\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf William Y. C. Chen, Teresa X. S. Li and David G. L. Wang} % % \medskip \noindent % % {\bf A Bijection between Atomic Partitions and Unsplitable Partitions} % % \vskip 5mm \noindent % % % % In the study of the algebra $\mathrm{NCSym}$ of symmetric functions in noncommutative variables, Bergeron and Zabrocki found a free generating set consisting of power sum symmetric functions indexed by atomic partitions. On the other hand, Bergeron, Reutenauer, Rosas, and Zabrocki studied another free generating set of $\mathrm{NCSym}$ consisting of monomial symmetric functions indexed by unsplitable partitions. Can and Sagan raised the question of finding a bijection between atomic partitions and unsplitable partitions. In this paper, we provide such a bijection. \end{document} .