\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Leonard J. Schulman} % % \medskip \noindent % % {\bf The Quantifier Semigroup for Bipartite Graphs} % % \vskip 5mm \noindent % % % % In a bipartite graph there are two widely encountered monotone mappings from subsets of one side of the graph to subsets of the other side: one corresponds to the quantifier ``there exists a neighbor in the subset'' and the other to the quantifier ``all neighbors are in the subset.'' These mappings generate a partially ordered semigroup which we characterize in terms of ``run-unimodal'' words. \end{document} .