\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Samu Alanko, Simon Crevals, Anton Isopoussu, Patric {\"O}sterg{\aa}rd and Ville Pettersson} % % \medskip \noindent % % {\bf Computing the Domination Number of Grid Graphs} % % \vskip 5mm \noindent % % % % Let $\gamma_{m,n}$ denote the size of a minimum dominating set in the $m \times n$ grid graph. For the square grid graph, exact values for $\gamma_{n,n}$ have earlier been published for $n \leq 19$. By using a dynamic programming algorithm, the values of $\gamma_{m,n}$ for $m,n \leq 29$ are here obtained. Minimum dominating sets for square grid graphs up to size $29 \times 29$ are depicted. \end{document} .