9 represents
the functional u as claimed.
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