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A POLYNOMIAL COLLOCATION METHOD FOR
CAUCHY SINGULAR INTEGRAL EQUATIONS
OVER THE INTERVAL*

P. JUNGHANNST AND A. RATHSFELD*

Abstract. In this paper we consider a polynomial collocation method for the numerical solution of a singular
integral equation over the interval. More precisely, the operator of our integral equation is supposed to be of the
form al + p~1bSul + K with S the Cauchy integral operator, with piecewise continuous coefficients a and b,
with a regular integral operator K , and with a Jacobi weight 4. To the equation [a] + p~1bSul + K]u = f we
apply a collocation method, where the collocation points are the Chebyshev nodes of the second kind and where the
trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of this
collocation in weighted L2 spaces, we derive necessary and sufficient conditions.
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1. Introduction. Discretization schemes including collocation based on polynomial ap-
proximation are the most popular numerical methods for the numerical solution of the Cauchy
singular integral equations (cf. e.g. [1, 2, 4, 6, 7, 8, 9, 13, 18] and [28, Chapter 9]). These
methods are based on well-known invariance properties for polynomial spaces with respect to
the integral operators if the latter are multiplied by a correctly chosen weight function. Thus
polynomial methods are spectral methods and exhibit optimal convergence properties.

On the other hand, the mentioned methods are restricted to integral operators the coeffi-
cients of which satisfy some smoothness properties. Moreover, the construction of the weight
functions, of the orthogonal polynomials, and of the collocation nodes is not so simple if the
coefficients of the integral operators are not constant. Therefore, it is natural to use Cheby-
shev nodes even if the intrinsic weight function of the operator is different from the Cheby-
shev weight. Moreover, if additional fixed singularities occur, the invariance property holds
only for the Cauchy singular part and not for the whole operator. Consequently, the usual
approximation arguments do not apply, and, there is no motivation to choose complicated
weights. Furthermore, iterative methods with integral equations, the coefficient functions of
which change in every step of iteration, suggest to choose fixed collocation nodes indepen-
dently of the coefficient functions (cf. [15]). In comparison to spline methods or trigono-
metric approaches, numerical experiments for various equations (cf. [24, 25]) promise better
approximation results for the polynomial collocation.

Polynomial methods have been considered for Mellin convolution operators e.g. in [21,
23, 25]. These methods at least together with slight modifications are expected to converge for
all invertible operators. Similarly, for properly chosen weight functions and the corresponding
nodes, the invertibility of the Cauchy singular integral operator is the only condition needed
to ensure the stability of the polynomial collocation. However, if the collocation nodes are
chosen independently of the intrinsic weights, then there arise additional stability conditions
expressed in form of the invertibility of related operators (cf. the special case treated in [17,
19]). Local principles and Banach algebra techniques are the main tools to prove such results.
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In this paper we analyze the polynomial collocation method for an integral equation of
the type

b(a) 1 [ p(y)uly) !
@) i) + o [ Ay [ kgt dy = fo).
—1 < x < 1,wherea,b: [-1,1] — C stand for given piecewise continuous® coefficient
functions, where the weight function . is defined by p(z) := (1 — x)7(1 + z)° with real
numbers —1 < 4,6 < 1, where the kernel k¥ : (—=1,1) x (—=1,1) — C is supposed to
be continuous, where the right-hand side function f is given in the weighted Z? space L2,
and where v stands for the unknown solution. The Hilbert space L2 is defined as the space
of all functions « : (—1,1) — C which are square integrable with respect to the weight
o(z) == v*8(z) :== (1 —2)*(1+ z)%, —1 < a, 3 < 1. The inner product of this space is
defined by

1
(u,v), :z/ u(z)v(x)o(z) dx
-1
and the norm by |[ju|, := +/(u,u),. Note that the condition -1 < «,3 < 1 for the
exponents of the classical Jacobi weight guarantees that the singular integral operator S :
L2 — L2 is continuous, i.e. S € L£(L2) (see [11, Theorem 1.4.1]). In short operator
notation (1.1) takes the form

(1.2) Au = (al +bp ' Spul + K)u = f.

Here al : L2 — L2 denotes the multiplication operator defined by (au)(x) := a(x)u(z),
the operator S : L2 — L2 is the Cauchy singular integral operator given by

1
(Su)(z) == i/ &dy,

mJ_1Yy—x

and K : L2 — L2 stands for the integral operator with kernel k(z, y).
For the numerical solution of the singular integral equation (1.2), we consider the poly-
nomial collocation method

® @ b(mfn)l ! w(y)un(y) ! 2 w — f(g¥
oehuntel) + e [ B [ k) = 105,

(1.3) ji=1,...,n,

where the collocation points xfn ;= cos % j =1,...,n, are the Chebyshev nodes of
n

the second kind corresponding to the weight function ¢(x) := /1 — z2 and where the trial
function w,, is sought in the space of all functions u,, = ¥p,, with p,, a polynomial of degree
less than n and with the Jacobi weight 9 := vi~%:-% . To formulate our main result on the

convergence of the method (1.3), we have to write it in the operator form
(1.4) Apun = My f, up €imL,.

Here L,, denotes the orthogonal projection of L2 onto the n dimensional trial space im L,
of polynomials multiplied by 9. By M,, we denote the interpolation projection defined by

LFor definiteness, we assume that the function values coincide with the limits from the left and that the functions
are continuous at the point —1 . The set of piecewise continuous functions on [—1, 1] is denoted by PC .
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M, f € im L, and (M, f)(z%,) = f(z%,), j = 1,...,n. Finally, the discretized integral
operator A,, : im L, — im L,, is given by A,, := M, Alim,. In accordance with e.g.
[28, Chapter 1], we call the collocation method stable if the operators A,, are invertible at
least for sufficiently large n and if the norms of the inverse operators A, ! are bounded uni-
formly with respect to n. Of course, the norm is the operator norm in the space im L, if the
last is equipped with the restriction of the L2 norm. We call the collocation method (1.4)
convergent if, for any right-hand side f € L2 and for any approximating sequence f,, with
Ilf = frlle — 0O, the approximate solutions w,, obtained by solving A, u, = f, converge
to the exact solution u of (1.2) in the norm of L2. Note that the stability implies bounded
condition numbers for the matrix representation of A,, in a convenient basis, and, together
with the consistency relation A,,L,, — A, it implies the convergence.

To formulate our main result, we need some notation and a few assumptions. For the
exponents in the weight functions x and o, we suppose

(1.5) —l<a—-2y<1l, —-1<pg-2<1,
1 « 1 g
(1.6) a =7+ =5 #0, fo=0+ -5 #0.

Note that condition (1.5) ensures the boundedness of the integral operator A € L(L2)
whereas (1.6) is needed to derive strong limits for the discrete operators in Lemma 3.10.
Furthermore, we introduce the numbers

1 a(E1) Fh(+) 1 1
(2.7) e M ) xh(x) S\ T2 T T )
where
a B
=5 67—5—5.

For the definition of . , instead of (—1/2 — ey, 1/2 — e ) any interval of length one can be
used. Our choice, however, is natural since the invertibility of the operator A : L2 — L2
impliesk_ # +1/2—e_and ky # £1/2 — e .

In the subsequent analysis, we will show that there exist limit operators of the matri-
ces corresponding to the linear systems (1.3). These operators W,{A,}, w = 3,4 will
be introduced in the Lemmata 3.8 and 3.10, and the invertibility of W,{A,}, w = 3,4
will turn out to be necessary for the stability of the collocation method. The condition for
W,{A,}, w = 3,4 to be Fredholm and to have a vanishing index can be expressed by the
condition

(1.8) K+ + —

4

N =

<

Using the just introduced notation, the main result is
THEOREM 1.1. Suppose that the conditions (1.5) and (1.6) are satisfied, that the coef-

ficient functions « and b are piecewise continuous over [0,1], and that the kernel function
k(z,y) divided by (1 — 2)®/2+1/4(1 4- 2)#/2+1/4 s continuous on [—1, 1] x [—1, 1] (or sat-
isfies the weaker assumption met in Corollary 2.6). The polynomial collocation method (1.3)
for the approximate solution of (1.1) is stable and convergent if and only if

i) the operator A € £(L2) is invertible,

ii) the condition (1.8) holds,
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iii) the null spaces ker W5{A4,,} and ker W,{ A, } are trivial.

Unfortunately, the verification of the condition iii) seems to be hopeless. Therefore, it
is good to know that condition iii) is not “essential” in the following sense: The case that
condition ii) is fulfilled but condition iii) not is very rare and exceptional. Indeed, we get

REMARK 1.2. Fix b(£1), u, and o. Consider the set X1 of all complex numbers z =
a(£1) such that condition ii) holds. The set of points in X such that condition iii) is violated
is countable and the accumulation points belong to C\ ¥ 1. This fact is a simple consequence
of the general theory of analytic families of Fredholm operators.

REMARK 1.3. If the exceptional case should occur, then the numerical method should
be modified slightly. One way to do this is the so called ¢, modification introduced in [12]
and used also e.g. in [20, 28]. For a stability proof of such a modified method, we refer to
[28], Sections 11.30 and 12.46.

REMARK 1.4. In the particular case of singular integral operators A = al + by~ 'Sl
with u(z) := y/o(x)e(x) the condition iii) is satisfied whenever condition ii) holds. Indeed,
in this case the operators A’ are zero (cf. the subsequent Lemma 3.10) and [28], Theorem
11.19 applies. Different proofs of this fact can be found in [17, 19, 31] (cf. also [14, Cor.
3.3D).

REMARK 1.5. It is not hard to see that the investigation of the collocation method can
be restricted to the case where o(z) is the Chebyshev weight of the first kind. Indeed, if
Lyt L2y — L2 u = Yl (w ) ay, ) = Uy, and MY = oLgp~'1
(for the definition of Uy, and L¢ , cf. Section 2), then the stability of M, AL,, : im L, —
im L,, is equivalent to the stability of M2pAp=1LY : im L% — im LY , where p(x) is
equal to (1 — z)3+s (1 + x)%+§ (cf. [14], Cor. 3.3). Nevertheless, we retain the notation
introduced above. This does not cause additional technical difficulties and is important for
further generalizations. Moreover, a wider class of kernels for the operator K can be treated.

REMARK 1.6. Another goal of the present paper is to prepare a subsequent paper de-
voted to polynomial collocation for Cauchy singular integral equations with perturbation
kernels having fixed singularities ([16]). These further results enable the application of trans-
formation techniques to improve the convergence rate. In comparison to the corresponding
spline methods, we expect smaller constants in the error estimates for the polynomial collo-
cation and, consequently, faster convergence.

The remainder of the present paper is devoted to the proof of Theorem 1.1. To show
stability and convergence of (1.4), we shall apply a general technique due to Roch and Sil-
bermann (cf. e.g. [30] and [28, Sections 10.31-10.41]). We shall introduce a special Banach
algebra F of sequences of discretized operators such that the stability of a sequence is equiva-
lent to the invertibility of four limit operators and to the invertibility of a corresponding coset
in a suitable quotient algebra F /7 (cf. Section 2). In particular, the collocation sequence
{A,,} will be shown to be an element of the algebra F (cf. Section 3). To show the invert-
ibility of the corresponding element in the quotient algebra, we shall introduce a subalgebra
A/J of this quotient algebra (cf. Section 4) and a subalgebra in the center of A/ (cf. Sec-
tion 5), and, using the local principle of Allan and Douglas (cf. Theorem 5.2), we shall reduce
the invertibility to localized problems. These local invertibility problems will be solved in the
Sections 6 and 7. Concerning the invertibility of the limit operators, we shall show in Section
8 that the invertibility of the four limit operators is just the stability criterion in Theorem 1.1.

Finally, we note that the setting for the proof enables the treatment of equations (1.1)
including kernel functions & with fixed singularities of Mellin convolution type. We will
analyze these classes of equations in a subsequent paper. Having solved the stability and
convergence problems for singular integral equations with and without fixed singularities,
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the next essential task is to design algorithms for the assembling of the matrix of the corre-
sponding collocation equations and for the efficient solution of the arising linear systems of
equations. These issues will be stressed in future work.

2. Stability Reformulated as the Invertibility in a Banach Algebra. In this section
we introduce the Banach algebra of approximate operators together with some auxiliary nota-
tion. We formulate the theorem of Roch and Silbermann on the stability of operator sequences
in this algebra. This theorem is based on several assumptions which will be verified for our
special application while introducing the setting.

For the definition of the algebra, we need some new spaces and operator sequences de-
fined with the help of special basis functions. By 7}, and U,,, n = 0,1, 2, ..., we denote the
normalized Chebyshev polynomials

1 2
To :_\/j, Tph(coss) := \/jcosns7 n=12...,
T T

2 si 1
Un(coss) == \/jw n=01,2...,
™

sin s

and

of first and second kind, respectively. In particular, the U,, are orthogonal polynomials with
respect to the Chebyshev weight of second kind (), and the points xfn are the zeros of U,,.
We set '

n—1
k=0

and, with respect to the orthonormal system {u,,}° , in L2, the orthogonal projection L,
takes the form

n—1

Lnu = Z (u,ﬂk)a ﬂk.

k=0

The projection M, is the weighted interpolation operator M,, := 9L£9~11, where L¢ de-
notes the polynomial interpolation operator with respect to the nodes xfn, j=1,...,n.By
% we denote the Hilbert space of all square summable sequences & := {&;}7° , of complex
numbers equipped with the inner product (£, 7). := > po, &7%- Finally, we introduce the

Christoffel numbers with respect to the weight () by

lp(xf,)I?

A=
kn TL—|—1

and the discrete weights

L s . l+g_’l+ﬁ
i 1= [ el o) = [ ot ).
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Now we are in the position to define the four limit operators. We introduce the index set

T := {1,2,3,4}, and, for v € T, we define projections LS{’) on the Hilbert spaces X,,

and operators E,(f) :im L, — im LS{’). The limit operators (belonging to £(X,,)) of
the sequence {A,,} are the strong limits W,{4,} = lim, .. Er(f)An(E,(f))*lL%“). In
particular, we define the spaces X, the projections L), and the operators E) by X; :=
Xy =12, X3 =Xy =02 LY =1% =1, 1Y =1 = p, B =L,
B =w,, EY =V, E{Y .=V, where

n—1
Wou := Z <u7ﬂn—1—k>g Uy,
k=0
(21) Pn{507§11521 .. } = {6-01 e 7577,—17 07 07 .. } )
Vou = {wipu(zf), ... wpnu(zf,),0,0,.. .},
Vnu = {wpnu(x¥,), ..., wipu(z?)),0,0,...}.

The operators involved in the last definitions have the following important properties. Imme-
diately from the definitions, we conclude that (E{")~! = L,,, (ES?)~* = W, and

E®) e — §k—1 7 (EW)te = §n—k 7
(E,7) kz::l o (ER7) kz::l —tin

Wkn w,

where

- (2) = Ix) o (z) = Hx)Up(z)
n d(zy,) " Daf, )@ —2f U (2,)

The matrix of the operator W,, with respect to the interpolation basis {Z}jﬂ} o, takes the form

22) EOW, (B = (-1 6,

J=1
Furthermore, the operators Eff’) are isometries, i.e.
(2.3) (B =(EW)™, weT.

Forw = 1, 2, this is obvious. In case w = 3 we have, for u = Yv € im L,, and £ € im P,,

k=1 = v +1
n (%2} n
v\r k—
A = < et gfn>
k=1 n—H%’(%n) k=1 n—H%’(%n)

©

- <uznj 75’“‘“9@%)) ?En> = (u, V716, -

s
k=1 n+1 (p(zkn

Analogously, we get (2.3) for the case w = 4. Finally, we observe the property

LEMMA 2.1. The sequences {E,(f’l)(E,(f’z))—lLSf’2)} converge weakly to zero for all

indices wy,ws € T with wy # wo.
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Proof. We prove the weak convergence to zero for all operator sequences outside the
main diagonal of the following table.

“2 1 2 3 4
wy
1 Ln Wy Ln v.ip, v.ip,
2 WyL, L W,V P, | W,V 1P,
3 VoLy | VaWyLy, P, V.V, 1P,
4 VoLy | VaWoLy, | V,VIP, P,

Tableof E“(EW)-1Lw?)

First we remark that all sequences in this table are uniformly bounded. Thus, the weak
convergence of W, L,, follows from

<fa WnLnﬂm>o— - <fa an717m>g — 07 n—oo,

which holds for all f € L2 and m € N. Setting e,, := {0rm }7o, We get, for n >
max{mﬂj} )

~ ~ T
(€1, VL) s = Winfim(25,) = || =2 (a5, Un (@5,)

[ 2 . (m+1)jrm
= sin ,
n+1 n+1

and the weak convergence of V,, L,, follows. Analogously we proceed with XN/nLn, VoW, Ly,
and V,,W,,. The weak convergence of V,~! P, follows from

msy*gn

- 1 ) _ b <~ li4 > -
<um,Vn Pne]*1>a B Win um?éjn o N W7n19(x;pn) <

A [ 2 (m+1)jm
= # Um AP = Si
wind(x5,) (5n) ntl o

which is valid for n > max{m, j}. Analogously we get

N B _ B 2 . (n—m)jm
(T, WaVy ' Prejor), = (lin—1-m, V' Puejo1), = Vn+1 S ( n—i—l) '

The relation

Uns €50,

v 11
<€m717VnVn F)nejfl>z2 = <em17€n+1j>
02
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shows the weak convergence to zero of the sequence {IN/HV,ijn}. For the sequences

{‘N/gan}, {an/nfan , and an/,;an}, we can proceed in an analogous way. [

Next we define the algebra of operator sequences - the basic algebra for our further
considerations. By F we denote the set of all sequences {A,,} = {4,,}52, of linear operators
A, :im L,, — im L,,, for which there exist operators W,{A,,} € £(X,,) such that, for all
weT,

B An(B&) L) — WolAn}, (B ALEE) L) — Wo{dn)
holds in the sense of strong convergence for n — oo . If we define

)\I{An} + )\2{Bn} = {)\1An + )\an} ) {An}{Bn} = {Aan} ) {An}* = {A’Tl} )

and
A5 1= sup { [ AnLnll ey n = 1,2},

then it is not hard to see that 7 becomes a C*-algebra with unit element { L,, } . From Lemma
2.1 and (2.3) we conclude (cf. [28, Lemma 10.34])
COROLLARY 2.2. Forall w € T and all compact operators T, € K(X,,), the sequences

{A%‘“)} = {(E,(l“’))*lLﬁf)TwE,(f)} belong to F, and, for w; # w-, we get the strong limits

B AR () L) — 0, (B AR (BT ) — 0.

Using Corollary 2.2, we define the subset 7 c F of all sequences of the form

4
S {ED) T LOTLES ) +{Ca}
w=1
where T, € K(X,,) and where {C,,} is in the ideal V' C F of all sequences {C,,} tending
to zero in norm, i.e. of all sequences with ||CnLn||£(Lg) — 0. Now, the following theorem
is crucial for our stability and convergence analysis.

THEOREM 2.3 ([28], Theorem 10.33). The set 7 forms a two-sided closed ideal of F.
A sequence { A, } € F is stable if and only if the operators W, {A,} : X, — X, w e T,
are invertible and if the coset {A,,} + 7 is invertible in /7.

In addition to the operator sequences corresponding to the collocation method applied
to compact operators, the sequences of quadrature discretizations of integral operators with
continuous kernels are contained in 7, too. Indeed, we can formulate the following lemma.

LEMMA 2.4. Suppose the function k(z,y)/p(y) , where p = /@ = ¥ ¢, is con-
tinuous on [—1,1] x [—1,1] and that K is the integral operator with kernel k(x,y). Then
{M,KL,} € J.Moreover, if the approximations K,, € L(im L,,) are defined by

n—1

- 3
N4 TS CH AR %H)")ﬁ(%*”"))u—o 5

K = (59

then the norms of the operators K,, — L, K |im 1., tend to zero, and {K,,} isin 7.
Proof. The operators K,, can be written as M, K,, , where

1

(Roa) (2) = [ )5 (o, o™ 0] ().

—1
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Obviously, due to the Arzela-Ascoli theorem the operator K : L2 — CJ[—1, 1] is compact.
Hence, lim,, .o || M, KL, — LnKLn||L(L§) = 0 (see Lemma 2.5 below) and it is sufficient
to show that lim,,_, o HIN(nLn — KL"H = 0. To this end, we consider an ar-
L"(Lgac[_lal])
bitrary v € L2 and get L,u = 9p,, , where p,, is a certain polynomial of degree less than
n. By k,(z,y) we refer to the best uniform approximation to k(z,y)/p(y) in the space of
polynomials with degree less than n in both variables. Due to the exactness of the GauB rule
we have

(f(nLnU) (z) = /1 p(y) L k(. ) p~ 1 (y)paly) dy,

—1

and so

(Rl = KLyu) (@) = \ / 11 o(v) (LR, o) (w) = k(,9)/p() ) pu(v) dy}

IN

ZA )/ p(@s,) = kn(@,25,)] pa(2,)

+| / (2.9) = o) )] pal9)

- 2
< Co [ [ 3228 a2 + lpal, | = 2Cu Ipal,

=2C, || Lyull,

with C, = |[k(z,y)/p(y) — kn(z,y)||l 11, and limy,—.oc Cr, = 0. O
LEMMA 2.5 ([19], Lemma 3.1). If the function f : (—1,1) — C is locally Riemann
integrable and if, for some x > 0,

14+a 1+

[f(2)] < Cox s
then lim,, . || M, f — f]|, = 0 and

(x), —-l<z<l,

IMoflls < Csup{|f(z)o X555 () 1 < 2 < 1}

COROLLARY 2.6. Due to Lemma 2.5 the condition on k(x,y) in Lemma 2.4 can be

relaxed. In fact, it is sufficient to assume that vHTQ—Xv#—X(x)k(x, y)/p(y) is continuous
n[—1,1] x [-1, 1] for some x > 0, and the assertion of Lemma 2.4 remains true.

3. TheOperator Sequence of the Collocation M ethod as an Element of the Banach
Algebra F. We have to show that the sequence of discretized operators A,, := M, Alim 1,
is an element of 7. At first we summarize some well-known results (cf. the Lemmata 3.1-3.6
and Remark 3.7) which will be needed in the following. We start with recalling the well-
known relations between the Chebyshev polynomials of first and second kind

(3.1) SoU, =iThi1, n=0,1,2,...,

and

1
(32) Tn+1 = §(Un+1—Un,1), 7’L2071,27... s U,1 =0.
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LEMMA 3.1 ([26], Theorem 9.25). Suppose 1 and v are classical Jacobi weights with
uv € L*(—1,1), and fix j € N. Then, for each polynomial ¢(x) with deg ¢ < jn,

—1

> M Iq(mﬁn)IV(SCZn)SC/ lq(x)|p(2)v (2) Az,
k=1

where the constant C' does not depend on n and ¢ .

Now we consider an n with 0 < n < 1. By C%7 := C%7[—1, 1] we denote the Banach
space of all Holder continuous functions f : [—1,1] — C with respect to the exponent 7.
The norm in this space is defined by

[f(z) = f(y)|

|z —y|

10 = 1+ up § ayel Lot}
where ||f| . = sup {|f(z)| : —1 <z <1},

LEMMA 3.2 ([31], Lemma 4.13). If w € C%7 with > $[1 + max{«, 3,0}], then the
commutator wS — SwI belongs to (L2, C%*) for some A > 0.

LEMMA 3.3 ([28], Proposition 9.7, Theorem 9.9). Assume that a,b € C%7 are real
valued functions, where 1 € (0, 1) and [a(z)]? + [b(x)]? > 0 for = € [—1, 1]. Furthermore,
assume that the integers A satisfy the relations

apg =AMy +g(1) e (=1,1) and Gy:=A_ —g(-1) € (-1,1),
where g : [~1,1] — R is a continuous function such that
a(z) —ib(z) = v/[a(z)]? + [b(x)]2 eim9(@)

Then there exists a positive function w € C°7 such that, for each polynomial p of degree n,
the function av®0-Bowp 4 iSbv>o-Fowp is a polynomial of degree n — k, where Kk = —X\; — A_
and where, by definition, a polynomial of negative degree is identically zero.

Suppose v,6 > 0. By C, s we denote the Banach space of all continuous functions
f:(=1,1) — C, for which v f is continuous over [—1, 1]. Moreover, by f/;’a,ﬁ we refer
to the Banach space of all functions f such that v*? f belongs to L?(—1, 1). The norms in
C, s and f,ﬁw are defined by

1£11.5.00 = H“WSJCHOO’ Hfo‘faw@ = Hva,ﬁfHLP(*l,l) :

We introduce the operator T, 5 by

(T, su)(z) = /1 {1_ ”7’5(?’)} “W 4y 1<p<t

1 vd(z) |y —x

LEMMA 3.4 ([14], Corollary 4.4). If

1 1 1 1 1 11 1
> 2, 766 ————=JUl=1=—], 0<x<mi 1 o0 ) ) )
! ) ( 4 p) (p 2p) X mm{4 p AT }

then the operator 7, 5 : fﬂ;%%’éf% — Cv+%—x75+%—x is compact.
LEMMA 3.5 ([14], (2.9)). The sequence {W,,} converges weakly to O in the space f,ﬁj

with ¢ = T+ E-H AT
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LEMMA 3.6 ([22], relation after Theorem 3.1). Suppose w € L? is a Jacobi weight and
f : (=1,1) — C is a function satisfying wy !, w™l¢ € L? and fw, f'ow € L?. Then
the polynomial interpolation projection L¥ based on the Chebyshev nodes of the second kind
satisfies the error estimate

l(LEf = Pllge < Cn7" [ f owllps -

Finally, we will use the following special case of Lebesgue’s dominated convergence
theorem.

REMARK 3.7. If &, € ¢2, & = {1}, |€7] < |mi| forall k = 0,1,2,... and for all
n > ng, and if lim,, . & = & forall k =0,1,2,..., thenlim,, . [|" = &||,2 = 0.

Now, for the singular integral operator A € £(L2) (cf. (1.2)), we show that the sequence
{M,AL,} belongs to the algebra F, and we compute W, {A,,}. We prove this fact sep-
arately for multiplication operators, for the singular integral operator 1 ~1.S with a special
weight p, and for =S with a general p.

LEMMA 3.8. Leta € PC, A =al,and A4,, = M,aL,,. Then {A,} € F, where

(3.3) WnA W, = MyaL, and A% = M,aL,,
which implies (W,, A, W,,)* = M,aL,, and W1 {A,,} = W5 {A4,,} = A. Moreover,
(3.4) Ws{A,} =a(l)I and Wy{A,} =a(-1)I.

Proof. Since the operators EY :im L, — im L are unitary, the system {ﬁifn :
k =1,...n} forms an orthonormal basis in im L,,. However, with respect to this Lagrange
interpolation basis the matrix of the discretized multiplication operator and its adjoint take
the form

n—1
3.5) EY) MpaL,(EY) ™" = (a(szﬂ)n)(sj,k) ;
J:k=0
n—1
(3.6) EP) (Mpaly, ) (E) ™ = (6<mfk+1>n>6j k) -
37 =

From this representation as diagonal operators and the diagonal representation (2.2) of W,,,
we get W, M,aL,W,, = M,aL,, and the uniform boundedness of the sequence { M, aL, }

3.7) [MnaLnllz g2y < Cllall -

This uniform boundedness together with the convergence properties of M, (cf. Lemma 2.5)
implies the convergences M,aL, — al, (MyaL,)* = M,aL, — al as well as
w.M,aL,W,L, = MyaL, — al, (W, M,aL,W,)*L,, = M,aL, — al. The
limits in (3.4) follow easily from (3.5). Similarly, the adjoints to the operators in (3.4) are the
limits of the sequences of adjoint operators due to (3.6). O

LEMMA 3.9. Suppose A = p~'Spl, where p = 9~ 'p = \/op and A,, = M, AL,.
Then {A,,} € F and

Whi{d,} =A, We{d,}=-4, W3{A4A,}=A,, Wy {A,} =A_

with

2(k+1) ~ )°° ~ {2 ifk=j+1mod2,

Ae = <i7ri[(j+1)2—(k+1)2] W) e’ T 0 ifk=jmod2,
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Proof. At first we prove the uniform boundedness of the sequence {A4,,}. From (3.1) it
follows that Spu., is a polynomial with a degree of at most n for u,, € im L,,. Hence we
can apply Lemma 3.1 together with the boundedness of the operator S : Li,l — Li,l and
obtain, for u,, € im L,,,

[Mp=  Spun||;. = || LEC™ Spun| Z/\kncp *(@f) [(Spun) (@, )

1
<C /1 |(Spun)(@)|* ™" (z) dz < C llpunl|-1 = C Junl;

Again with the help of (3.1) as well as with the help of Lemma 2.5 we see that, for fixed m
and for n > m tending to oo,

Myup= 1S pt, = iMup T — ip Tpsr = p~ L Sptin,
in L2. If we additionally take into account (3.2) and (3.3), then we also get
Wnan_lsanam = %Wnan_lﬁ_lwan(anfm - ﬁn7m72) = _ian_leJrl
= —M,p ' Sptiy, — —p ' Splip

in L2. The well-known Poincaré-Bertrand commutation formula implies that, for u € L2
andveLZ_,,

(3.8) (Su,v) = (u, Sv) ,
where (., .) denotes the L?(—1, 1) inner product without weight. Consequently, the adjoint
operator of S : LZ — L2 isequalto o' SoI : L2 — L2. Again, taking into account that

SpL,u is a polynomial with a degree of at most » (cf. (3.1)), we conclude, for u,v € L2,

<anflSanu, v>g = <Lﬁ<pflSanu, 197an1)>¢

= 2N o0 ) (SeLa) 0 ) (L) )

k=
<Sanu L (o)~ anv>¢ = <Sanu,19Mn<p71an>a

= <u,Ln195pMncp_1an>a
Hence, since L,,¥SpL,, = M,,9SpL,,
(3.9) (M,p~'SpL,)* = M,,9SpM, o L,, = M, oL, M,p~'SpL,M,p L, .
In view of Lemma 2.5 we obtain the L2 convergence Mngo—lam — ¢~ Y, for each fixed
m = 0,1,2,..., and the strong convergence of (M, p~1SpL,,)* follows from the strong
convergence of Mn<pL and M,,p~tSpL,,. From (3.9) we also get the L2 convergence

(WoMup tSpW,)* = =MoL, Mup ' SpL, My 'L, — 989~ = —(p~'SpI)*.

The limit relations for W,,{A4,,}, w = 1,2 are proved.
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To get W5{A,}, we compute the matrix of A,, with respect to the basis {Z“" +. With
the help of (3.1) and U.,(xf) = /2/7 (—=1)* ™ (n + 1)/[p(zf)]* we compute, for = €
(=1L, D\ A{=F, },

VoL L[ Unyely)dy
(Afkn) (z) p(x)d(xy ) mi /_1 (y—x)(y — 2}, )UL(2F)
1 11! 1 1
B W(_l)kJrl p(msan)so(xsan) i ;
- \/; n+1 kp(;g) - T —x [Tor(2i,) = Tnga (2)] -

In particular, we obtain

5\ ooy - PEb)e(t,) G
(Aékn) (z3,) = (nj— p(x? kn) xy - x;}n '

Hence, for n > m,

E® Ay (B LY e 1 = { i (AZ,ﬁm) (x;’n)}
Wmn

n

j=1
(3.10)
_ @t m
i(n+1) xmn—:cfn o
p j=1

where we have taken into account that w;, = /-5 p(z},) and T, 1 (z) = (n + 1)Uy (z)

(cf. the computation of the diagonal entries). Now we observe that, for fixed k& and j with
k # jand forn — oo,

km
e(rg,) 1 sin ;7 2%
(3.11) e = o e
n+1 z,, —x;,  2(n+1)sin 2(n+1)ﬂ' sin 2(n+1)ﬂ' 7(j )
and, forfixedkand j =1,...,n,j # k,and n > 2k,
pleg,) 1 ) 37k

(3.12)

< —
o _ e = . — . ,
n+1 |zg, Can| 2(n+1) 2?:7( 2(7:31)”% %w 2v2|j2 — k2|

and the same for fixed jand £ = 1,...,n, k # j,and n > 2j. Using (3.11) and (3.12)
together with Remark 3.7, we see that

HE<3>A GG, |~ P AL en_ 1H62

-2 |7

n+1 Thm —:c;‘-’n (52 —m?)
and

| (B9 A ED) 1 LE) s~ Pudyen,
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n (] 2
S ] s 1S S N | SN
~n+l T —xh, w(j2—m?)| " ’
The case w = 4 can be treated analogously. O

Now we deal with the general operator . —1.S I and the corresponding operator sequence
{Mn;rlsuLn} of the collocation method, where ;2 = v7+° and where we assume (1.5) —
(1.6).

LEMMA 3.10. Suppose A = p~'Sul and A,, = M, AL,, where u = v% satisfies
(1.5) and (1.6). Then {A4,,} € F and

Wi{A,} = A, Wy {A,} = —p~'SpI,
(3.13)

Here p := 9~y and A.. are the same as in Lemma 3.9, and

(3.14) Al :=4+Bi +DiAD ' FAFDLAWV.DI!' + VL AW
with

—6ix) \~
(3.15) A= < L > ,

mi[(j —(k+1)% /) 1=0

(3.16) D, = k+12Xi5 )°°

k —0

« 1 g
X+ =7+t5-7 Xx- = 7+5-9,

((
1
4
By := (b(k+1) kj)k j=0"
(3.17) Vi o= (df W = (L\/;mak,j)m

Moreover, choosing (1 := — x4, the bf and d,f are defined by

kJrlk 5 2Ci _
(3.18) bf = \/>/ — 52 5 s sinsds,
s QCi _
d,f = 2\/7/ e ——— ssinsds
— s

2+ s \2C+ s \26x
o[ e e ),

[(km)? — s2)? (km)? — s2

(k+1) lw) k,j=0"

(3.19)

Proof. i) First we check the strong convergence of A,, towards W7{A,,}. We choose
integers A1 such that ag — Ay and A_ — [y are in (—1,0) (cf. (1.6)). Moreover, by g(x)
we denote a polynomial with degree of at most 1 such that g(1) = ap — Ay and g(—1) =
A — Bp. Then, a(x) := — cot[rg(x)] is a continuous function on [—1,1] and a(z) — i =

[a(x)]? + 179(*). By Lemma 3.3, there exists a positive function w € ), (1) C”
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such that (al + iS)pwu, is a polynomial of degree less than n — « for each u,, € im L,
where Kk = —A; — A_. Now we use the decomposition

(3.20) ptSul =ial —i(pw) ™~ (al +iS)puwl + (pw) ™ (wS — Swl)ul

to prove the uniform boundedness of the sequence {Mnu—lsuLn}. The uniform bounded-
ness of { M, aL, } follows from Lemma 3.8. Taking into account Lemma 3.1 and the bound-
edness of S : LQQ g2 Lva 2525 W get, foru,, € im L,, and ¢,, = (aI+iS) pwuy,,

M) gl = | p0) Z)‘ () L)) lan )
<c/1 __o@) )P de
> . [0( 5 1dn

1
¢(x) 2 2
§C/ = |p(x)un (v)|" dz = C ||un]|; ,
e M@ @) Jutnl
which proves the uniform boundedness of the second term in (3.20) corresponding to the
collocation method. To handle the third term we set H,, := wS — SwI . Due to (1.5), we
obtain the inequality §[1 + max{a — 27, 8 — 26,0}] < 1. Thus, in view of Lemma 3.2, we
have H,, € K(L2, ) which implies u~"H,puI € K(L3). Moreover, choosing a x > 0
such that

. {1+a 14+a 148 1+ﬁ}
X < min -, , -9,

2 2 2 2
and applying the Lemmata 2.5 and 3.2, we get {(M,, — L,)w '~ HypuL,} € N and,
consequently,
(3.21) {MnuFl;lewuLn} eJ.

Using the decomposition (3.20) together with (1.5) and Lemma 2.5, we infer that, for each
fixedm =0,1,2,...,

Mn:u'_l‘S’MLnam B M_lsﬂﬁm

holds in LZ. The strong convergence of {4, } to Wy {A,} is shown. Now we prove the
strong convergence of the sequence { A%} , which obviously is uniformly bounded. To show
that A} w,, converges for each m = 0,1, 2, ... we again use the decomposition (3.20), where
the first and the third term are already covered by Lemma 3.8 and by (3.21), respectively. For
u,v € L2 and ¢, = (aI +iS)pwL,u we compute

(Mpp~'(al + iS)pwLyu, Lyv) = <L,f(19u)71qn,1971an>w

= > (00 ) @5 L)
j=1

_ —19-1

= <qn,Lﬁ(19u) 9 an>@

= (Vp(al + i,tflS,u)wLnu,Mn(ﬁu)fanv%

= (u, Lyw(al + iu_ISuI)*ﬁuMn(ﬁu_anv>d
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Hence, (M, (uw)~t(al +iS)pwLy,)* = Lyw(al +ip=tSpl)* M, (9p) L, Myw=tL,
and it remains to show that ¥ M,, (9u) = 4, — Uy, in L2 . For this we write

[0 My (Op8) i, — W], = (|97 [LE (0 1)~ i — (9 12) ™ ] |,

ot - 5

and remark that for w = ugpa*% and f = (92u)~ta,, the conditions of Lemma 3.6 are
fulfilled.

ii) Since { 4,,} is uniformly bounded, we need to show the existence of the strong limits
W,{A4,} withw € {2, 3,4} for a complete system of functions, only. At first we prove the
limit Wy {A,,} = —p~1Spl. We write

(3.22) ptSul = p~tSpl + 'Kl
with K := S — p~'uSpu~11. Moreover, for p > 2, we set

Hd, Jm gt

NS
=
NS
+
vl
|
>
|
)|
S |"‘

)

S

Y= pits-

By assumption (L5) we have —1 < L4 & —y <3 L 14 853 and together
with (1.6) we can apply Lemma 3.4 for sufficiently large p and sufficiently small x > 0 to
conclude the compactness of

323) K, :=p 'Kul L7 ML E2 K Cu
P 3

I
— C 1o 148
= X

85 - —-x"

—Y=X>"3 —X

Using the decomposition (3.22) together with Lemma 3.9, it remains to prove that the func-
tions W,, M,, K, Wyu,, converges to zero in L2 for each fixed m = 0,1,2,.... As a conse-
quence of Lemma 2.5 and the compactness of the operator (3.23) we get

lim [|(Ma = DEulgs s =0

n—oo

for some p > 2. Together with the uniform boundedness of W, : f‘i — ii (see Lemma
3.5) this leads to

7111_{20 ”Wn(Mn - I)KuWn”f,Z—»Lg =0.
Again Lemma 3.5 and the compactness of the operator (3.23) imply, for some p > 2,
lim [|W, K, Wul|, =0, weLl.
It remains to remark that w,,, € f,fb forall p > 1.
To handle the strong convergence of {(WnMnu*SuWn)*} , we first consider se-

quences of the form {Mnbob;rlsuLn} , Where by € PC and b is a differentiable function
with &’ € C%1[—1,1] and b(41) = b’(£1) = 0. We use the decomposition

b~ tSul = bp~tSpl + = t(bS — SOl 4 p~ (Sbup ™ 1 — bup=tS)pI

= bp tSpl + K; + K.
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In the same way as for (3.21) one can show that {M,K,;L,} € J,j = 1,2. With the help
of the Lemmata 3.8 and 3.9 the inclusion {MnbobuflsuLn} € F follows. Using this fact
and the estimate (cf. (3.7))

HMn(b—"b')u

= HMn(b AV Y

n < b —bloe
L(L2) (L2)

we get { M,,bu~*SuL,} € F forall b € PC with b(il) =0.
Now, choose ¢ with 0 < § < min{[-1 — «]/2,[-1 — £]/2}. Then the function f =
—%.=9%,, fulfills the conditions of Lemma 2.5 such that AM,,v=%~%%,, — v~ %%%,,. By
W M,v=%=W,, = M,v=%9L, (cf. (3.3)), we get

W Mpp~SuW,, = Muv= %0 L, W, u = SpuW,, .
Hence, from the previous result and from Lemma 2.5 we conclude
lim (W, M= SpW,,)* iy, = lim (an‘s"g,u_lSuWn)*an_5’_‘sﬂm

_ (1)5’6/L_1S/LI)*U_6’_6’(7m

in L2 . The strong convergence of { (W, M, p~SuW,,)*} is proved.

iii) Since the limit W4{A, } can be derived analogously to W3{A,}, we restrict our
further consideration to Ws{ A,,}. To get this limit W5{ A, }, we consider the structure of the
corresponding matrix more closely. Setting B := p 'Kul = p~'Sul — p~tSp~'TI and
B,, := M, BL,, we compute, for z # =} ,

Y S VI () 9(y)Un(y) dy
629 (BE,) @) m/,l Lm p(zﬂ IE ) — )y — 25, UL (5,

a % fc}fnl_ z J(zf,) UI (x},) {/11 [Z Z i;] ;zU;k(j) w

1{#3/ y]ﬂ() (y)dy}

1 L) y—x
1 1 z) 3 p(xf) 1 .
7, — @ IE,) UL s [ W) pla) ] o,y (5eUn) (i)
1 1

i xfn - ﬁ(zkn)Un(a:,m) *

(2] - [ ] 2

s L - 5 s )
_ [u(wfn) B p(xfn)] olxp,) 1

W) o) i+ D) 7, —a
1 1 7 plrg,) e, (=DM
wixfn—m\/g p(z) n+1
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[ pEE)] em)Un) py) _ p@)] e@)Un(y)
{/_1[p(y) p(w“;fn)} y—zfn { p(y) w)} y—x dy}
_ [ plf,) 1 pg,) w1 PR ykgnn]
- | - - i e e )

where

Consequently, we get

— Wii+1)n
EP B, (EY) ™ = (Ji (Bffm)n) (:vfjmn))

W(k-i—l)n
(3.25)

n—1
j,k=0

=B,+D,A, D' —A, -D,A,W,V,, D, +V,A, W,
with

B, = (( (J+1)n) (J+1)n)5 )Z;O’

n—1
<‘P(x (k4 1)n) 1 -6k )
An = ga ’
i(n+ k+1)n TG+0n /) jr=o
W ( 1)7+1 ) n—1 v s n—1
n ) n ‘= 7.’ k, ) )
/ i k=0 ( J+1Vkg k=0

n—1
P(x{i,)
D, = <7§g“) 5;@,‘7‘) ,

where the diagonal elements in A, are equal to zero by definition. We have to show that, for
any fixedm = 1,2, ..., the sequences

{ED B (ED) LD er 1} and {(BY Bu(ES) L) e 1 }

converge in ¢% to A’ e,,_1 and (A% )*e,,—1, respectively.

iv) Now we turn to the limits of A,, and D,,A,, D, !. The convergence of A,, to A
follows completely analogously to that of E,(f)An(E,(f))*l to A, in the proof of Lemma
3.9 (cf. (3.10)). Hence, we consider D,,A,, D, 1. We introduce x(z) := p(z)[u(z)]~! =
(1 — )X+ (1 4+ x)X- with

1 o 1 g
(3.26) X+-—Z+§—% X__Z+§_6
and define
(n) _ x(x5,) of,) 1—10,
A = ¥ [

x(zp,) i(n+1) x,m zt,
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. i 2x+ i 2x- . -
- . kT kT . . k+7j . i—k .
sin 55,49y €OS 30Ty i(n+1) 2sin 2(n+Jl)7T sin Q(JHH)W
Then, the condition (1.5) is equivalent to
1 3
3.27 - =< < —.
(3.27) 1S xE<y

Forfixed kand j = 1,...,n,j # k, and n > 2k, we have the estimate (comp. (3.12))

. 2 7 2X,
ali)| < C (1) B s k
w1 =0k ) R

and the same for fixed jand k = 1,...,n, k # j,and n > 2. Thus, for £ fixed and n > 3k,
we get

o C 20+ -1 ifj <(n+1)/2,
(3.28) a1 < S Leld,) X&)
: c—rr— = ifj>(n+1)/2,
n @ty ( )/
and, for j fixed and n > 37,
O k—2x+-1 ifk <(n+1)/2,
(3.29) ] <9 Led) X@)
C nl TR ifk>(n+1)/2.
e X@r) ( )/

Moreover, for fixed j and k, j # k, we obtain

N\ 2
lim a(-") —(Z o 27k =:ak
sl T\k) A

(comp. (3.11)). Together with Remark 3.7 and (3.27) we conclude

[(n+1)/3]-1 n 00

Jo | > e el 3 P 3 el =0
J=1,3#k j=[(n+1)/3].j#k J=[(n+1)/3]

and
[(n+1)/3]-1 - n+1 - oo

N D SR E D S (RSP S U
k=1,k#j k=[(n+1)/3],k#j k=[(n+1)/3]

which imply the #2 convergences

D,A,D,'ex-1 — DyAD"ex1,
(3.30)
(DnA,D; ) ejo1 — (D+ADI ) ej1,

where A and D are defined in (3.15) and (3.16), respectively.
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v) Next we compute the limits d; := lim, ... d} and b} := lim, . b}, where
we have set b} := (B?fn) (7 ). Note that, analogously, there exist the limits d, :=

lim, oo di 1 _;, and b, := lim, . bj,,,_, which are needed for the limit W,{A,}. In
particular, we shall show that, for some ¢ € (0, 1),

@30) bf = Jim b, ] < e b= L = 12
as well as
(332) dif = lim d}, |d}| < — ¢ k=1,....n,n=1,2,....
n—o0 min{k,n+ 1 — k}¢
We define C(z) = [p(a)] " (x) = [x(x)] ! = (1 =)+ (1+2) and o = & cos 52

Using T/, (z) = (n+ 1)Un (), Tny1 (i) = 0, and partial integration, we get

1 ©
g = C(‘rlkn /_ S C(mk") ¢(y)Un(y) dy

- ‘Tkn
+

) </ /x> _mlj’“") w(y)Un(y)der/: F(y,zf)dy

1 1 2
=: d}j_f Jrcl};+ +dr,

where

() Cy) =) =Wy —=) ,  Cy) = (=)
Fy.2) = 2D ++1)<(:v) {so(y) T —PW) T ] :

Consider n > 2k — 1. The term dz){ can be estimated by

1
(ﬁ) I 1 1
=C (E)QQ + nZl| ¢ <k2C+n2(1+CC+) T ﬁ) ’
such that lim,, .o, "> = 0 and
C
n,1
(333) |dk |_ k2min{1,14+¢_} °

To consider dj} !

" 2 (%
(3.34) i = \/; /0 H(s,zf )ds

with
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For0 < s < 7, we can estimate

20+ 20+ 2¢+
C = + (= 52 Z +1
|H (s, zf))] < (k)2c+ (%) (kﬂ)zf(;zl) = <C (%) " $2
k ==

Consequently,

C
n,1
(3.35) | < ey

and the functions H (s, z}, ) possess an integrable majorant. Thus, we can change the order
between the limit and the integration and obtain

2C+ .
lim d"1 \/>/ lim H(s :ck ds—2\/>/ (k ) — ssinsds.
n—oo n—oo T

Furthermore, we write

=t

9 -3 I2k n 3(1+af,) n
dy” = / / / / F(y,zf,)dy
3 §2k 3 (1+af,)

2

:I{L,k'i'lg,k'i'l?:k'i'lzil,kv
where 7¥, = max{—1 2% Similarly, from
2k,n 20 2kn [ * ’

Up(af,) = V2/m(n+1)(=1)" p(af,)]

and from (3.24) with z =z} we obtain

-2 I2kn % 1+xkn ~
by = / / / / F(y,xf,)dy
-1 3 5, $(14axf )

:Jﬁk—i_J;k_'—J;k—i_JZk?

where
= (D" (@) ((y) = (@)
F = = .
(y,x) D@ (=2 sins, y=cos ——
We observe zf > 0forn > 2k —1. Forz, <y < —3,wehave2 > |y —z{ | > $ and

2>1—y> 3. Thus,

1

"o [ H{arwtlasps - ag)e]

T € ———c
b n(l - x;fn)cJr

1+ [ 4y + (0 —af,)] } dy

C a: s
<— (1 - + 1 ¢-—z24d
< e [( s [ ey y]
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H
+
|
[ )
Y
b

if ¢ >-1,

nlt2- if (o< —

H
+
|
[\~
Y
+

IN
3|Q
—
+
m ~—~

logn if (_=-

Sl 3| 3|17

N— N
e
~
N[

Consequently, for some ¢ € (0, 1), we arrive at
1 .
E if <+ <0,
n 1 :
il <C T2 e if ¢ >0,¢ >-3,
1 1

-4 - _1
n + £2C+n—2(C++¢0) i G4 >0, ¢ <3,

and, since in the last case ¢, + ¢(— < 0 (recall (3.27) and {1 = —x+),

n C
(3.36) 7] < e
Moreover, taking into account that ¢, < i (recall (3.27) and (4 = —x+), we conclude

lim,, 0 ', =0 and

o0

(3.37) 4% := lim d® = lim (I}, +I§, +1I;) = lim G(s,z{ ) ds,

where
! F(cos :v)sin 5 if z<8<—7T(n+1)
G(s,z) = n+1 +1’ n+1 22 3
0 if %(n+1)<5

Analogously, we get

C ! C
. [ [ — - — xS+ <=
(3.38) |7l < T T [1 [(T+9) " + (1 —af,) ] dy < —

Thus, lim,, s Ji' =0 and

(3.39) b = lim (3 + T3+ Jiy) = lim [ G(s,f,)ds,
0
where
1 ~ 2
- F(cosi,:v> sin —> if 0<8<—7T(7”L—i-1)7
G(s,z) = n+1 n+1 n+1 ) 3
0 if %(n +1)<s.

According to the splittings 15, + I3, + I}, and J3', + J3', + Ji';, we distinguish three
cases.
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In the first case, we consider § (1+x},) <y = cos 25 <z} for I, and §(1+a,) <

y = cos 35 < 1for J¢,. This is equivalent to the restriction 7 < s < ckn% and

0<s< ckn’%, respectively, where lim,, .., ¢y, = 1 and ¥ < cpn < ﬁ Then
1
y—ap, > 5(1—2f, ) and

C 1 (A= + (1 —af ) A—y !
%) < - 1— 2 kn
G2l < 5 Tore [( 2 < A-zg.? | 1-af,
(=S (1—af )T s
1—y)~ 2 = -

s\ 1 2¢ s s 2¢4+—1 s\ —1
<Q(z)+++z (2)"" +(5)]s
=73 112 1 212¢C 2
LETEE)T ®T (Y
C 5\ 26+ T km
(3.40) <5 [”(E) ] 3 <5< s

Consequently,

c [ $\ 2%+ C
. < = - < —.
(3.41) 17, < k?/g {1+(k) } ds < =

On the other hand, we get

c _3_ S
Gls,af,) < o (1= af,)H S (1= y) 2

S

<
C 241 km
(342) S k2C++3 8§45+ s 0<s< Cknﬁ .
Consequently,
C km ) C
n - C++1 il
(3.43) T2 € e /0 s < O

In the second case ¢, X2 < s < min {2km, 3 (n + 1)}, ie. inthe case 75, | < y =

cos =55 < §(1+zf,), we have the estimates
C 1! ! !
|F(y, zf,)| < nCer) [p(W)IC" (&) + &' ()] 1 (€2)]]
and
~ v o(xf,)|¢ (&) sins — sin k7w
|F(y7xkn)| S C né_(x;sn) cos nil ~ cos nk_;rl
sapicien e (kX6 —m )

=C
[ Y (YA P
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min< 1,|—— [’ cosudu }
AL {1 frconu

Tomeh) gy (L[im + Als — ’m)})dA

n+1

()¢ (63)] min{l, |s — kx| '}
n((zf,) e

forsome &1, 82,83 € (25, ,,, [L+a7,]/2)and 1 —y ~ 1 —xf ~1—& /53 This resultsin

<

(3.44) |G(s,2%)| < % (1- x;jn)—%% < % cknk—\/g <s< min{2k7r, %”(wr 1)} ,
(3.45) 1I3,.] < % /OM ds = %

and

(3.46) |G(s,2%)| < nC;% min{l,ls;%— kr| 71} % _ C%min{17|s—kﬁ|_1}7
(3.47) |35 < % /02’““ min{s, ﬁ}ds = W,

In the third case 2km < s < 2%(n + 1), i.e. n + 1 > 3k and if y satisfies the restriction
—3<y< %, .. then we obtain the relations

. 2km km km
1_y>1_x§k’":281n2m:2<1_Cosn+1> (1+cosn 1) 22(1—96}5”)
and

® ® 1 »

1—y>xkn—y:1—y—(1—x,m)>§(1—y)21—xkn.

Consequently, we get

C 3 (1 —z¥ )C+
waT(pn Si{l_yﬁ 2+7k713
| ( k )| n(l—x}fn)ﬁ ( ) (1_y)§

and
2¢+ 1 21
2| < s - 2
(3.48) G(s,a8,)| < C [(k) + 1} S 2hm<s< T (n+1)

Since 2(1 — ¢4 ) > 1 (recall (3.27) and ¢ = —x), we obtain the estimate

/5N 26+ ds C
. n< 2 — <.
(3.49) |I2”“|‘O/2;m [(k) +1} <=

On the other hand, we arrive at

~ 1 — )5+ 1 — 2% S+
n2(1—xf )5+~ 2 (1-y) n

<< (ﬁ)l‘“* () + ()™

~—nZ \n (2)3
n

)
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such that
~ Ck [/s\2¢+
¥ < e

(3.50) s, a8, < = {(k) + 1] .
Consequently,

/sy 26+ ds C

. 2| < — — < —.

(3.51) 2] _Ok/m {(k) +1} L

From the upper estimates in the inequalities (3.40), (3.44), and (3.48) we conclude that the
function

£s) max {52<+, 1} if § <s<2km
8) =
(s%+ +1)s72 if 2kr <s< o0

with the constant C' depending on {4 and k, only, is an integrable majorant for the functions
G(s,x},), n > 3k — 1, in (3.37). Thus, we can change the order between the limit and the
integration, and we obtain

+.2
dk

= / lim G(s,z} )ds

n—oo

2

\/?/OO lim COS S sin—ni1

B T n— C+ [
TSy e ke ) (2c052—2(:11))

(n + 1)2 (2 Sin2 m

G+ ¢
02 kw 2 __km : s
_ (2 Sin m) (2 COS m ):| S i

2 kmr—s
2(n+1)

S+
02 s s
{(2 sin® gty ) (2082 o)

4 sin

2 s+kmw

3ty S

C+ ¢—
2 sin’ ;) (2 cos? ) ( S — ) sin -2
( 2(n+1) 2(n+1) 2 cos? ST 2 sin? 5D n+1

s stkw o i km—s
2 sin 2(:+1) SIN 50,71y
cos ==
. n:—l %
Sin n+1
¢+ ¢- G+ ¢
. 2 s . s 2 krw . km
(2 Sin m) (2 COS2 m) — (2 S 2(n+1)) (2 COSQ 2(n+1))
* i Stkm o i km—s ds
2 sin 5524y sin 5y
o[/ s \2¢k s V26+ 1 [(s \26+
7 [ 1] @) @) -]
=44/= coS $ T R )2 — 52 ds.
Ve [(km)? — s?] (km)? — s

Analogously, using (3.42), (3.46), and (3.50), we get that

Fts) = C max {2+ T s} if  0<s <27
) =
(s2¢+ +1)s72  if 2kT <s< oo
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is an integrable majorant for the functions é(s, zy ), n > 3k —1,in (3.39). Hence

bt :/ lim G(s,z? )ds
0

n—oo

3¢

¢y
k+1\/7/ i 251112%)2 (2(:05 2(n+1))
*
neoo (n+1)2

¢ .2 kn C+ 2 krm ‘-
*(25111 (+1)) (2c05 5 +1)) —(25111 m) (2cos 2(n+1)) .

2 s+km 2 km—s
5oty S0 3071

4 sin

5 }ds
+1
k-l—lk B (& 2<+_1
= / k 2ssinsds.

The formulas (3.19) and (3.18) are shown.

Due to the estimates (3.33), (3.35), (3.36), (3.41), (3.45), and (3.49) we have |d}| <
C'k=¢ for some ¢ € (0,1) and for 1 < k < “EL. Now, we consider 2+t < k < n and
j=n+1—k Thenl < j < 2 and, in V|ew of =% —a¥, and U, (—y) =

(=1)"Un(y),

*sin s sin

n+l—j,n =

Dt L C(y) - C(af,)
y—a¥,

©(y)Un(y) dy,

where ((y) := ¢(—y). Hence, we get d <Cje=Cn+1—k)y=for2zl <k<n
and
C

3.52 dy| < k=1,...
( ) | k|— min{k7n+1—k}5’ ) )

n,n=12,....

Analogously, from (3.38), (3.43), (3.47), and (3.51) we get

C

. <
(353) bkl = min{k,n +1—k}c’

k=1,....n,n=1,2,...,

forsomee € (0,1).
Using the estimates (3.28) and (3.29) together with (3.52) and Remark 3.7, we get, for

each fixed m = 1,2,. .., the ¢2 limit relations
(3.54) VnAanem | — ViAWe,,_;
(3.55) D,A,W,V,D; ', 1 — D, AWV, D '¢,, ;

and the corresponding limit relations for the adjoint operators, where the operators V ;. and
‘W are defined by (3.17). O

4. TheSubalgebra .4 of the Algebra F. In this section we prove that further sequences
of approximate operators? belong to the algebra 7. Using these and the operator sequences of

2We conjecture that these sequences can be generated by the sequences of Section 3.
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the collocation method, we shall form a C*-algebra which is the basic algebra for the stability
analysis of the collocation method.

We consider the C* algebra £(¢?) of continuous operators in ¢2. By alg 7 (PC) we
denote the closed subalgebra generated by the Toeplitz matrices (gk_j)zszo with piecewise

continuous symbols g(t) := ", git' defined on
T:={teC: |t|=1}

and continuous on T \ {£1}. Note that, for any £ > 0, the operator R € alg 7 (PC) admits
the representation

(4.1) R = (9r—j)p o+ M+ M +Re+ R,

k+1 1 o . k+1 1 o
M = <m<— + ) - > 5 M/ = <(—1)k7m/<— + ) — ) 5
J+1)0+1/, . J+1)0+1/, .

where the /2 operator norm of R. is less than e, where R. € L£(¢?) is a compact operator,
where the generating function g of the Toeplitz matrix is piecewise continuous and continuous
on T\ {£1}, and where m,m’ are suitably chosen functions from C>°(0, co) (for more
details cf. part iv) of Lemma 7.1). The existence of the representation (4.1) is a simple
consequence of the Gohberg-Krupnik symbol calculus (cf. the subsequent Lemma 7.1 or
[20] and [29, 16, 28]). For R € alg T (PC), we use the projections P,, from (2.1) and define
the finite sections R,, := P, R|im p, € L(im P,). Furthermore, using the notation from the
beginning of Section 2, we form the operators

RY = (EWYN'R,EW, we {34},

mapping im L,, into im L,,. We get

LEMMA 4.1. i) Suppose x* and x” are smooth functions over [—1,1] such that their
values are in [0, 1], such that x* has a small support with supp [x® o cos] C [t — %, t 4 ],
where cos is considered as a function defined on [0, 7], and such that x* has a support with
supp [x? o cos] N[t — b, t + €] = Pand e® > £°. Then, for any R € alg 7 (PC) and for
any € > 0, there is a constant C such that ¢?/<* > C implies the locality property

n—1 n—1
Rn( S(z?. 8 ) <e,
H j+1)n Jk)jﬂkzo x*( (J+1)n) 3.k 3k=0|| £ g2y
n—1 n—1
Rn( bz 0 ) <e.
H 7+1)n ’k)j,k:o X ( (J+1)n) 3.k 5=l g2y

Moreover, if the support of y* satisfies supp [x* o cos| C [t —e*,t + %] C [0, 7 — £°], then

we get

n—1
<e

L(¢2)

3

S(.P )
H(I ~ P RE, (X (I(J’+1)")5J’k)j,k:o

n—1

H j+1)n Jk)jﬁkzo P.R(I — P)

<e.

L(£2)

ii) Forany R € alg T (PC), the sequences {R¥}5%,, w € {3,4}, belongto F. If Ris the
Toeplitz operator (gx—;)3°%;— » then

Wi {RS} = R, Wy {R} = R, Wy (R} = R, Wa {Rb} = R, Ri=(§5-1)p o -
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Proof. i) The first assertion is a simple consequence of the more general estimates

(42) H(dllcékd)iojzoR(d?é-kv.?)z?]:OHL(€2) S € ’
(4.3) H (didk’j)ziizo R (d;dk’j):ﬂ':oHL(ﬁ) -

which hold for any two sequences d;, and d3 with |d}| < 1, with dj, = 0 for each k in
{k: |t —k/n| > %}, and with d> = 0 for each k in {k : |t — k/n| < £*}. Heret is
a fixed non-negative real and, like in the lemma, we suppose €% /* > C for a sufficiently
large constant C depending on R and ¢, only. Of course, it suffices to prove (4.3) since (4.2)
follows by passing to the adjoint matrices.

It is not hard to see that, if the assertion of (4.3) is true for two operators R and R/, then it
is true for the linear combination and for the product of R and R’. Moreover, if it is true for a
sequence of operators, then it holds for the (operator norm) limit operator as well. Hence, it is
sufficient to verify assertion (4.3) for the generating Toeplitz matrices R = (gk,j)gszo with
gx the Fourier coefficients of a piecewise smooth function g. Now, without loss of generality,
we assume ¢ = 0. From Young’s inequality for discrete convolution operators we conclude

n

(@050)7 L R (dh850) 7Ly (€075

Jrk=

02

gc( 3 |sk|>\/ 3 @l

k: k<esn l: lI=k—j, j<e®n, k>ebn

N e® 00
<C Z 1 Z|§k|2 Z > < C4y/ g 1(€k)k=ollz -
k: k<esn k l: 1>(eb—e®)n

In the last steps we have used the fact that the Fourier coefficients g, of a piecewise smooth
function g satisfy the estimate |G| < C/k for k # 0. Obviously, the last right-hand side is
less than e| (& )x || if € > Ce* for sufficiently large C.

ii-a) Now we turn to the proof of ii). Without loss of generality, we restrict ourselves
to the sequence R2. First, we restrict our proof to the case of generating Toeplitz matrices
R = (gk_j)ﬁjzo. The general case follows in part ii-b). From the definitions of R3 we
conclude

E® R (EGHN1LO) = R.P, = P,RP, — R,
EWR(EDTLY =V, V'R VAV Py = (Gt k)fno1-j])

n—1

ko j=0 P, — R.

Similarly, the convergence of the adjoint operators can be derived. For the proof of the exis-
tence of W, {R3} with w = 1, 2, we remark that

BRR(ED) ™ = B R(ED)
with the finite sections R,, of the Toeplitz matrix R = ((—1)’“—3’57;@_‘74);3:0 corresponding

to the piecewise smooth symbol g(t) = g(—t). Hence, we only have to analyze the limit
Wi{R23} . Similarly, we get the identity (cf. (2.3))

(EVR(EM)™) = EDRT(ED)
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with the finite sections [R*],, of the Toeplitz matrix R* = (§,_«);",_, corresponding to the

piecewise smooth symbol ¢(¢) . Hence, it remains to analyze the limit Wy {R3} for the se-
guence {Efll)Rfl(E,(ll))*an} , and the limit W, {R3 }* for (ESY R3 (ESY)~1)* L, follows
analogously. Due to the uniform boundedness of these sequences, it remains to show the

convergence of E,(ll)Rf;(E,(f))*anf for smooth functions f with support supp f contained
in the open interval (—1,1). Moreover, due to the L2 convergence M, f — L,f — 0

(cf. Lemma 2.5), we only need to prove the convergence of E,(ll)RS;(Efll))*anf, and, in
view of part i) of the present lemma, we need to show this convergence only for the interval
[-1+¢e%,1 — %] with a small 5. However, since the Jacobi weight functions p and p~—! are

bounded in [~1 + &%, 1 — ¢*] and since the |/ %L (wkn 0k )3 j—; and | /%H(wk‘nl&k,j)gyj:l
are strongly convergent discretizations of the operators of multiplication by these weights (cf.
Lemma 3.8), we can suppose p = 1 and wg,, = 1 without loss of generality. We are going
to prove the convergence to W1 { R2 } for Toeplitz matrices with smooth generating functions
gc (functions in the Wiener class) and for a special generating function gpo with jumps
at +1. The case of general piecewise continuous generating functions will follow from the
combination of the particular convergence results and a density argument.

If the generating function g(¢) is equal to ' for a fixed [, then the application of R,, to
a vector is nothing else than a shift in the indices. Consequently, E,(ll)Rf’l(E,(f))—anf =
M,, f with a shifted smooth function f defined by [f o cos|(s) = [f o cos|(s — I/[n + 1]). In
view of the convergence of the interpolation M,, (cf. Lemma 2.5), which is uniform on the

compact set of shifted functions, we conclude Er(ll)Rfl(Efll))*anf — f. This result for
a fixed [, however, implies

EVRY(EW)IM, f — g(1)f

forall R = (gr—;)7°%—o With generators g(t) = >, git! from the Wiener class, i.e. with
generators such that » °, || < oc.

Now we consider the discretized operator of p=1SpI. The corresponding matrix takes
the form (cf. Equation (3.10))

~ n—1
. k+1)mw 5j ~ n—1
. CObI ((nJrl) ) n+k1 . 6]]6 n—1
(44) ! (k+1)7 (j+1)m = Ik __7 + (T(k+1)(j+l))k,j:0 )
COS(‘Z?T‘)“COS(_ZiT_) b k,j=0
7=0
where
gjk km g cos’ (t) 1
= — Kt Ef(t,s) := -
Tk (n—i—l’n—l—l ’ (t5) :=1 cos(t) —cos(s) t—s

Clearly, the kernel kT (¢, s) is smooth. For a cut off function y with suppx C (—1,1), the
integral operator K corresponding to the kernel y(cos(t))kT (¢, s)x(cos(s)) can be approxi-

mated by a quadrature method K| € £(im L,,) such that the matrix with respect to {an}k":1
is

B K ()
n—1

n—1 ™ (k+1)m (J+m
- ® ) T ® )
= (X(I(k“)")ék”)k,j:o <n+ lk ( n+l  n+l ) (X(I(k+1)n)5k,y)

k,j=0
and that the sequence K belongs to 7 (cf. the proof of Lemma 2.4). In view of (2.2) the
MAtrix (11 (j+1) )i 7o coincides with the matrix £ [K, — W, KW, ] (E5Y) !, which

n—1

k,j=0
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implies that {MnXLn(E,(f))*1 (T (1) G+1) )Z;iOE,(f)Mnan} is included in 7, and we get
the strong convergence for the operator whose matrix representation with respect to the basis

{é i SUaP

n—1

n—1 n—1
(X@fu1)0)90) rmo (T<k+1><j+1))k7j:0 (X(@fs1yn)0es) .

Due to the strong convergence toward W;{A,} in Lemma 3.9 and due to (4.4), we get the
strong convergence for the operator whose matrix representation with respect to the basis
{é 1w, is the finite section (61 /[j — k))y Eio of the Toeplitz matrix

Rpc = (igjk/[j — kD=0 -

We denote the generating function of the last Toeplitz matrix by gpc. Note that gpc(t) =
—7sgn Jm ¢ is a piecewise constant function with jumps at +1 € T.

Suppose now that the generating function g of the Toeplitz matrix R takes the form
g(t) = Ag+(t)gpc(t) + pg—(t)gpc(t) + go(t) with fixed numbers A and g, with g4 (t) =
t~! 7 1, and with g¢ from the Wiener class. Then we get the representation

(4.5) R =AR;Rpc(t) + pR_Rpc(t) + Re

with Toeplitz matrices R, and R_ generated by the functions g, and g_, respectively.
Though P, R+ Rpc|im p, is different from [P, R |im p, |[PnRpc|im P, ], We get

(XT (x‘é.ﬂ)n)&j,k)j o PoRiRpclimp,
(4.6)
n—1 n—1
= (XT(:CA(é;Jrl)n)(Sj’k)j’k:O [P, R+|imp,] (X(:Ck(pjﬁrl)n)(sj’k)j’kzo [PnRpclimp,],

where y and x stand for functions such that supp x C (-1, 1), supp Xt c ( 1,1), and
suppx' C {t € [-1,1] : x(t) = 1}, and such that there is an zf, with x(z%,) = 1 and
supp x'N[—1, zfn] = (. Indeed, the matrices R consist of two non Zero dlagonals, namely
the main diagonal and the one above the main diagonal. Therefore, the difference between
P, R4 and P, R+ P, is amatrix with exactly one non-zero entry. However, if the finite section
from the left is replaced by P,,_1, then P, 1Ri = Pn 1R+ P,,. The assumptions on y and
X" ensure that the finite section matrices (x'(x,,),)0;), =0 ad (x(x;,1),,)85.%) /%
act similarly to P,_; and P,, when applled to Ri +hus (4.6) holds true, and, together with
the just proved strong convergences of ESV [Rpc]2 (ESY) 1L, and ESY [R1)3 (ESV) 1L,
we arrive at the L2 convergence of ESV[RyRpc]3 (ESY)1L, f over the interior of the

interval [—1, 1]. Consequently, we obtain the strong convergence of Eél)Rfl(Efll))*an for
R3 from the representation (4.5).

Finally, a general generating function g which is piecewise continuous over T and con-
tinuous over T \ {£1} can be approximated in the supremum norm by a function of the form
from the previous paragraph. Hence, the strong convergence property extends to Toeplitz ma-
trices with generating function g piecewise continuous over T and continuous over T \ {+1}.

ii-b) Now we consider the case of arbitrary R € alg T(PC) Because of the relations

EQ R (EHYLY = P,RP, and EYY RS (ES) 1LY = W, RW,, with

Wn{gOagla---}: {511—17"'150701"'}’
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the existence of W, {Ri} for w = 3,4 is well known (see, for example, [3, Cor. 7.14]). It
remains to derive the convergence to the limits W, {Rfl} forw =1,2.

In view of (4.1), we have to consider the two cases R = M and R = M’. For similarity
sake (use (2.2) for M), we may restrict our proof to the case R = M. Since R} is uniformly
bounded, we have to show the limits for a dense subset only. Hence, it suffices to consider the
limits for R3 M,, x L,, with x a smooth function vanishing in neighbourhoods of the end points
+1. Moreover, in accordance with part i) of Lemma 4.1, we need to show the strong limits for
M, 'L, R3 M, xL,, only, where x’ is another smooth function vanishing in neighbourhoods
of +1. Setting

w o) — x'<x>x<y>m<arccos<x>) 1

o(z)9(y) arccos(y) / arccos(y)’

the operator M,,x' L, R> M,,x L, takes the form K,, of Lemma 2.4. Now Lemma 2.4 and
Corollary 2.2, imply the strong convergences. d

By A we denote the smallest C*-subalgebra of F generated by all sequences of the ideal
J, by all sequences { R¥} withw € {3,4} and R € alg 7 (PC), and by all sequences of the
form

{M,(aI +bp~*Sul)L,}, a,bePC,

where 1 := v satisfies (1.5) and (1.6). We shall prove the missing invertibility of the col-
location sequence in the quotient algebra 7 /.7 (cf. Theorem 2.3) by showing the invertibility
in the quotient algebra A/ 7. For {A,} € F, we write {A4,,}° for the coset {4,,} + J of
F/JT.

5. A Subalgebra in the Center of the Quotient Algebra .4/7 and the Local Prin-
ciple of Allan and Douglas. In this section we show that a set of discretized multiplication
operators forms a subalgebra contained in the center of the quotient algebra .4/ 7. However,
to a general Banach algebra and to a general central subalgebra we can apply the local prin-
ciple of Allan and Douglas in order to analyze the invertibility of an element. We formulate
the corresponding assertions for our specific setting.

LEMMA 5.1. The cosets {M,, fL,}°, where f € C[-1,1], belong to the center of
AT

Proof. We have to show that the commutator of { M, f L, } with the generating elements
of A are contained in 7. First we observe M, fL,M,aL, = M,afL, (cf. (3.5)), which
implies {M,, fL,,}°{M,aL,}° = {M,aL, }°{M, fL,}°.

Next we turn to the commutators of the discretized multiplication operators with the
discretized Cauchy singular integral operator. We first suppose f = p is a polynomial of
degree not greater than m. Then we get M,,pL,,— = pLyp—m for n > m. Consequently,

M, pL, My~ SpL, — Myp~*SpuL, M,pL,
= an_IS,ULn - Mnﬂ_lsﬂanLn

= Myup = (pS — Sp)pLin + Mup ™ Sp(I = Mp)p(L = L) -

Obviously, the sequence {M,,u~*(pS — Sp)uL, } belongs to 7. Moreover, we observe the
identity L,, — L,,_, = W,, L., W,,, and

Mup " Su(I — My)p(Ly — Ly—m)
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= [M,p " (Sp — pS)uLn + Mupp™ " SpLy, — Myup™ ' SpLy,M,pLy] Wy Ly Wy

which shows that the sequence { M, Su(I — M,)p(Ly, — Ly—m)} belongs to 7, too.
Taking into account the closedness of 7 and (3.7), we arrive at the relation {M,, fL,, }°
{Mp=*SpL,}* = {Mup=SpLy,}° {M, fL,}° valid for all f € C[-1,1].

Next, we have to consider the commutators of the discretized multiplication operators
{M,,fL,} with the sequences { R } and { R2} for matrices R € alg 7 (PC). For similarity
reasons, we only treat { R} }. In view of (4.1), we have to consider the cases R = (gr—;)3°—o
and R = M, M’. We start with R = (gx—;)3%;—o- If the function f is Lipschitz and if the
generating function g of R is a trigonometric polynomial, then we get

n—1 n—1

(f(xk(pgdrl)n)éj,k)j’k:o R, — Ry (f(‘Tfj#»l)n)(sjvk)jyk:O

n—1

= (£ 170) = Ffo1y))0— )

J,k=0

and

C . N
< —1j = kllgr—jl
n

154 170) = F @y 1) l0—s
where g5 = 0 for all sufficiently large |k|. Hence, the norm of the commutator
(M fLa} {Ry} — {R3} {Mn fLn}

tends to zero. Consequently, due to (3.7) and the closedness of 7, for continuous f and g,
we get {Mnan} {R%} - {R%} {Mnan} €J.

For piecewise twice continuously differentiable functions g and Lipschitz continuous f,
we only get the estimate

C_li-H _C

(5.1) [ (@Gayn) = F(@hesryn) e J‘ SR TH—H

This, however, allows us to replace R,, by (x éﬁl W)05k) o Bn (X (@ f 1 1)0)0 )
i

with a smooth and bounded function y which is identically equal to one except in two small
neighborhoods of the two mterval end-points. Indeed, 7 is closed and the difference of
R, and the modified matrix (x(x g+1 n)5j k)j"kfloR (x(x (Jﬂ)n)dj k)J o is small by (5.1)
and a simple Frobenius (Hilbert-Schmidt) norm estimate. Now we suppose that y vanishes
identically in a small neighborhood of the interval end-points. If we consider the function
gpc from the proof to part ii) of Lemma 4.1, then we have the representation (cf. (4.4))

n—1

(X(IZOJ'Jrl)n)CSj,k):k_:lo Fin (X(:Céﬂ)")gj’k)j,kzo -

n—1 n

(xlafonndin) " ES Mg SpED) T (Mt )iie) |~ EORIED)

with the quadrature discretization K| to the compact integral operator KT However since
K} isin J (cf. Lemma 2.4), since the discretized operators (X(azZ"jH)n)dj k)J,k _pand (f(xéﬂ)n)(sﬂ%k)fk;lo
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commute, and since the commutator of the discretized singular operator commutes with the
discretized multiplication operators by the previous parts of the present proof, we conclude

that the commutator of £/ (@4 1y0)85.8) 5o

Rn(X(zéﬂ)n)dj’k)j?k_:lo(E,(f))*l and M, fL, isin J for R generated by gpc. In other
words, we get {M,, fL,R3 — REM,,fL,} € J.

Now a general generator function, piecewise continuous on T and continuous on T \
{£1}, can be represented in the form g(t) = Ag+(t)gpc(t) + pg—(t)gpc(t) + go(t) with
go continuous (cf. the proof to part ii) of Lemma 4.1). Hence, the just proved relation
{M,fL,R} — R2M, fL,} € J for g = gc, g+, and g = gpc show that { M, fL,R> —
R3M, fL,} € J holds for general generators g, too.

Finally, we consider the commutator for the case R = M, M’. For similarity reason,
we restrict our proof to R = M. Since the commutator is linear with respect to f, we
may suppose that f is identically zero in the neighbourhood of one end point of the interval.
Clearly,

My fLoR — REM,, fL, = My, fL,R2M,,(1 — f)Ly, + M, (f — 1)L, REM,, fL, .

Due to this, we only have to show {M, x'L,R3 M,xL,} € J for smooth functions y’
and x such that one of the two vanishes in a small neighbourhood of 1 and the other in a
small neighbourhood of —1. In view of part i) of Lemma 4.1, we even may suppose that
both functions x and x’ vanish in small neighbourhoods of +1. In part ii-b) of the proof
of Lemma 4.1 we have seen that K,, = M, x'L,R3 M, X|im 1, is a small perturbation of
L, K|im 1, With K the compact integral operator corresponding to the kernel function (4.7).
Thus {M,, X' L, R3 M, xL,} € J, and the proof is completed. a

Now we formulate the local principle of Allan and Douglas applied to the algebra .4/ 7
and to a central subalgebra C. Due to Lemma 5.1 the set

C:= {{MufL,}*: f € C[-1,1]}

forms a C*-subalgebra of the center of A/7. This is x-isomorphic to C[—1, 1] via the iso-
morphism {M,, fL,}° — f, and, consequently, the maximal ideal space of C is equal to
(Z, 7 e [~ 1]} with Z, := {{Mnan}O fecC|-1,1], f(r) = o} . By J, we denote
the smallest closed ideal of .A/J which contains Z, i.e.

j‘r =
(5.2)
closa 78 Y {ALM,f;L,}° : {A}} € A, f; € C[-1,1], fi(r) =0, m=1,2,...
j=1

The local principle of Allan and Douglas claims

THEOREM 5.2 ([5] and [28], Theorem 1.21). The ideal .7 is a proper ideal in .A/ .7 for
all 7 € [—1,1]. Suppose {A,,}’ is an arbitrary element of A/7. Then { A,,}° is invertible if
and only if {A,,}° + 7, is invertible in (A/7)/J, forall r € [-1,1].

6. The Local Invertibility at Points 7 with —1 < 7 < 1. In this section we analyze
the invertibility of {A,,}° + J. in (A/J)/J- for 7 in the interior of the interval [—1, 1] (cf.
Theorem 5.2). We fix a 7 with —1 < 7 < 1 and set

0 if-1<t<r,
hf(t)'—{ 1 oifr<t<i.
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Then, for a,b € PC, we get
{MyuaLln}° + Jr = a(t +0) {Mh, L}’ + a(t) {M,(1 — h;)L,}° + T~

and {M,u='SuL,}’ + J» = {M.p~'SpL,}° + J,. Consequently, the subalgebra of
(A/J)/ T containing all sequences { M, [al + bu~'Su]L, }*+J- is generated by {L,, }°+
Tr

6.1 pi =5 (L + {Map S0La}") + T
(6.2) q:={Muh:Lp}° + T, .

To analyze the invertibility in this C* subalgebra, we utilize the following two-projections
lemma.

LEMMA 6.1 (cf. e.g. [27] or [28], Section 1.16). Suppose that 5 is a unital C*-algebra,
and that p, ¢ € 5 are projections (i.e. self-adjoint idempotent elements) such that the spec-
trum oi(pgp) coincides with the interval [0, 1]. Then the smallest closed subalgebra of B,
which contains p, ¢, and the unit element e, is *-isomorphic to the C*-algebra of all continu-
ous 2 x 2 matrix functions on [0, 1], which are diagonal at 0 and 1. The isomorphism can be
chosen in such a way that it maps e, p, ¢ into the functions

(6'3)MH<(1) (1)> MH((I) 8)’ MH( u(?—u) q(i;u)>7

respectively.

Next we verify that our projections p and ¢ from (6.1) and (6.2) satisfy the assump-
tions of the lemma, i.e. that p and ¢ are projections and that o(4,7),7, (pgp) = [0,1]. If
this is done, then we can apply Lemma 6.1 and we see that the local algebra (A/J)/J; is
*-isomorphic to a C*-algebra of continuous 2 x 2 matrix functions on [0, 1] which are diag-
onal at 0 and 1. The isomorphism can be chosen in such a way that it maps {L,,}° + J-,
T{Ln}° +{Myp~tSpLy}°) + T-, and { M, h. P, }° + J- into the functions given in (6.3),
respectively. In particular, { M,,[a] +bu=tSul + KL, }° is invertible in (4/7)/J (recall
that {M,KL,} € J due to Lemma 2.4) if the corresponding matrix symbol function

. ( (1 — pe(r = 0) + pe(r +0) p(l = p)ld(r +0) — d(7 - 0)] )
p(l=p@e(r+0) =c(r=0)]  pd(r—0)+ (1= pd(r+0) /’

e(t£0) := a(r£0)+b(t£0), d(r+0) := a(r+£0)—b(T+0)

is invertible. This, however, is satisfied if the operator A = aI + b~ 'Sul + K is invertible
in L2 by the invertibility criteria of singular operators (cf. [11]). In other words, the invert-
ibility condition of the coset { M,, AL, }°+ J- in (A/J)/J- does not impose a new stability
condition on the operator equation.

Now we turn to the operators p and ¢ and show that these are selfadjoint projections.
Obviously, ¢ is a selfadjoint projection. We prove that the same is true for p. In view of (3.1),
(3.2), and

Tn+2_Tn = —2@2[]", n= 1725"' ) T2 _\/§T0 = _2§02U07
we get

p ' SpptSpin = p ' SSpUy, = ip "t SpThin
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- %p_l(Tn_TnJ’_Q) ifn=1,2,...,
IR U Y ) ifn=0,
[ pun ifn=1,2,...,
] eu —%pflTo ifn=0.
Thus, by the continuity of p=1Sp : L2 — L2 we have
1

(6.4) p'Spop tSpl = ol + Ko, Kou= 7 (u, o), p~' Ty -
We recall the relation
n—1 i n—1 B
SpLyu = 2 (w, ) Ty1 = 3 kz_o (w,ug), (Upg1 — Ug—1),

which implies

Mo p~tSpLou = M,9SpLyu = 9SpLau — % (U, Up—1), Up

— 9SpLou — % VWLt Wi,

where V : L2 — L2 denotes the shift operator V u = >~ (u, ur),, 1. Consequently,
due to (6.4), we have the identity

My p=tSpLy My p~tSpLy = My (oI + Ko)Ly — % Mup~'SpV LWy LW,

and

{anflSan}o {anflsan}o + Jr

1 ° B o
e {Myup='SpLy}" {Mnpp~"SpLn}" + J;

1
= Mn Ln0+u77'
w(T){ #Ln)
={L,}°+J,, —-l<71<1.

Hence, we conclude p? = p. From (3.1), (3.2), and the three-term-recurrence relation
Ugs1(x) = 22Uk () — Up—1(z), k=1,2,...,
we find
V =2yl —iwSpl, V*=yI+idSpl, ¢(z)==x.
This implies
{Mnp~'SpL,}" + T7 = —% {M,i9SpL,}° + T-

=55 {V*L,}° — {M, L, }°) + T~
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and, consequently,

(0071501} +7.) = == (LVEY =~ ML0L) + T,

i
= —— {M,(—i9)SpL,}° + T

w(T){ (=) SpLn}” + T,
= {M,p~'SpL,}° + T- .

Thus, we get p* = p.

Now we turn to the spectrum. It remains to prove o(4,7y,7, (pgp) = [0,1]. To this
end, we introduce G as the smallest C*-subalgebra of £(LZ2) which contains all operators
al + bu=tSul with a,b € PC[—1,1] and the ideal £ = K(L2) of all compact operators
inL2. By J9, 7 € [-1,1], we denote the smallest closed ideal of G/, which contains all
cosets fI + K with f € C[—1,1] and f(7) = 0. We need the following

LEMMA 6.2. If {A4,,}° + T, is invertible in (A/J)/J,, then (W1 {A,} + K) + J¢ is
invertible in (G/K)/JF.

Proof. Take {A,} € A, and assume that there exists a sequence {B,} € A such that
{Bn}{An}° + T = {Ln}° + Jr. Then

4
BpAy =L+ Jn+ > (EY) ' LWTLE + C,

w=1

with some T, € K(X.,) and some {J,}° € J-, {Cy,} € N. Foreach ¢ > 0 there exist
sequences {Aﬁf)} € Aand functions f; € C[—1, 1] with f;(7) = 0 such that

{n}? =D}l a7 <9

for D,, := Z;.”jl Aﬁlj)Mnijn. Hence, there are T,, » € K(X,,) and {C?} € N such that

Moy 4
JnLn = AP M fiLy = > (B LT, 9B - CJ Ly <9,
o o £w)
n = 1,2,... . We conclude [W1{J,,} — 37" Wl{Aﬁlj)}ij = T1vllcwzy < 9, which

implies Wi {J,,} + K € J¢. Thus, because of W {B,,}W{A,} = I + Wi{J,} + T}, the
coset (W1{A,} + K) + J¥¢ is invertible from the left in (G/K)/J¢. The invertibility from
the right can be shown analogously. O

The product pgp is a selfadjoint non-negative element of (A/7)/J,, which implies
that the spectrum o(4,7),7, (pgp) is a subset of [0, 1]. We prove that the spectrum of pgp
coincides with the whole interval. For this, assume that there exists a A € (0, 1) such that
pgp — Ae is invertible in (A/J)/J-. This is equivalent to the invertibility of

1 — o
(¢=Ap—XMe—-p)= i{Mn(hT = A)Ln}? ({Ln}o +{Mup~'SpLy} )
A — o
) ({Ln}o —{Mnp ISPLn} ) +Jr.
From Lemma 6.2 we conclude that

(A+K)+ T := [(hr = NI +p~1Spl) = XI — p~SpI) + K] + J¢
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is invertible in (G/K)/J9. If =1 < = < 7, then we have
(A+K)+ T8 = (22T +K) + TZ ,
and —2XI + K is invertible in G/K. If 7 < 2 < 1, then
(A+K)+ T =[(1 - 2N +p ' SpI + K]+ TZ

which is also invertible in (G/K)/J¢. From the local principle of Allan and Douglas we
conclude the Fredholmness of (h, — A\)(I + p~'SpI) — A\(I — S) in L. But this is a

contradiction since 0 € [1 — 1,1] = [A=2=H0) AZhs (720}

7. The Local Invertibility for 7 = +1. In this section we analyze the invertibility
of {A4,}° + Ju1 in (A4/T)/T+1 (cf. Theorem 5.2) and show that the invertibility of the
operators W3{A,,} and W4{ A, } imply the invertibility of {A,,}° + 7.1 and {A4,,}° + J-1
in (A/J)/Jx1, respectively.

First we recall a lemma on the Gohberg-Krupnik symbol for operators from alg 7 (PC)
and on special elements of the algebra alg 7 (P C) which is useful for the proof that the limit
operators belong to alg 7 (PC).

LEMMA 7.1 ([20] and [29, 16] or Lemma 11.4 of [28]). i) There is a continuous
mapping Symb from alg 7 (PC) to a set of functions defined over T x [0,1]. For each
R € alg T(PC), the corresponding function Symb (¢, 1) will be called the symbol of R.
This symbol satisfies:

1) Foranyt # +1, the value Symb (¢, 1) is independent of x, and the function ¢ —
Symb(¢,0) is continuouson {t € T : Sm¢ > 0} andon {t € T: Smt < 0}
with the limits

Symbg(1+0,0) := lim Symb (¢, 1,1),

= Symb
t—+1, Smt>0 O) ym R
S b-(1-0,0 0
ymb ( ’ t—s41, Smt<0 )

lim Symby(¢,0

t—s—1, Smt<0

)

( (

= lim Symbg(t,0) = Symbg(1,0),
( (
( (

)
Symb(—1+0,0) )
Symbg(—1—-0,0) lim Symbp(¢,0)

t—s—1, Sm¢>0

Symby(—1,0)
Moreover, the function p — Symb ,(£1, i) is continuous on [0, 1].

2) For any R € alg T (PC), the operator R is Fredholm if and only if the symbol
Symb j does not vanish over T x [0, 1].

3) For any Fredholm operator R € alg 7 (PC), the index of R is the negative winding
number of the closed curve

.= {SymbR(eis,O) t0<s< 77} U {SymbR(—Ls) 1 0<s< 1}
U{SymbR(—eiS,O) t0<s< 77} U {SymbR(l,s) :0<s< 1}

with respect to the point 0, where the direction of the curve IT" is determined by the
parametrizations of its definition.
4) An operator R € alg 7 (PC) is compact if and only if Symb (¢, 1) vanishes over
T x [0,1].
i) Suppose the generating function g(t) = >, gt of the Toeplitz matrix (Gr—3)7i=0 18
piecewise continuous on T and continuous on T \ {1}, and take a complex z with |Jte z| <
1/2. Then the matrix operator

R:= ([k+ 1] %0k,5) =0k —5)iej=o [k + 1170k )7 j—0
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belongs to alg 7 (PC), and its symbol is given by

() ift e T\ {+1}
Symbyp(t, u) = { pg(E1+0) + (1 —p)g(El — 0)e 2 o
/L+ (1 _ ’u,)67|27TZ :

iii) For any fixed Toeplitz matrix R = (gk,j);szo € alg T (PC) with a generating function
which is piecewise twice continuously differentiable, the operator function {z € C: |Rez| <
1/2} 3 2 = ([k + 17%6k,5)7%—0 B ([k + 1]70k,5)7%,=¢ € alg T(PC) is continuous in the
operator norm.

iv) Suppose the Mellin transform m(z) := f0°° m(o)o*~1do of the univariate function m :
(0,00) — Clis analyticinthestrip 1/2 — e < Rez < 1/2+¢ for asmall e > 0. Moreover,
suppose

dk

w1+ D)

z:1/2—e<Re z2<1/24¢

<o, k=0,1,....

Then m is infinitely differentiable on (0, co). The operators M, M’ € £(¢?) defined by

E+1 1\ (k41 1\
j+1/)54+1 k,j=0 j+1/)5+1 k,j=0

belong to the algebra alg 7 (PC) and their symbols are given by

(L I ift =
Symb, (t, 1) = m(2 * 2x log 1*#) ife =1
0 else ,

Sy i B if+—
Symbp (¢, 1) = { m(2 + 5 log l—u) ift=—1
0 else .

Now we turn to the local invertibility. For symmetry reasons, we may restrict our con-
sideration to the invertibility of {A,,}° + J1 in (A/J)/J1. The following lemma shows that
this invertibility follows from the invertibility of W3{ A, }.

LEMMA 7.2. i) Suppose R € alg T (PC) is invertible and consider the sequence R3,
then the coset {[R~1]3}° + 7, is the inverse of {R3}° + J1 in (A/T)/Th.
i) Suppose (1.5) and (1.6), and consider A, = M,[al + bu='Sul + K|L, and R :=
Ws{A,}. Then Risin alg T (PC).
iii) Under the assumptions of assertion ii), the cosets { R2 }° + 7, and {A,,}° + J; coincide.
In particular, { A, }° + J is invertible if R is invertible.

Proof. i) To show the assertion i), we only have to prove that, forany R, Rt € alg 7 (PC),

(7.1) B[RS — [RR', = (EQ) ! [RR) - [RR',|EY) € 1.

We choose a smooth and bounded function x on [—1, 1] such that x is identically equal to
one in a neighborhood of 1 and such that supp x C [1 — &, 1] for a small prescribed £ > 0.
Then {M,,xL,}° + J is the unit element { L, }° + 71, and

MoxL(E) ™ [RuR), — [RET], | B
n—1

_ p(3)y—1 ® _ _ T (3)
=B (e ) R = DR P
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However, for an arbitrarily prescribed small positive threshold and for sufficiently small ¢ in
the restriction of the support of , the norm of the matrix

(W@, 1) )35 S R(P = 1)

is less than this threshold by the proof to part i) of Lemma 4.1. Consequently, (7.1) is true.

ii) Now we prove R = W3{A,} € alg T (PC). For the limits of the discretized multi-
plication operators (cf. Lemma 3.8), this is obvious. It remains to consider the limit operators
Ay and A% (cf. the Lemmata 3.9 and 3.10). Moreover, since the diagonal entries in the
diagonal matrices B, and V tend to zero (cf. (3.31) and (3.32)) and since the compact
operators belong to alg 7 (PC), we only have to show that A, A, and DJFADjr1 belong to
alg T (PC) (cf. (3.13) and (3.14)). These three operators can be treated in the same manner.
Hence, we consider only one of them. For definiteness, we take D, AD} "

We start with a well-known formula for the Mellin transform (cf. e.g. [10, 11])

1 1 1

= — —Zf_icot d 0
ml—x 2mi {Z:%ez:1/2}x { 1Co (71'2’)} Z, x>0,

and, by straightforward transformations and by the residue theorem (cf. (3.27) for the analyt-
icity of the integrand), we conclude

1 22X+ 1
a = —/ 2~ F =2 cot(nz) }2d2
{z: Re 2=1/2}

ml—a2  2ni

= % o) :zz_c{ —icot (ﬂ'(g + X+)) }d(
= % ez :1:4{ —icot (w(g + X+)) }d(.

Subtracting the similar formula for X ””[Xf:;/4] , We obtain
1 22X+ 1 plx+—1/4] 1

(7.2) = =z = — r¢B(¢)d,
ml—x T l—= 27 Jie: mec=1/2}

B({) := —icot (w(g +X+)) +icot (77((—1— {X+ - ﬂ))
Note that (7.2) holds with the integral defined in the principal value sense. For x < 1 resp.
x > 1, formula (7.2) can be derived rigorously by simply applying the residue theorem over
{C: Me¢ < 1/2}resp. {¢ : Re¢ > 1/2} and by taking into account that B({) =
O(e~ISm¢hy for [Sm¢| — oo. Choosing a ¢ € R with max{—1/2,—2x4+} < ¢ <
1/4 — x+ and applying, again, a simple transformation and the residue theorem, we arrive at

2(E1/2

K(z) = (1-@{1

_1 —¢ [x+—1/4]
Z B d X .
2/{05 I GO S

e 1 x[x+—1/4]}
—x 1—=x

Consequently, we get

oo o0

. 2X+ .
1 (%) 2(k + 1)(1 — 0k ) 1 (% (1 —0r.;)
i (k+1)2—(j+1)2 i k+1)—(G+1)
J,k=0 7,k=0

)[X+*1/4]




ETNA

Kent State University
etna@mcs.kent.edu

102 P. Junghanns and A. Rathsfeld
N2 =1/4] . \1/2 o e —1/4] o
1 1 1
V()T () a-ew) 0 ()T -
i 1_(&)2 k+1 1—% k+1
1 k=0

1— 0k, )OO
D=0G+1/ ;=0

o0

_l’_
1) ¢
) (1=0ky)
- % /{<: Ro (=} % ((Z+Jlr)1) - @ +k1) {B(O —Ble+ 1)}d<

j,k=0
; [x+-1/4] oo
1 (%) ) (1= 0k,5)
HENCES U ,
5.k=0
D, AD;'
(7.3)
. —C 00
1 L (F) -y
T2 i B(¢) -8B dac.
2/{g;aﬁcg_w} T (k+1)—(+1) { (©) (C—!—l)} ¢
5,k=0

Note that the last integral is to be understood in the sense of Bochner (cf. [32]). This is

possible since the operator function {¢ : Re( = ¢} 3 (— (& [(J+1)(/l€(i1L)12](;i(11)_5k’j))j,k is

continuous and uniformly bounded and since {¢ : Re{ =4} 3 ¢ — [B(C) — B((+1)] is

. . . . . (1—6.;)
a continuous and absolutely integrable function. waously, the matrix (; m)m
is @ Toeplitz matrix and its generating function g(e™™) = — 3=, ) 7€™* =25 — 1,0 <

s < 1 is piecewise continuous and continuous on T \ {1}. Thus, in view of Lemma 7.1, the
integral representation (7.3) proves that the operator DJFADjr1 isin alg T (PC).

iii) 1t remains to show the local equivalence of 4,, and R2, i.e. that {R3 — A,,}° € J1.
We show this result separately for (cf. the Lemmata 3.8, 3.9, and 3.10)

(7.4) {la()13 - MnaLn}o e T,
(7.5) {1422 - an—lsan}o €T,
(7.6) [1asg - (B AEPY € 7u,

where A" and A are defined in (3.14) and (3.25), respectively. That is
[AL], - (BD) AL E)
=(EM) ' [P,(By +DLAD' — A -D, AWV, D' + V,AW)
-B, -D,A,D, +A, +D,A,W,V, D' ~V,A,W,]E®.

Let C; denote the class of continuous functions f : [—-1,1] — [0, 1] with f(1) = 1. Then,
the first inclusion (7.4) is an immediate consequence of the limit a(r) — a(1) forT — 1
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and the resulting relation (cf. the definition of the local ideal (77 in (5.2))

nt {Mnan}o{[aO)I]i - MnaLn}o
< jut, m (e ot -atetnw] )T = o

Next we turn to (7.5). We introduce the function ®(s) = cos /s, s € [0,72/4] . Then
P'(s) 1

R A

h(s',r

is bounded for s”,7" € [0, 72 /4] and, for s,7 € [0,7/2],

sin s 25 259’ (s?) _2s 25 h(s% ).
cosr —coss  §2—r2  P(s?)—D(r2) 2 —1r?
Hence, due to the definition of A and due to (3.10), the entries of
EY ([A4]n = Mup™'SpLn) (BP) ™!

can be estimated by

plaf,) 1 2

n+1 xp —af,  w(j%—k?)

sin n’“—]:l 2nk—]:1

(n+1) (cos% —coan) (n+1) [(%)2_ (nk_&)z]

1 2km L kr 2 Vs 2
n+ln+1 n+1 "\n+1

Consequently, we get

a7 =

it A2 (A M~ S|

n—1
< inf ) D ([AL]2 — Mup'SpLy) (EP)
_flenclnsllg H s tyn) Ok 4,k=0 ((4+)n P SpLa) (BL) £(e2)
Ck n—1
< f Y -
- flencl n—= SFI; H f(m(k+1)”)(n+ 1)2)j,k_0

L(£2)

Using a Frobenius norm estimate and choosing f with a support supp(f o cos) C [0, €] with
an arbitrarily prescribed small ¢, we get a bound less than C'e3/2, and the inclusion (7.5)
follows.

For a fixed ko, the projection Py, € £(¢?) is compact. Hence,

{(EY P, P, EP} e T,
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and, for f € C; with supp(f o cos) C [0, €], we arrive at (cf. (3.32))

[{pnsz} ) V@ Y|
(7.8)

C
=)

C

Po (I = Piy) (£ @y 1)) 142101 ) <=
0

k,j=0

< sup
n=1,2,...

< sup
L(£2) ko<k< = (n+1)

for some g9 > 0. Replacing V,, by [V1]2, B,,, and [B,]3, respectively, we obtain the
bounds

7.9 Prnd (v} < 4=
(7.10) {Mnan}o{(E,g)) 1B, E® } H < k
(7.11) {Mnan}o{[B+]i}°H < %

which are analogous to that in (7.8).
The entries of PnD+AD;1Pn — D, A,D;! can be written in the form

k T2 = k%) x(xg,) iln+1) 2y, — 5,
_ x(@g,) 2% plf) 1 .
x(@f,) |mi(2 — k%) i(n+1) af, —af, ik
[ ] 2x+
km -
Lz x(%,) (i)zm k(1 — 6,1 (n_+1) 2X- =X+
(25) e |\ PR NGT)
[ km + o T
oo ) 2y o
x(xi,) k Z—k2

Denoting the first addend on the right-hand side by r;;, using (7.7), and taking into account
(3.27), we get the Frobenius norm estimate

n—1
su o )
n_12pH 2G40 TG+ G S (@ 1)) 3k=0 £ (g2)
smpoof X g [y e
n=12,.. M 1<5< £ (n+1) 1<k<E(n+1)
C+/(ne)x++1, /(ne)3—4x+
< sup Vi) 2\/( : = 0&
n=1,2,... n

forany f € C; with supp(f o cos) C [0, €]. This results in

(7.12) H{Mnan} {(Eg?’))*l(anAD;l — DnAnD,;l)E,?)} (M fLy)

’ng.
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In particular, the choice x+ = x- = 0 gives the same bound Cke for the sequence
{P,D,AD;"' — D,A,D; '} replaced by the sequence {P,A — A, } . This and the esti-
mates (7.8)—(7.12) lead us to

1

|MrLay {[AL - (BD) AL ED Y (M, S L) =z

<Ce+C

and (7.6) follows. O

8. The Conditionsin the Main Theorem. Due to the Sections 6 and 7, the necessary
and sufficient condition for the convergence of the collocation method is the invertibility
of the four limit operators W, {A,,}, w € T which are defined in the Lemmata 3.8 and
3.10. The first W7 {A,} = A € L(L2) is the operator of the original equation and the
second is Wy {A,,} := al — blow]~Y/2S[ow]'/?T € L£(L2). The third and fourth operators
W5 {A,} and W, { A, } are operators in the discrete ¢2 space. In this section we show that the
invertibility of the operators W5 { A,,} and W, { A,,} are equivalent to the conditions ii) and
iii) in Theorem 1.1. Moreover, we show that the conditions i) and ii) imply the invertibility
of W5 { A,,}. This completes the proof to Theorem 1.1.

First we turn to the invertibility of W3 {A4,,} and W, {A,,}. Due to part ii) of Lemma
7.2, they belong to the algebra generated by Toeplitz matrices with piecewise continuous
generating function. Therefore, their Fredholm property and their index can be expressed in
terms of the symbol due to Gohberg and Krupnik (cf. Lemma 7.1). We apply part i) of Lemma
7.1 to reformulate the condition on the invertibility of Ws{A4,,} and W4{A4,,}. Again, for
symmetry reasons we concentrate on Ws{A4,}. Clearly, the operator W3{ A, } is invertible
if and only if the null space ker W3{A,} is {0} and if W3{A,} is a Fredholm operator with
index zero. Since ker W3{A4,,} = {0} is contained in the conditions of Theorem 1.1, we have
to analyze the Fredholm property and the index. Thus, in view of part i) of Lemma 7.1, we
need the symbol of W3{A,,}. The symbols of the compact operators B, D+AD;1WV+,
and VAW are zero. For D, AD_!, we infer from (7.3) that

Symbe, ap+ () =~ [ symb (4 {BO - BE+ D }ac

2
i) ° -
oo |2 (m) (1 = dk,)
STl A k+D) -G+ ’
7,k=0
2s—1 ift =€ e T\ {1}

Symch (tvﬂ) = —H + (1 — /J‘) e'_iQﬂ—C ift=1
ot (1= pe2¢

25 — 1 ift=e2", 0<s<1
—(~i)cot (W(% +C+ oL log (ﬁ))) ift=1.

We observe that Symb, is 1-periodic with respect to variable ¢, and, applying the residue
theorem, we arrive at

Syme+AD11 (t, w)

- —%{ / Symb, (t. ))B(C)dC ~ Symby, (uu)B(c)dc}
{¢: Re ¢=1} {¢: Re ¢(=2+1}
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0 ifteT\ {1}

= _SymbT[1/4—x+](t7M) - { B (% + ﬁ log ﬁ) ift =1.

Completely analogous derivations lead to the formulas

0 ifreT\ {1}
Symba (t ) = =Symbr, (1) = | g (3+ 2 loasty) ife=1,

0 ift € T\ {+1}
Symby (t.n) = —Symbyy (1) =9 g (3+ sk togty) it =1,

BY(¢) == —icot (ﬂ'(%)) +icot (m(¢— i))

o0
Here the operator T'T is the Toeplitz matrix (%Mﬁ) with the generating func-
j,k=0

tion defined by gT(eQ’is) = —Zl_%&T’“eiz”ls = sign(s —1/2), 0 < s < 1, and Tg €
alg T (PC) is the matrix operator given by

oo

TE= (G4 1) 050) e T (B +1)%850) 7,
and the symbol (cf. part ii) of Lemma 7.1)

{ gt () ifteT\ {1}
T

Symby(f. ) = pg'(1£0) + (1= pg' (1 F )™ o

1 ift €T, Smt>0
+1 ifteT, Smt<0

(i) cot <w(% +(+ 2= log (ﬁ))) it =41,

Putting the symbols for all ingredients together (cf. the Lemmata 3.8, 3.9, and 3.10), we
finally obtain

Symbyy (4,3 (t, 1)

-1 ifteT, Smt >0
+1 ifteT, Smt <0

=a(l) = 0b(1){ (—i)cot (ﬂ'(% + X+ + 7= log (ﬁ))) ift=1
i cot (w(%—i—ﬁlog (ﬁ))) ift =—1.

Hence (cf. Lemma 7.1), the limit operator W3 { 4,, } is a Fredholm operator with index zero
if the curve

81 TIy:= {a(l) — b(1)(—i) cot (w(% +5 -+ Ai)) oo <A< oo}
U{a(l) + b(1)(—i) cot <7r(% - % + Ai)) o <A< oo}



ETNA

Kent State University
etna@mcs.kent.edu

A polynomial collocation method 107

determined by the symbol function Symby, ¢4y does not run through the zero point and if
the winding number wind I"5 with respect to zero vanishes.

Similarly, for the limit operator W, { A,, }, we get that W, {A,,} is a Fredholm operator
with index zero if the curve

(82) Tu— {a(—l) + b(=1)(=i) cot (w(% + g 5+ Ai)) o <A< oo}

U{a(—l) — b(—1) (i) cot (w(% - i 4 Ai)) o <A< oo}

does not run through the zero point and if the winding number wind I"; with respect to zero
vanishes.

Hence, it turns out that the operators W3 {A,,} and W, {A,, } are invertible if and only
if their null spaces ker W5 {A,,} and ker W, {A,,} are trivial and if the winding numbers
wind I's and wind I"y of the curves I's and I'; surrounding the essential spectra vanish. We
observe that each of the two curves I's and I'y4 is the union of two circular arcs, which, of
course, may degenerate to a straight line segment. Indeed, setting e?™ = /(1 — p), p €
[0, 1] and choosing ~ with |k| < 1/2, we get
(1 _ )UJ) _ ’u,67|27TI€
(=) + e

(—i) cot (w(% +r+ i/\)) =

a(—1) + b(—=1)(—i) cot (w(% —l—m—i—i)\)) B
AT =+ 220

_ p
fﬁ(ﬂ) : o+ (1 _‘u)eigﬂ-,{'

Clearly, 1—f..(1t) = f—«(1—p) and the linear rational function [0, 1] > u — f.(u) describes
the circular arc connecting the points zero and one such that the straight line segment [0, 1]
is seen from the points of the arc under an angle of 7(1 — 2x). The point zero is not in the
closed convex hull of the circular arc

{a(=1) + b(—l)(—i)cot(w(% Fr4iA): AER)

if and only if
S IR e e (R A} S A
i.e., ifand only if
N VT VI A (D) )
e e R ey A M.
This holds if and only if (cf. (1.7))
a(_l) + b(_l) _ a(_l) + b(_l) 27K _ —i27K
V1+(1—V)m—l/1+(l—l/) o= = b(=D) e e [—00,0],
0<v <1,

which is, in case of —1/2 — k < k_ < 1/2 — k, equivalentto —1/2 < K_ < 1/2 — kK
forx > 0andto —x — 1/2 < k_ < 1/2 for x < 0. Furthermore, zero is not at the
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curve I'y or in its interior if and only if either zero is not contained in the convex hulls of
{a(=1)+b(—-1)(—i) cot(w(%+§—6+i)\)) : A€ R}andof {a(—1)—b(—1)(—i) cot(m (% —
1+i))) : A € R}, or zero is contained in the interior of both convex hulls, or, if 3/2—§ > 0,
zero is on the straight line from a(—1) — b(—1) to a(—1) + b(—1). In other words, zero is
not at the curve I'; or in its interior if and only if (1.8) is satisfied for «_. Similarly, zero is
not at the curve T's or in its interior if and only if (1.8) is satisfied for .. The invertibility of
Ws{A,} and W,{ A, } is equivalent to the conditions ii) and iii) in Theorem 1.1.

Now we consider the invertibility of Wy {A,,} := {al —blow]~1/2S[o¢]'/?} € L(L2).
From the general theory of one-dimensional singular integral equations (cf. [11], Theorem
9.4.1) we infer that W2 { A, } is invertible if and only if its symbol

Symby, (4,1 (t, 1)

L if a, b are continuous at
alt) —b(t) te(-1,1)

aEi i 8; Ib)g ; i1; céo(r_blrjc;t) continuous at
(1= Fopa) L+ Foayal) ST it =1
. a(1) + b(1) .
(1 f 1/4( )) (1)—b( )+f 1/4(#)1 T 1

does not vanish for (¢, 1) € [—1,1] x [0, 1] and if the winding number is zero. Note that, if
—1 <t <ty <...<tp < listhegrid of discontinuity points, then the winding number of
the symbol is the winding number of the closed curve
{Symby, 4,3 (=1,1) 0 0 < p <1}U{Symbyy, 4 4(£,0): -1 <t <t}
U{Symbyy, 4,3 (t1, 1) 1 0 < p <1} U{Symbyy, 4 1(2,0): t1 <t <12}
U{Symbyy, (4,3 (t2, 1) : 0 < p < 1}U{Symbyy, 4 4(t,0): t2 <t <t3}U

U{Symbyy, 14, 4(t,0) 1t <t <1}U{Symby, 4 3(1,p): 0 < p <1}

with respect to zero. Now suppose condition ii) of Theorem 1.1 is satisfied. Hence, zero is not
contained in the domains enclosed by the curves I'; and ' (cf. (8.1) and (8.2)), and the non
singularity and the vanishing winding number for the symbol Symby,,, (4 is equivalent to
the non singularity and the vanishing winding number for the symbol function

SymbA(tvﬂ)
% ifg,(b_alrelc)ontinuous at
_ (1-p) ZE; — 8; - Zg — 8; + uaEt + 0; + Ib)g j: 8; ;fg ?ili nlo)t continuous at
(1= fis—p/2a(m)1 + fis—p/2 (1 )% ift =—1
(1= fo-arn) ST 4 f ot ife=1

corresponding to the singular integral operator A. Since A is invertible by condition i) of The-
orem 1.1, the symbol does not vanish and the winding number is zero. Hence, the conditions
i) and ii) imply the invertibility of W5{ A, }.
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