\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Shinya Fujita and Colton Magnant} % % \medskip \noindent % % {\bf Note on Highly Connected Monochromatic Subgraphs in $2$-Colored Complete Graphs} % % \vskip 5mm \noindent % % % % In this note, we improve upon some recent results concerning the existence of large monochromatic, highly connected subgraphs in a $2$-coloring of a complete graph. In particular, we show that if \hbox{$n\ge 6.5(k - 1)$}, then in any $2$-coloring of the edges of $K_{n}$, there exists a monochromatic $k$-connected subgraph of order at least $n - 2(k - 1)$. Our result improves upon several recent results by a variety of authors. \end{document} .