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We are interested in a nonlinear boundary value problem for (|u’|P=2u"")"" = A|u|P~?u
in [0,1], p > 1, with Dirichlet and Neumann boundary conditions. We prove that eigen-
values of the Dirichlet problem are positive, simple, and isolated, and form an increasing
unbounded sequence. An eigenfunction, corresponding to the nth eigenvalue, has pre-
cisely n — 1 zero points in (0,1). Eigenvalues of the Neumann problem are nonnegative
and isolated, 0 is an eigenvalue which is not simple, and the positive eigenvalues are sim-
ple and they form an increasing unbounded sequence. An eigenfunction, corresponding
to the nth positive eigenvalue, has precisely n + 1 zero points in (0, 1).

1. Main results

We are concerned with structure of eigenvalues and eigenfunctions of the nonlinear
Dirichlet boundary value problem for the p-biharmonic operator

(1a" @72 ) =M u®]*ut), teo1],

(1.1)
u(0) =u'(0) =u(l) =u'(1) =0,
and the Neumann boundary value problem
(1@ 177w ®) = ul |P u(t), telo1],
(1.2)

u’(0) = (|u" (0] " 2u( )=l u" ) | _ =0,

't 0 t=1

where A € Rand p > 1.

Drabek and Otani proved in [4, Theorem 1.3] that the Navier boundary value prob-
lem (u(0) = 4" (0) = u(1) = u"” (1) = 0) for the p-biharmonic operator possesses infin-
itely many eigenvalues, all simple, forming a sequence 0 < A;(p) <A2(p) < - -+ — +oo. An
eigenfunction, corresponding to A,(p), has precisely n — 1 zero points in (0,1). We prove
a similar result for the Dirichlet and the Neumann problem. Note that the method used
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in [4] is based on transferring the Navier problem to a Dirichlet problem for a system of
two second-order equations (for wand |u''|?~2u""). Hence this method cannot be adopted
for the problem (1.1) or (1.2).

The Dirichlet problem (1.1) (with nonconstant coefficients) was studied by Kratochvil
and Necas in [7]. They proved that eigenvalues of this problem form a sequence 0 <
M(p) <Ax(p) < - -+ — +oo, and the set of the corresponding eigenfunctions is discrete.
Moreover, it is shown in [7] that for every eigenvalue, there are only finitely many lin-
early independent corresponding eigenfunctions. This result was proved in [7] only for
p =2, not for p € (1,2).

Boundary value problems with p-biharmonic operator and general Robin-type
boundary conditions were studied in [1, Corollary 4]. It is proved there that (1.1) has
only positive simple eigenvalues (see [1, Example 8]). Problem (1.2) has only nonnega-
tive eigenvalues, the positive ones are simple, and, clearly, (1.2) has also the eigenvalue
A = 0 which is not simple since any linear function u is a solution of (1.2) with A := 0 (see
[1, Example 9]).

Our main results follow (see Section 2 for related definitions).

TaeoreM 1.1 (Dirichlet problem). The set of all eigenvalues of (1.1) forms a sequence
0<AP(p) <AD(p) < - -+ — +oo. Every AL(p), n €N, is a simple eigenvalue and any corre-
sponding eigenfunction has precisely n — 1 zero points in (0,1). The set of all eigenfunctions
is discrete in the sense that in some C[0,1]-neighborhood of every eigenfunction, the only
other eigenfunctions are its multiples.

THeOREM 1.2 (Neumann problem). The set of all eigenvalues of (1.2) forms a sequence
0= )Lf)\r(p) < Alff(p) < -+ = +oo. Every AN (p), n >0, is a simple eigenvalue while Agl(p) =0
is not. An eigenfunction, corresponding to AY(p), n >0, has precisely n+ 1 zero points in
(0,1). The set of all eigenfunctions, corresponding to the positive eigenvalues, is discrete in
the above sense. Moreover, there is a relation between the positive eigenvalues of (1.2) and

(1.1):

p-1
A{j@):(}dj(ﬁ)) , neN. (1.3)

For n > 0, any eigenfunction u of (1.2), corresponding to AY(p), and any eigenfunction v of
(1.1) for p replaced by p/(p — 1), corresponding to AL (p/(p — 1)), there exists a k € R\ {0}
such that
u=rx|v’ @=p)p=h) v (1.4)
Taking p = 2 in (1.1), we obtain the one-dimensional linear clamped plate equation. It
is known (see [3, 6]) that the first eigenvalue of the clamped plate equation on a ball in RN
is simple, and the corresponding eigenfunction has a fixed sign. On the other hand, there
are numerous counterexamples showing that on some domains in RY, the first eigenvalue
of the clamped plate equation can be negative and the corresponding eigenfunction can
change its sign. Theorem 1.1 states that on [0, 1] (a ball in R), the first eigenvalue of (1.1)
is positive and the corresponding eigenfunction is of fixed sign even for p > 1 arbitrary.
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Nevertheless, the proof for p = 2 relies on the positivity of Green’s function, and so it is
useless for the nonlinear p-biharmonic operator.

The organization of this paper is as follows. In Section 2, we define the solution, the
spectrum, the eigenfunctions, and the simplicity of the eigenvalues of (1.1) and (1.2). In
Section 3, we prove Theorem 1.1 and in Section 4, we give a proof of Theorem 1.2. In
Section 5, we introduce some open problems.

2. Preliminaries

We define the solution of (1.1) and (1.2) in accordance with [1]. We adopt the notation
Vp(s) = Is|P~2s,s e R\ {0}, v,(0) =0, p > 1. We denote p" = p/(p — 1) (y, and v, are
then inverse functions).

We put u; := uand us := y,(u""). Then (1.1) is equivalent to the boundary value prob-
lem for a system of four first-order equations

Ui (t) = up(1),

uy(t) = vy (us(1)),

us(t) = ua(t), (2.1)
uy(t) = Ay, (u (1)), te[0,1],

u1(0) = u2(0) = uy (1) = up(1) = 0.

Similarly, the Neumann problem (1.2) is equivalent to

uy (1) = uy(1),

us (1) = yp (us(t)),

us(t) = ug(t), (2.2)
uy(t) = Ay (i (1), t€[0,1],

u3(0) = ug(0) = us(1) = uyg(1) = 0.

Definition 2.1. A vector function u = [uy,uy,us,u4]” € (C'[0,1])* is called a solution of
(2.1) or (2.2) if it satisfies the equations in (2.1) or (2.2), respectively, for all t € [0,1],
and fulfills the boundary conditions.

By a solution of (1.1) or (1.2), we understand a function u € C[0,1] such that [u,u’,
1,1/1,(1/’),(1//1,(1,1”))’]T is a solution of the corresponding problem (2.1) or (2.2), respec-
tively.

Definition 2.2. By an eigenvalue of (1.1) or (1.2), we mean A € R for which (1.1) or (1.2),
respectively, has a nontrivial solution, called an eigenfunction, corresponding to the eigen-
value A.

We say that an eigenvalue A is simple if all corresponding eigenfunctions are multiples
of one of them.

The spectrum (i.e., the set of all eigenvalues) of (1.1) is sketched in Figure 2.1.
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Figure 2.1. Spectrum of (1.1).

In order to prove Theorems 1.1 and 1.2, we use the fact that the corresponding initial
value problem

uy (t) = us (1), ui (to) = a,

us (1) =y (us(t),  u2(to) =P,
(2.3)

us(t) = ua(t), us(to) =y,

uy () = Ay (u (1), ua(fy) =6,

t € [to, 1], has a unique solution (see [2, Corollaries 1.4 and 1.8]). The solution of (2.3) is
defined in [2] in accordance with Definition 2.1 as a vector function u = [uy, uy, us, us]* €
(C'[to,£1])* satisfying the equations in (2.3) at every t € [fy,;] and the initial conditions.

In the sequel, we often use the following lemma concerning the integration of a differ-
ential inequality. Notice that by u < v and u < v, we mean u; < v; and u; < v;, respectively,
forallie {1,2,3,4}. By u # v, we mean u; # v; for at least one i € {1,2,3,4}.

LEMMA 2.3. Letuand v be solutions of (2.3), where A > 0. Ifu(ty) < v(to) andu(ty) # v(to),
then

u(t)<v(t) Vte (tot]. (2.4)

Proof. See, for example, [5, Chapter III, Section 4] and compare to [1, Lemma 20]. [

The next lemma is important for investigation of the number of zero points of the
eigenfunctions.

LEMMA 2.4. Let ty < ty < t; < t,. Let u be a solution of (2.3) on the interval [ty,t,] and let v
be a solution of (2.3) on [ty,t,]. Let A > 0.
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Figure 2.2. Lemma 2.4.

Assume uy(to) = uy(tm) = ui(t1) = 0, u1(t) >0 for t € (to,tm), and uy(t) <0 for t €
(tm>t1). Let further vi(t,) = 0 and let v\ have finitely many zero points in (tm,t,), all be-
ing simple. Moreover, let u(t) < v(t) for all t € (to,t1]. (See Figure 2.2.)

Then v has exactly two zero points in (to, t1].

Proof. Since v1(t) > u;(t) = 0 for all t € (fo,tm] U {f1}, all zero points of u; from (¢y, ]
are in (f,, ). The number of them is finite and even, because they are simple.

By contradiction, we eliminate the possibility that v; has no zero point in (f,, ), that
is, v1 >0 on [y, t;]. We prove that it would mean v(#;) > 0. Obviously, v; (¢;) > u;(£;) =0
and v,(t1) > ua(t;) = 0. The maximum principle for linear second-order equations yields
uy (f;) < 0 for some f; € (to,ty), and uy (£) > 0 for some &, € (ty,t1). Thus us(f;) =
v, (1) (£)) <0 and u3(f;) > 0. The mean value theorem implies the existence of a point
ftm € (f1,5), such that uy(£,) = u3(£,) >0, and so v4(f,,) > us(fy,) > 0. Since we suppose
that v; >0 on [t, ;] and A > 0, we have

va(t) = v4(B) +AL V(v (0))dr >0 (2.5)

for any t € [{,,,£;]. It remains to show that vs(¢;) > 0. Since £, > £, (2.5) yields v4 >0 on
[£,t1]. Moreover, v3(£,) > u3(£,) >0, and so

b

V3(t1) = ‘V3(fz) + J~ V4(t)dt > 0. (26)

153

Now that we proved v(t;) > 0, we apply Lemma 2.3 (we take the zero solution as u) to
conclude that v(¢,) > 0, and so v;(,) > 0, a contradiction.

It remains to show that v; cannot have more than two zero points in (¢,,,#;). We sup-
pose that it has at least three. Since the number of them is finite, we can denote the first
three by #; < £, < #5. Consequently, v; < 0 on (f,f;) and v; >0 on (f,%;). At the same
time, u; < 0 on [f;,f3]. Hence Gi:= —v, V:= —u, fy := f1, ty := b», £ := £3, and £, := ¢, sat-
isfy the assumptions of this lemma. We already proved that ¥, has at least two zero points
in (£,,,11), that is, u; has at least two zero points in [#;,3], a contradiction. This completes
the proof. O
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3. Dirichlet problem

We already know (see [1, Example 8]) that all eigenvalues of (1.1) are simple and positive.
First, we prove some basic properties of the eigenfunctions of (1.1).

LemMa 3.1. Let u be a solution of (2.1) with A > 0. If uy (t) = uy(ty) = us(ty) = 0 for some
to € [0,1], then u(t) = 0 for all t € [0,1].

Proof. We prove by contradiction that uy(ty) = 0. If us(ty) # 0, we can assume uq(to) >
0. Let v be the zero vector function on [0,1]. Thus u(ty) = v(ty) and u(ty) # v(t). If
to < 1, then by Lemma 2.3, u;(1) > 0, a contradiction. If t, = 1, then we consider @ :=
[ur(1 = t),—ua(1 — t),us3(1 — t), —us(1 — £)]7, which is clearly also a solution of (2.1).
Hence a(0) < v(0) and a(0) # v(0) similarly yield u;(0) = @;(1) < 0. It contradicts again
the Dirichlet boundary conditions.

We have proved u4(ty) = 0. Since the zero function is a solution of (2.3) on [f, 1], the
uniqueness of the solution of (2.3) implies u(t) = 0 for t € [y, 1]. Similarly u(#) = 0 for
t e [0,£]. O

LemMa 3.2. Let A be an eigenvalue of (1.1) and u a corresponding eigenfunction. Then
(1) u has finitely many zero points in [0,1];
(ii) if u(to) = 0 for some ty € (0,1), u'(ty) # 0;
(iil) u”"(0) # 0.

Proof. We denote by u:= [u,u’,y,(u""), (lpp(u”))’]T the corresponding solution of (2.1).
We have A >0 by [1, Corollary 4(iii)].

(i) Assume by contrary that there is a sequence {t,};-; C [0,1], u(t,) = 0. We can
suppose that t, — f, for some ¢, € [0,1], and t, # ¢, for all n € N. Clearly,

(o) = limu(t,) =0, s (fo) = lim % =0,
n—oo n—o iy —1o
(3.1)
2ul(t,
Mé(to) = lim L)Z = 0,
n— 00 (tn _ tO)

and so u3(ty) = v, (u3(ty)) = 0. Since A > 0, Lemma 3.1 yields u = 0, a contradiction to
the nontriviality of u = u;.
(ii) We proceed again by contradiction. Let u; (ty) = u2(ty) =0, tp € (0,1). Lemma 3.1
implies u3(ty) # 0, and we can assume u3(ty) > 0.
Let, first, u4(to) > 0. Hence u(ty) > 0, u(fy) # 0, and Lemma 2.3 then implies u(1) =
u1(1) >0, a contradiction.
It remains now to investigate the opposite case u4(fy) < 0. We denote by a(#) := [u(1 —
1), —uz(1 — £),u3(1 — 1), —us(1 — £)]T a solution of (2.1). Then, a(1 — ty) = [0,0,us(ty),
—uy(ty)]T = 0, # 0. Hence, by Lemma 2.3, u(0) = u;(0) = i1; (1) >0, a contradiction again.
(iii) Itis a direct consequence of Lemma 3.1. a
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We use the results [4, Theorems 1.1 and 1.3] by Drébek and Otani that the Navier
problem

(1w @17 ®) = Au®|"ul), teo1],
u(0) = 1 (0) = u(1) = /" (1) = 0

(3.2)

has the least positive eigenvalue, which we denote by A;(p). There is a corresponding
eigenfunction i, (p) that satisfies i, (p) >0 and &, (p)”" <0 in (0,1), and @, (p)'(0) = 1.
Moreover, i (p) is even with respect to 1/2, and so

am(p) (1) =—a(p)0),  (wp(im(P)) 1oy =~ (Wp(@m()) |0 (33)

The eigenfunctions, corresponding to higher eigenvalues, are all constructed from #, (p)
in [4]. We will construct the eigenfunctions of the Dirichlet problem (1.1) using the func-
tion i (p) too.

For fixed p > 1, we define a function #: [0,+o) — R by

u(t) = (=" (p)(t—n) for te[n,n+1), ne{0,1,2,...}. (3.4)

We denote @ := [, ﬂ’,wp(ﬁ”),(wp(ﬁ”))’]T. The properties of i (p) guarantee that a is
a solution of (2.3) on [0,+o) for A := Xl(p) > 0, and with the initial condition @(0) =
[0, 1,0,124(0)]T. Obviously, i14(0) < 0 since otherwise, @(0) > 0, @(0) # 0, and Lemma 2.3
would imply i@; >0 on (0,+0).

LemMa 3.3. Let n € N be arbitrary. Then there exists an eigenfunction ts,—, of (1.1),
uyn_>(0) = 1, having precisely 4n — 3 zero points in (0,1).

Proof. Let a mapping T : R — (C[0,2n])* assign to a £ € R the solution of (2.3), where
to:=0, t:=2n, 1:=A(p), and [a,B,y,8]T:=1[0,1,0,&]T. Clearly, T(ii4(0)) = 0. Let w :=
T(0). Then w(0) > 0, w(0) # 0, and Lemma 2.3 implies w > 0 on (0,2n]. The continuous
dependence of the solution of the initial value problem (2.3) on the initial conditions (see
[2, Corollary 1.10]) means that T' is continuous.

We define a mapping f : (C[0,2n])* — R by

fw:= min_u(t), ue(C[0,2n])" (3.5)
te(2n—1,2n]
Then f and also g: R — R, g:= f o T, are continuous. Now clearly g(ii4(0)) < 0 and
g(0) > 0. Consequently, there exists a constant K € (#i4(0),0) (we recall that i14(0) < 0)
such that g(K) = 0. We denote v := T(K).
Since v(0) > @(0) and v(0) # @(0), Lemma 2.3 yields v > @ on (0,2n]. We have

min  vi(t) =0 (3.6)
te[2n—1,2n]
(see Figure 3.1). Due to the continuity of v;, we can take the first point in [2n — 1,2n],
where the minimum (3.6) is achieved, and denote it by £. Since vi(2n—1) >#; 2n— 1) =
0 and v;(2n) > @11(2n) = 0, it must be £ € (2n — 1,2n). Hence v, (f) = v,(f) = 0.
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w1
Vi

Figure 3.1. Proof of Lemma 3.3 for n = 2.

We now define a function 4, : [0,1] — R by

_ 1
vi(£(1 = 2t)) forte |0,= |,
Uan-2(t) == [ 2] (3.7)

v (t2t—1)) forte (%,1].

We immediately get ila,—2(0) = i, _(0) = flap—2(1) = f1y,_,(1) = 0. Since v;(0) = v3(0) =
0, the vector function

,4T
a2 1= [ a2, W ¥ () (1 (85, 2)) ] (3.8)

is of class C'[0,1], and one can easily check that 0, is a solution of (2.1) with A :=
(20)%°A1(p). Henc§, flan—» is an eigenfunction of (1.1), corresponding to the eigenvalue
Ap,_o(p) := (20)?PA1(p). Since f € (2n — 1,2n), we obtain the estimate

AD5(p) € ((4n—2)Xi(p), (4n)*¥Ai(p)), neN. (3.9)

Lemma 3.2(iii) implies &y, ,(0) # 0, and so

1
5 - (3.10)
U4n—>(0) =2

Ugp—2 1=
is an eigenfunction of (1.1), corresponding to A}, ,(p) and satisfying, moreover,
ug,2(0) = 1.

We now show that w4, has precisely 4n — 3 zeros in (0, 1). Lemma 3.2(i) and (ii) state
that u4,,_, has finitely many zero points in (0, 1), which all are simple.

Let k € {0,1,...,n — 2} be arbitrary. Then we have already verified all assumptions of
Lemma 2.4, where u:=1, v:=v, ty:= 2k, t,, := 2k + 1, t; := 2k + 2, and t, := . Hence
Lemma 2.4 yields that v, has exactly two zeros in (2k, 2k + 2], that is, v; has exactly 2n — 2
zeros in (0,2n — 2]. By the choice of £, v; >0 on (2n — 2,%), and so v, has precisely 2n — 2
zeros even in (0,7). The definitions (3.10) of u4,—, and (3.7) immediately yield that w4,
has precisely 2(2n — 2) + 1 = 4n — 3 zeros in (0, 1), and the proof is complete. O

LemMA 3.4, Let n € N be arbitrary. Then there exists an eigenfunction ug, of (1.1), uj,(0) =
1, having precisely 4n — 1 zero points in (0,1).
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/\ i /\ X /\
0=ty tan-3 1 3 th
t4n—2 U1
wy tlan

Figure 3.2. Proof of Lemma 3.4 for n = 1.

Proof. We denote

/ep) < /(2p)
th = (M)l ! ><M)l ’ o1

~ (3.11)
in-2(p) (4n)?PAi(p)
(We used estimate (3.9).) We define a function v, : [0,#,] — R by
vi(t) = tﬁu4n+2(ti>, te [0,] (3.12)
h

(see Figure 3.2), where the functions uy,+2, # € N, were defined in the previous proof.
We denote v := [vi,v],¥,(v]), (¥, (v{"))']T. Clearly, v1(0) = v2(0) = vi(ty) = v2(t) = 0,
v3(0) = 1, and v, has precisely 4n + 1 zero points in (0,#;). Since 4y is a solution of (1.1)
withA:= AP, (p), we get by substituting v into (2.3) that v is a solution of (2.3) on [0, #;],
with A := )L4Dn+2(p)t,;2P = AD,_»(p) and the initial condition [a,f,y,8]" := [0,0,1,v4(0)]".

Similarly, as in the proof of Lemma 3.3, we define a mapping T : R — (C[0,#;])* that
assigns to & € R the solution of (2.3), with #o:=0, t; :=fj,, A:= /\4Dn_2(p), and [a,f3,
y,8]1T:=[0,0,1,&]". T is again continuous by [2, Corollary 1.10]. Obviously, v= T (v4(0)).

We denote K := (y,(uy,»(t))) li=o and w := T(K;). The uniqueness of the solution
of the initial value problem implies w; = 14,5 on [0,1]. [t must be K; < 0 since otherwise,
w >0, w # 0, and so w > 0 on (0,#] by virtue of Lemma 2.3. But w1 (1) = ug,—»(1) = 0.
From the definition of u4,_,, we see that uy,_, is odd with respect to 1/2. Thus w, (t) =
—wi(1 —t) and ws(t) = —ws(1 — t) for all £ € [0,1]. Hence ws(1) = —w3(0) = —1 and
wy(1) = wa(0) = K; < 0. Now, w(1) <0, w(1) # 0, and Lemma 2.3 gives w < 0 on (1,#].

Now we prove that K; < v4(0). If K; > v4(0), then w >v on (0,#,] by Lemma 2.3. But
wi(ty) <0 =v(ty). If Ky = v4(0), then w = v by the uniqueness of the solution of (2.3).
This is not possible for the same reason. Hence K; < v4(0), and Lemma 2.3 implies w < v
on (0,t].

Since w; coincides with u4,—» on [0, 1], it has precisely 4n — 1 zero points in [0,1],
which we denote by 0 =) < t; < - -+ < tay_3 < tay_» = 1. We take k € {0,1,...,2n — 2}
arbitrary. Now all assumptions of Lemma 2.4, where u:=w, v:=V, o := ta, by = b1,
t1 := by, and ¢, 1= 1, are satisfied. Hence v; has exactly two zeros in each (fak, t2k+2], and
so exactly 4n — 2 zeros in (0,1]. We already know that v, has 4n + 1 zeros in (0,#;,). We
denote by f < f; the last two. Obviously, f, f; > 1. Since v} (0) = 1, Lemma 3.2(ii) yields
y1 >0 on (1.70,171).
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Similarly, as in the previous proof, we define a mapping f : (C[0,#,])* — R by

f(w):= max ui(t), ue (C[0,4])" (3.13)

te[foh ]

Again f and g: R~ R, g = f o T, are continuous. We have g(K;) = f(w) <0 and
g(4(0)) = f(v) >0. Thus there exists K € (K;,v4(0)) such that g(K) = 0. We denote
U4, = T(K) and 4y, the first component of 1y,. Since K < v4(0), we have 14,(0) <
v(0) and 104, (0) # v(0), and Lemma 2.3 yields ti4, < v on (0,#,]. In particular, i, (%) <
Vl(lt()) =0and 1:1471(;1) < ‘Vl(ltl) = 0. Thus the maximum

max iy, (1) =0 (3.14)

te[fo,f ]

must be achieved in (#),#). We again denote by  the least zero point of fiy, in (f,).
Obviously, 214, (0) = 21},(0) = fi4,(f) = f13,,(£) = 0, and so the function uy,, defined by

Ugn(t) = %qu,,(it), te[0,1], (3.15)

is an eigenfunction of (1.1), satisfying u},(0) = 1. Lemma 3.2(i) and (ii) yield that w4, in
[0,1], and also {4, in [0,£], have finitely many zero points, all being simple.

Since K; < K, we can show (similarly as we did for v) that G, satisfies w < {4, on
(0,t4], and iy, has exactly 4n — 2 zeros in (0,1]. We denote by #, and #; the (4n — 2)th
and the (4n — 1)th, respectively, zero point of v; in (0,#;). Hence f, < 1 <3 and v; >0 on
(Ez,l%). We showed that l:l4n(l~'2) < Vl(fz) =0, ﬁ4n(1) > Wl(l) =0, and I:l4n(l~'3) < V1(1~'3) =0.
Consequently, ;, < 1 and 14, has at least one zero point in each of the intervals (£,1) and
(1,8).

If 214, had at least two zeros in (1,%;), then all assumptions of Lemma 2.4, where u :=
Uygy, V=V, t, 1= 13, and ty, by, 1 are the first three zero points of iy, in (£,13), would be
verified, and Lemma 2.4 would imply that v, had at least two zeros in (f,%;). But v; >0
there. Hence 14, has exactly 4n — 1 zeros in (0,%;). Since fi4,, < v; < 0 on [f3,1], and due
to the choice of £, ily, has precisely 4n — 1 zero points even in (0,), so as u4y, in (0,1). This
finishes the proof. O

LemMa 3.5. Let n € N be arbitrary. Then there exists an eigenfunction u, of (1.1), u,, (0) =
1, having precisely n — 1 zero points in (0, 1).

Proof. It remains to prove the existence of an eigenfunction with 2m — 2 zeros in (0, 1),
m € N. The proof is very similar to that of Lemma 3.3.

First, we define a mapping T : R — (C[0, 1])* assigning to a £ € R the solution of (2.3)
with £y := 0, t; := 1, 1:= A},,(p), and [a, B,7,8]" := [0,0,1,]". Again, [2, Corollary 1.10]
guarantees the continuity of T. The constants A5, (p) were defined in the previous two
proofs.

We denote uy,, := [uZm,u’Zm,wP(ué%),(wp(ué%))’]T, where the eigenfunctions u,,, of
(1.1) were constructed in the previous two proofs too. We denote Ky := (v, (u43,,(1)))" | 1=0.
The uniqueness of the solution of (2.3) implies that T(K;) = uz,,. Let w:= T(0). As in the
proof of Lemma 3.3, w > 0 on (0, 1] (see Figure 3.3).
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Figure 3.3. Proof of Lemma 3.5 for m = 2.

We denote by 0 = £y < t; < - -+ < a1 < tayy = 1 all the zero points of uy,,. Then f:
(C[0,1])* — R defined by

fw:= min w(), ue(C[0,1])" (3.16)
te(tam-1tam|
andg:R — R, g = f o T, are both continuous. Since K; < 0, g(K;) < 0,and g(0) > 0, there
is a K € (K;j,0) such that g(K) = 0. We denote @15, := T(K), and denote by 7, the
first component of {,,,—1. Since K; < K, we have u,,, < Gi2,,—1 on (0,1] by Lemma 2.3. Let
f be the first t € (t-1, tam), where 0,1 (t) = 0. Hence i1 (£) = il,,_; (f) = 0, and the
function
Uym-1(t) := Elzf‘Zm—l(Et)a te[0,1], (3.17)
is an eigenfunction of (1.1) with u5,,_;(0) = 1.

Due to Lemma 3.2(i) and (ii), #2,—1 and even ,,,-1 have in [0,1] and [0,7], respec-
tively, finitely many zeros, all being simple. Thus, similarly as in the proof of Lemma 3.3,
we can use Lemma 2.4 to show that 1, has exactly two zeros in each of the intervals
(0,121, (t25ta]s...» (tam—as tam—2]. Since lxl;,m(()) =1, wehave Q1,1 >tzm = 00n (-2, tam—1]
by virtue of Lemma 3.2(ii), and obviously ;-1 >0 on (t3,-1,f). Consequently, &2,,-1,
as well as 1,1, have precisely 2m — 2 zero points in (0,%) and (0, 1), respectively. O

LEMMA 3.6. Let u; and u, be eigenfunctions of (1.1), corresponding to eigenvalues A, and
Ay, respectively, and having precisely ny — 1 and ny — 1, respectively, zero points in [0,1],
ni,ny € N. Assume uy’ (0) = uj (0) = 1. Then

(l) ny < np @A] <A2,

({)n=meldi =L eu =uonl0,1].

Proof. Tt suffices to show that

(1) /\1 <A2 = n; < np,

(2) /\1 = Az = U; = Uy on [0,1].
Since u}'(0) = u5'(0) = 1, the second implication is a consequence of the positivity and
the simplicity of all eigenvalues of (1.1) (see [1, Example 8]). So, it remains to prove the
first one.

Let A; < A,. Substituting into (1.1), we realize that 4, (¢) := u;(1 — ), t € [0,1], is an

eigenfunction of (1.1), corresponding to A;. Hence the simplicity of A, implies existence
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of x € R such that #1; = xu;. Taking any ¢, € [0, 1], where u;(fy) # 0, we get
ui(to) = i (1 —to) = kur (1 —to) = kit (to) = w2u1 (to) # 0. (3.18)

Thus x? = 1, that is, the function u; is either even or odd with respect to 1/2. We discuss
the former case only; for the latter one, the proof is analogous.

Now u; is even, and so u] is odd with respect to 1/2. Thus u}(1/2) = 0 and, due to
Lemma 3.2(ii), u1(1/2) # 0. Consequently, u; has an even number of zero points in (0,1),
and n; is odd.

Let

3 1/(2p)
fi= (2) >1. (3.19)
A

Let v be the solution of (2.3), where ty := 0, t; := £, A := Ay, and [a, 3,9,6]" := [0,0,1,K]7,

K = (y,(uy'(1)))"|t=0. The uniqueness of the solution of (2.3) implies v; = u; on [0, 1].

Since u; is even with respect to 1/2, we have v3(1) = y, (1) (1)) = 1 and v4(1) = —K.

Clearly, K < 0 because if K > 0, then v > 0, v # 0, and thus v >0 on (0, 1] by Lemma 2.3.

But v;(1) = 0. Hence v4(1) >0, v(1) > 0, v(1) # 0, and Lemma 2.3 yields v > 0 on (1,£].
We define a function w : [0,f] — R by

wl(t):=fzu2(;>, te (0,0, (3.20)
We denote w := [wi, wy, ¥,(wy'), (wp(wi'))’]T. Then w is a solution of (2.3), with #, := 0,
ty =1 A= % =1y, and [a,,9,8]" := [0,0,1,w4(0)]T. We prove that K > w4(0). If
K < wy(0), then v(0) < w(0), v(0) # w(0), and so v < w on (0,] by Lemma 2.3, which is
not possible since v; () > 0 = wy (f). If K = w4(0), then the uniqueness of the solution of
(2.3) would imply v = w on [0, ], which cannot be true for the same reason.

We denoteby 0 =ty <t < -+ <t,_1 <ty =1 all zero points of v; = u; in [0,1]. We
have v(0) > w(0), v(0) # w(0), and so Lemma 2.3 yields v > w on (0, £]. Since w}'(0) = 1,
it must be wy >0 on (0,¢) for some ¢ > 0. We have w;(f1) < vi1(t;1) = 0, and so w; has at
least one zero in (0, ;). We prove that it has only one. Assume by contrary that it has at
least two. Then all assumptions of Lemma 2.4, where f, := 0, t,,, < t; are the first two zeros
of wi in (0,t1), t; := t1, u:=w, and v := v, are satisfied, and thus v, has at least two zero
points in (0,#;). This is a contradiction.

We prove that w, has exactly n; zeros in (0,1]. For n; = 1, we have proved it al-
ready. For n; > 1, take arbitrary k € {0,1,...,(n; — 3)/2}. We have verified all assump-
tions of Lemma 2.4 with u:= —v, vi= —W, tg := taks1, tm = taksas £l := takes, and £, := .
Consequently, both —w; and w; have exactly two zeros in (fak+1,tk+3], and altogether
1+2((n; —3)/2+1) = n; zeros in (0,1]. Thus the number of zeros of w; in (0, ), which
is equal to the number of zeros of u, in (0,1), is at least n;. Hence n, > n;, and the proof
is finished. O

Proof of Theorem 1.1. Lemma 3.5 gives us the existence of the sequence {u,},_,, u;/ (0) =
1, of eigenfunctions of (1.1) having precisely # — 1 zero points in (0, 1). We denote the cor-
responding eigenvalues by AD(p) > 0 in accordance with the proof of Lemma 3.3. Then
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Lemma 3.6(i) yields
W) <APp)y<---, (3.21)

and estimate (3.9) implies A} (p) — +o0 as n — o0,

On the other hand, if we take any eigenfunction u of (1.1), then u’'(0) # 0 according
to Lemma 3.2(iii), and u has a finite number of zero points in (0,1) (denote it by ny) by
Lemma 3.2(i). Lemma 3.6(ii) then yields

= Uy, (3.22)

Consequently, the sequences {AD(p)}>, and {u,};, contain all eigenvalues and eigen-
functions (up to normalization) of (1.1).

Simplicity of the eigenvalues AD(p) of (1.1) is a consequence of [1, Corollary 4(i)].

It now remains to prove the discreteness of the set of eigenfunctions of (1.1), which is a
standard consequence of the above facts. We take an eigenfunction u, of (1.1). We denote
byO=ty<t;<ty<---<t,_1 <t,=1all the zero points of u,. We know that u,, (0) # 0
(Lemma 3.2(iii)) and u),(#;) # 0, i € {1,2,...,n — 1} (Lemma 3.2(ii)). Since u, is even or
odd with respect to 1/2 (see the proof of Lemma 3.6), we have |u;, (1)] = |u},(0)| # 0.

Consequently, there exist neighborhoods U; C [0, 1] of ¢;, where i € {0,1,...,n — 1,n},
and a constant K > 0 such that

|u, (t)| =K forteUyUl,,
lu,(t)| =K forte () WU,

ie{1,2,.,n—1} (3.23)
lu.(t)| =K forte[0,1]\ |J .
i€{0,1,...,n}

Now, if we take 0 < ¢ < K, then any eigenfunction u of (1.1) such that |[u — u, |l 210,17 < €
has n — 1 zero points in (0, 1), so as u,. Thus

u j—
u’(0)

Up (3.24)

by Lemma 3.6(ii). This completes the proof of Theorem 1.1. O

4. Neumann problem

We describe the set of positive eigenvalues and the corresponding eigenfunctions of (1.2)

by means of the (positive) eigenvalues and the corresponding eigenfunctions of (1.1),

showing that they are in one-to-one correspondence. The zero eigenvalue must be treated

separately, and by [1, Corollary 4(ii)], neither (1.1) nor (1.2) has a negative eigenvalue.
We divide the proof of Theorem 1.2 into the following three assertions.

PRrOPOSITION 4.1. The set of all eigenvalues of (1.2) forms a sequence 0 = A (p) < AN (p) <
- — +oo. Every MY(p), n >0, is a simple eigenvalue while Ay = 0 is not. Moreover, (1.3)
holds true, and for n > 0, for any eigenfunction u of (1.2), corresponding to AN (p), and for
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any eigenfunction v of (1.1), corresponding to AD(p/(p — 1)), (1.4) holds true for some k €
R\ {0}.

Proof. We take any positive eigenvalue A of (1.2) and a corresponding eigenfunction ;.
It means that u = [uy,ul, v, (u)), (¥,(u]))']T is a solution of (2.2). Since A > 0, we can
multiply the first two equations in (2.2) by ¥, (1) to obtain the equivalent problem

uj(t) = ua(t),
uy (1) = wipry (ypy Mun (1)),
(¥ M (1) = (yy Mua(1)), (4.1)

(yp Mua(t) = (v D))y (us(1),  t€[0,1],
u3(0) = u4(0) = u3(1) = us(1) = 0.

We immediately see that [us, ug, ¥ (M) 1,9y (A)u,]" is a solution of the Dirichlet prob-
lem (2.1), with p:= p” and A := v, (). The function u3 cannot be the zero function since
otherwise, u; = v, (15 /1) = 0 on [0,1]. But u, is an eigenfunction of (1.2). Consequently,
u3 is an eigenfunction of the Dirichlet problem (1.1) with p := p” and A := v, (1), and so
Yy (A) = AR (p") for some n € N. Hence A = wp(AE(p’)). Thus we proved that any positive
eigenvalue A of (1.2) equals A (p) for some n € N. The sequence {AY(p)}i, is defined
by (1.3).

To show that AY(p) is an eigenvalue of (1.2) for any n € N, we take the eigenvalue
AR (p") of (1.1), with p := p’, and a corresponding eigenfunction, denoted by v; here.
Then v := [vi, v,y (v]), (Y (v{"))’ 1" is a solution of the Dirichlet problem (2.1), where
p:=p’ and A := AD(p’). Substituting into (4.1), one can check that it is equivalent to the
claim that

T
I L T C T
“‘[Alz(p'r 9<p'>’”"”2] 42)

is a solution of (4.1), with A:= y,(AD(p")) = AY(p) > 0. But for A >0, (4.1) is equiva-
lent to (2.2), and so u is also a solution of the corresponding problem (2.2). Again, v3
is not the zero function since if it was, then we would conclude from (2.1) that v; =
w(pr)r(vg'//\l,?(p’)) =0 on [0, 1], which is not true. Hence u, is an eigenfunction of (1.2),
corresponding to the eigenvalue Al (p). This proves that the positive eigenvalues of (1.2)
form the sequence A (p), n € N, defined by (1.3). Their simplicity is a consequence of [1,
Corollary 4(i)].

We showed (see (4.2)) that any eigenfunction {u;, { € R\ {0}, of (1.2), corresponding
to AN(p) >0, can be written as xvs = ky, (v{'), where x = {/AD(p’), and v, is an eigen-
function of the Dirichlet problem (1.1) for p := p’, corresponding to AD(p"). This proves
(1.4).

Obviously, A) (p) = 0 is an eigenvalue of (1.2) since any linear function is a solution of
(1.2) with A := 0. Consequently, A} (p) = 0 is not a simple eigenvalue. Thus we proved that
all eigenvalues of (1.2) form the sequence 0 = AON(p) < Alfl(p) < -+, Since AD(p') — +o0
as n — oo, the relation (1.3) immediately yields that even A} (p) — +o0 as n — oo. O
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Now we prove that an eigenfunction, corresponding to an eigenvalue AY(p) of (1.2),
n >0, has precisely n+ 1 zero points in (0,1). Due to (1.4), the zero points of an eigen-
function of (1.2), corresponding to AY(p), n € N, coincide with zero points of the second
derivative of an (arbitrary) eigenfunction of (1.1) for p := p’, corresponding to AD(p").
Hence we can restate the assertion as follows.

LemMma 4.2. Let u be an eigenfunction of (1.1), corresponding to AL(p’) and satisfying
u''(0) = 1. Then u” has precisely n+1 zero points in (0,1).

Proof. We denote by 0 =ty <t; < ---<t,_1 <t, =1 all the zero points of u. In each
interval (t;,t41), i € {0,1,...,n — 1}, u has at least one local maximum for i even, and
minimum for i odd. We choose one in each interval and denote it by #; € (4;, f11). Hence
we have sgn(u(f;)) = (—1)" and u'(£;) = 0. We denote u:= [u,u/,y, (1), (yy (1)) 17,

First, we prove that u”’ (;) # 0 foralli € {0,1,...,n — 1}. We proceed by contradiction—
assume u'(f;) = u” () = 0. We suppose that u(f;) > 0; for u(f;) < 0, the proof is simi-
lar. Similarly as in the proof of Lemma 3.2(ii), we distinguish two cases. For u4(f;) > 0,
Lemma 2.3 yields u >0 on (f;,1], and for uy(f;) < 0, the same lemma implies u > 0 on
[0,£), a contradiction in both cases. This proves that sgn(u” (£;)) = (—1)*1.

Clearly, u > 0 on (0,%)). Now we show that u” has exactly one zero point in (0, ).
Since u”(0) = 1 and u’'(f) < 0, it has at least one. Assume by contrary that u''(a;) =
u’(ay) =0,0<a; <ay <ty Then uz(a;) = uz(ay) = 0 and u3(%) < 0. The mean value
theorem implies the existence of by € (a1,a,) and b, € (ay, ) such that us(b;) = 0 and
u4(by) < 0. Hence uy(c) < 0 for some ¢ € (by,b,). This is a contradiction since

uy(c)
u(c) = ui(c) = v, (A]r? ) ) <0, (4.3)
but ¢ € (0,%). Similarly, one can prove that u” has exactly one zero point in (£,-1,1).

We now consider an interval (;,f;41) for arbitrary i € {0,1,...,n — 2}. We assume that
i is even; for i odd, the proof is analogous. Thus u; >0 on [£;,t41), 41 < 0 on (fi1,541],
u3(f) < 0,and u3(fi41) > 0. Again, v’ has at least one zero in (£, f;+1 ), and we prove by con-
tradiction that it has exactly one. So, let us(a;) = u3(a2) =0, f; < a; < ay < f41. Then the
mean value theorem vyields u4(b;) >0, us(by) = 0, and uy(bs) > 0 for some by € (f;,a1),
b, € (a1,a;), and bs € (as,t;41). Hence uy(c;) < 0and uj(c;) > 0 for some ¢; € (by,b,) and
¢ € (by,bs). Since u; = wp(uf;//lg(p’)), we have u;(¢;) < 0 and u;(c2) > 0. Consequently,
¢1 > tiy1 and ¢; < tiy 1, a contradiction.

We now see that u'" has precisely n+ 1 zero points in (0,1). O

PropositioN 4.3. For any eigenfunction u of (1.2), corresponding to a positive eigenvalue,
there exists an € > 0 such that if v is an eigenfunction of (1.2) and |lu — vllc2j0,1] < & then
v = xu for some k € R.

Proof. The reader is invited to verify that Lemma 3.2(ii) holds true even for the eigen-
functions of (1.2), corresponding to positive eigenvalues. Then, similarly as in the proof
of Theorem 1.1, we can take € > 0 so small that v has the same number of zeros as u.
The assertion is then a consequence of Lemma 4.2, (1.4), and the simplicity of positive
eigenvalues of (1.2) (see [1, Example 9]). O
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Proving Proposition 4.3, we finished the proof of Theorem 1.2.

5. Open problems

There are many open questions concerning the functions p — AY(p) and p — AN(p), p €
(1,00), n € N. We know only that they are positive.

(1) Are AR(p) and A (p), n € N, continuous as in the case of the Navier problem
(3.2) (see [4])? Or even of the class C* as in the second-order case? Are they
monotone?

(2) Is it possible to investigate lim,_1, AD(p), limp_ AL (p), limp_y, A (p), and
limy_o AN (p)?

(3) Is there a relation between AY (p) and A (p), n € N? (Note that (1.3) is a relation
between AL (p) and A}(p’).) Can they be compared with the eigenvalues of the
Navier problem? We already know that AJ, ,(p), n € N, lies between the (41 —
2)th and the (4n)th eigenvalues of the Navier problem (see (3.9) and [4]). When
do we have AD(p) = AN(p), AR(p) < A (p), and AR (p) > A (p)? We only know
that for p = 2 and any n € N, the equality holds true.
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