\magnification=\magstep1 \input amstex \documentstyle{amsppt} \NoRunningHeads \NoBlackBoxes \def\c{\cite} \def\Z{\Bbb Z} \def\cdc{,\ldots,} \def\fr{\frac} \def\os{\overset{\infty}\to{\underset{n= - \infty}\to \sum}} \def\oj{\overset{\infty}\to{\underset{j= 0}\to \sum}} \def\qq{q;q} \def\an{\alpha_n} \def\bn{\binom{n}{2}} \topmatter \title Ramanujan's Method in $q$-Series Congruences \endtitle \author by \\ \\ George E. Andrews\footnote"{$^{(1)}$}"{Partially supported by National Science Foundation Grant DMS-8702695-04 \ \ \ \ \ \ \ \ \ \ \ \ \ } and Ranjan Roy \endauthor \dedicatory Written in honor of Herb Wilf's $65^{th}$ birthday \enddedicatory \abstract{We show that the method developed by Ramanujan to prove $5|p (5n + 4)$ and $7|p (7n + 5)$ may, in fact, be extended to a wide variety of $q$-series and products including some with free parameters.} \endabstract \endtopmatter \document \baselineskip20pt \subhead{1. \ Introduction} \endsubhead Ramanujan \c{11} is the discoverer of the surprising fact that the partition function, $p(n)$, satisfies numerous congruences. Among the infinite family of such congruences, the two simplest examples are $$ p (5n+4) \equiv 0 \quad \pmod {5} \tag1.1 $$ and $$ p (7n+5) \equiv 0 \quad \pmod {7}. \tag1.2 $$ Ramanujan used an ingenious and elementary argument to prove these congruences which relied on Jacobi's famous formula \c{10; last eqn. p.5}: $$ (q; q)^3_{\infty} = \overset{\infty}\to{\underset{n=1}\to \prod} ( 1-q^n)^3 = \sum^{\infty}_{j=0} (-1)^j (2j+1) q^{j(j+1)/2}, \tag1.3 $$ where $$ (A)_N = (A;q)_N = \overset{N-1}\to{\underset{j=0}\to \prod} (1-Aq^j). \tag1.4 $$ A rather more general result of this nature was proved in \c{3; p. 27, Th. 10.1} to account for certain congruences connected with generalized Frobenius partitions. Indeed J. M. Gandhi \c{7}, \c{8}, \c{9}, J. Ewell \c{5}, L. Winquist \c{12} and many others (cf., Gupta \c{10; Sec. 6.3}) have proved partition function congruences based on this idea. In all these theorems, the underlying generating functions were either modular forms or simple linear combinations thereof. The point of this paper is to show that Ramanujan's original method is applicable to an infinite number of congruence theorems including many non-modular functions defined by $q$-series. Our main result is: \proclaim {Theorem 1} \ Suppose $p$ is a prime $> 3$, and $0 < a < p$ and $b$ are integers. Also, $- a$ must be a quadratic nonresidue mod $p$. Suppose $\{\alpha_n\}^{\infty}_{n = - \infty} = \{\an (z_1, z_2\cdc z_j)\}$ is a doubly infinite sequence of Laurent polynomials over $\Z$ with variables $z_1 \cdc z_j$ independent of $q$. Then there is an integer $c$ such that the coefficient of $z^{m_1}_1 z^{m_2}_2 \cdots z^{m_j}_j \mathbreak q^{pN}$ in $$ \fr{q^c \overset{\infty}\to{\underset{n= -\infty} \to\sum} \alpha_n q^{a \binom{n}{2} + bn}} {(q; q)^{p-3}_{\infty}} \tag1.5 $$ is divisible by $p$. For each integer $m$, we shall denote by $\overline m$ the multiplicative inverse of $m$ mod $p$. The integer $c = c_p (a, b)$ may be chosen as the least nonnegative integer congruent to $\bar 8 (a(2b \bar a - 1)^2 +1)$ mod $p$. \endproclaim In Section 2, we shall prove this result. In Section 3, we examine the implications of Theorem 1 for a variety of modular forms. In Section 4, we collect a number of congruences for the coefficients in several $q$-series. \subhead {2. \ The Proof of Theorem 1} \endsubhead With the various hypotheses of the theorem, we note that \newpage $$ \fr{q^c \overset{\infty}\to{\underset{n= - \infty}\to \sum} \an q^{a\bn + bn}}{(\qq)^{p-3}_{\infty}} \tag2.1 $$ \vskip -.2in $$ \aligned &= \fr{q^c \overset{\infty}\to{\underset{n= - \infty}\to \sum} \oj (-1)^j (2j+1) \an q^{a\bn + bn + j (j+1)/2}} {(\qq)^p_{\infty}} \\ % &\equiv \fr{q^c \overset{\infty}\to{\underset{n= - \infty}\to \sum} \oj (-1)^j (2j+1) \an q^{a\bn + bn + j (j+1)/2}} {(q^p; q^p)_{\infty}} \pmod {p}. \endaligned $$ We see that in this last expression the denominator is a function of $q^p$. Let us now examine the exponent of $q$ in the numerator; for ease of computation we multiply by 8: $$ 8 \left(c + a \bn + bn + j (j+1)/2 \right) \tag2.2 $$ \vskip -.2in $$ \aligned &= 8 c + a (4n^2 - 4n) + 8bn + 4j^2 + 4j \\ % &\equiv a (2n + 2b\bar a-1)^2 + (2j+1)^2 \quad \pmod {p} \endaligned $$ Now we observe (by the definition of $c$) that if $j \equiv (p-1)/2$ mod $p$ (i.e. $(2j+1) \equiv 0 \pmod {p}$), then the last expression above is congruent to $0$ mod $p$ precisely when $$ n \equiv (1- 2b\overline a) \overline 2 \equiv \fr{p+1}2 - b \overline a \pmod {p}. $$ If $j \not\equiv \fr{p-1}2 \pmod {p}$, then the last expression in (2.2) can never be congruent to zero mod $p$ because by the conditions on $a$ $$ -a (2n + 2b \overline a - 1)^2 $$ is either $0$ or a quadratic nonresidue mod $p$ and so cannot be congruent to a quadratic residue (i.e. $(2j+1)^2$) mod $p$. Hence the coefficients of $q^{pN}$ in (2.1) will all be linear combinations over $p\Z$ of various $\an$ (which are Laurent polynomials in several variables over $\Z$). $\square$ \subhead{3. \ Modular Forms} \endsubhead Ramanujan, Ewell, Gandhi (and probably many others) have proved instances of Theorem 1 (as mentioned in Section 1). Congruence (1.1) follows from Theorem 1 with $p=5, a=3, b=1, c_5 (3, 1) = 1$ and $\alpha_m = (-1)^m$. Congruence (1.2) follows from Theorem 1 with $p=7, a=b=1, c_7 (1,1) = 2$ and $\alpha_m = (-1)^m (2m + 1)$ if $m\geqq 0, \alpha_m = 0$ if $m < 0$. Gandhi's Theorem IV in \c{7} corresponds to $\alpha_m = \delta_{m,0}$, while Theorem 2 in \c{8} corresponds to $a=b=1$ and $\alpha_m = (-1)^m (2m+1)$ if $m \geqq 0$, $\alpha_m = 0$ if $m < 0$. Finally, Theorem 4 in \c{8} corresponds to $a=3, b=1$ and $\alpha_m = (-1)^m$. Theorem 10.1 of \c{3} is the case $p=5, a=2, b=1, c_5 (2,1) = 2$; in that result the $\alpha_m$ were assumed to be $0$ if $m < 0$ and to be integers otherwise. The generality of Theorem 1 allows for a variety of other modular forms. To illustrate, we consider $$ \overset{\infty}\to{\underset{n=0}\to\sum} V_n q^n = \fr{\overset{\infty}\to{\underset{n=0}\to\sum} p(n) q^n} {\overset{\infty}\to{\underset{n=0}\to\sum} (-1)^n r_2 (n)q^n}, $$ where $r_2 (n)$ is the number of representations of $n$ as a sum of two squares. We note that $$ \aligned \overset{\infty}\to{\underset{n=0}\to\sum} V_n q^n &= \fr1{(q)_{\infty} \left(\os (-1)^n q^{n^2}\right)^2} \\ % &= \fr{(-q)^2_{\infty}}{(q)^3_{\infty}} \\ % &= \fr{(q^2; q^2)_{\infty}}{(q)^4_{\infty} (q;q^2)_{\infty}} \\ % &= \fr{\overset{\infty}\to{\underset{m=0}\to\sum} q^{m(m+1)/2}} {(q)^4_{\infty}}. \endaligned $$ Now by Theorem 1 with $p=7, a=b=1, c_7 (1,1) =2, \alpha_m = 1$ if $m\ge 0$, and $0$ if $m < 0$, we see that $$ V_{7m+5} \equiv 0 \;\; \pmod {7}. $$ \subhead{4. \ $q$-Series} \endsubhead Of course, our point here is not to extend slightly Ramanujan's basic idea to a few more modular forms. Rather we hope to illustrate its applicability to $q$-series. \proclaim {Theorem 2} \ For any prime $p\equiv 3 \pmod {4}$ with $4c \equiv 1 \pmod {p}$, the coefficient of $z^m q^{pn-c}$ in $$ \fr{(zq)_{\infty}}{(q)^{p-4}_{\infty}} \overset{\infty}\to{\underset{n=0}\to\sum} \fr{q^n}{(q)_n (zq)_n} $$ is divisible by $p$. \endproclaim \demo {Proof} \ By Heine's transformation \c{1; Cor. 2.3, p. 19} $$ \overset{\infty}\to{\underset{n=0}\to\sum} \fr{q^n}{(q)_n (zq)_n} = \fr1{(q)_{\infty} (zq)_{\infty}} \overset{\infty}\to{\underset{n=0}\to\sum} (-1)^n q^{n (n+1)/2} z^n. $$ Now apply Theorem 1 with $a=b=1$ and $c \equiv \overline 4 \pmod {p}$. $\square$ \enddemo \proclaim {Theorem 3} \ For any prime $p \equiv 5$ or $7 \pmod {8}$ with $8 c \equiv 1 \pmod {p}$, the coefficient of $z^m q^{pn-c}$ in $$ \fr1{(q)^{p-3}_{\infty}} \overset{\infty}\to{\underset{n=0}\to\sum} \fr{(z)_{n+1} z^n}{(-zq)_n} $$ is divisible by $p$. \endproclaim \demo {Proof} \ By the Rogers-Fine identity \c{6; p. 15, eqn. (14.31)} $$ \overset{\infty}\to{\underset{n=0}\to\sum} \fr{(z)_{n+1}z^n} {(- zq)_n} = 1+2 \underset{n\ge 1}\to\sum (-z^2)^n q^{n^2}. $$ Now apply Theorem 1 with $a=2, b=1$ noting that for $p\equiv 5 \pmod {8}$ $2$ is a non-quadratic residue, and for $p\equiv 7 \pmod {8}$, $2$ is a quadratic residue. Also we must have $c\equiv \overline 8 \pmod {p}$. $\square$ \enddemo \proclaim {Theorem 4} \ For any prime $p\equiv 5$ or $11 \pmod {12}$, the coefficient of $q^{pn-(p+1)/2}$ in $$ \fr1{(q)^{p-4}_{\infty}} \overset{\infty}\to{\underset{n=0}\to\sum} \left[\matrix 2n \\ n \endmatrix \right] q^n $$ (where $\left[\matrix A \\ B \endmatrix \right] = (q)_A/ ((q)_B (q)_{A-B})$ is the $q$-binomial coefficient) is divisible by $p$. \endproclaim \demo {Proof} \ By Lemma 3 of \c{2; p. 159}, $$ \fr1{(q)_{\infty}} \overset{\infty}\to{\underset{n=0}\to\sum} (-1)^n q^{3n(n+1)/2} = \overset{\infty}\to{\underset{n=0}\to\sum} \left[\matrix 2n \\ n \endmatrix \right] q^n. $$ Now apply Theorem 1 with $a=b=3$ noting that for $p\equiv 5 \pmod {12}$, $3$ is a non-quadric residue and for $p\equiv 11 \pmod {12}$, $3$ is a quadratic residue. \enddemo \proclaim {Theorem 5} \ For any prime $p\equiv 5$ or $11 \pmod {12}$ and $6c\equiv 1 \pmod {p}$, the coefficient of $q^{pn-c}$ in $$ \fr1{(q)^{p-4}_{\infty}} \, \overset{\infty}\to{\underset{n=1}\to\sum} \, \fr{q^{n^2}}{(1-q^n)\left[\matrix 2n \\ n \endmatrix \right]} $$ is divisible by $p$. \endproclaim \demo {Proof} \ By (5.1) of \c{4; p. 272} $$ \gathered \overset{\infty}\to{\underset{n=1}\to\sum} \, \fr{q^{n^2}}{(1-q^n)\left[\matrix 2n \\ n \endmatrix \right]} \\ % = \overset{\infty}\to{\underset{n=1}\to\sum} \fr{q^{n^2}(q)_{n-1}}{(q^{n+1})_n} = \fr1{(q)_{\infty}} \overset{\infty}\to{\underset{n= - \infty}\to\sum} (-1)^{n-1} n \, q^{n(3n-1)/2}. \endgathered $$ Now apply Theorem 1 with $a=3, b=1$. As in Theorem 4, $p$ must be $\equiv 5$ or $11$ mod $12$, and now $6c =1 \pmod {p}$. $\square$ \enddemo \subhead{5. \ Conclusion} \endsubhead There are undoubtedly significant extensions of the ideas we have presented here. We note that Winquist's proof that $$ p (11 n + 6) \equiv 0 \pmod {11} $$ does not fit into Theorem 1. However now that the application of (1.3) to Theorem 1 has been made, it should be possible to find a variety of congruences for the coefficients of other $q$-series. In addition, the function given in Theorem 1 may be multiplied by any function $f_1(q) \in \Z [[q]]$ for which $$ f_1(q) \equiv f_2 (q^p) \; \pmod {p}. $$ Finally, it may well be asked what happens when $a$ is a quadratic residue mod $p$ and $p\equiv 1 \pmod {4}$ or $a$ is a quadratic non-residue and $p\equiv 3 \pmod {4}$. It is not difficult to show that our analysis produces indices $j \not\equiv (p-1)/2 \pmod {p}$ which make the exponent on $q$ congruent to zero mod $p$ irrespective of $c_p (a, b)$. Consequently one would have to invoke special conditions on the $\alpha_m$ to produce coefficients that are multiples of $p$. \Refs \ref \no 1 \by G.E. Andrews \paperinfo The Theory of Partitions, Encyclopedia of Math. and Its Applications, Vol. 2, Addison-Wesley, Reading, 1976 (Reissued: Cambridge University Press, Cambridge, 1985) \endref \ref \no 2 \by G.E. Andrews \paper Ramanujan's ``lost'' notebook: I. partial $\theta$-functions \jour Adv. in Math. \vol 41 \yr 1981 \pages 137--172 \endref \ref \no 3 \by G.E. Andrews \paperinfo Generalized Frobenius partitions, Memoirs of the Amer. Math. Soc., 49(1984), No. 301, iv+, 44 pp \endref \ref \no 4 \by G.E. Andrews \paper Bailey chains and generalized Lambert series: I. Four identities of Ramanujan \jour Illinois J. Math. \vol 36 \yr 1992 \pages 251--274 \endref \ref \no 5 \by J.A. Ewell \paper Completion of a Gaussian derivation \jour Proc. Amer. Math. Soc. \vol 84 \yr 1982 \pages 311--314 \endref \ref \no 6 \by N.J. Fine \paperinfo Basic Hypergeometric Series and Applications, Math. Surveys No. 27, Amer. Math. Soc., Providence, 1988 \endref \ref \no 7 \by J.M. Gandhi \paper Congruences for $p_r (n)$ and Ramanujan's $\tau$ function \jour Amer. Math. Monthly \vol 70 \yr 1963 \pages 265--274 \endref \ref \no 8 \by J.M. Gandhi \paper Generalization of Ramanujan's congruences $p(5m+4) \equiv 0 \pmod {5}$ and $p (7m+5) \equiv 0 \pmod {7}$ \jour Monatsch. Math. \vol 69 \yr 1965 \pages 389--392 \endref \ref \no 9 \by J.M. Gandhi \paper Some congruences for $k$-line partitions of a number \jour Amer. Math. Monthly \vol 74 \yr 1967 \pages 179--181 \endref \ref \no 10 \by H. Gupta \paper Partitions -- a survey \jour Journal of Res. of Nat. Bur. Standards - B Math. Sciences \vol 74B \yr 1970 \pages 1--29 \endref \ref \no 11 \by S. Ramanujan \paperinfo Some properties of $p(n)$, the number of partitions of $n$, Proc. Cambridge Phil. Soc., 19(1919), 207--210 (Reprinted: Coll. Papers., Cambridge Univ. Press, Cambridge, 1927, Reissued: Chelsea, New York, 1962) \endref \ref \no 12 \by L. Winquist \paper An elementary proof of $p(11 m + 6) \equiv 0 \pmod {11}$ \jour J. Combinatorial Theory \vol 6 \yr 1969 \pages 56--59 \endref \endRefs \vskip .2in \baselineskip 13pt \line{The Pennsylvania State University\hfil} \line{University Park, PA 16802\hfil} \line{email: andrews\@math.psu.edu\hfil} \vskip .02in \line{and\hfil} \vskip .02in \line{Beloit College\hfil} \line{Beloit, Wisconsin\hfil} \line{email: royr\@beloit.edu \hfil} \enddocument .