\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Marko Boben, \v{S}tefko Miklavi\v{c} and Primo\v{z} Poto\v{c}nik} % % \medskip \noindent % % {\bf Rotary Polygons in Configurations} % % \vskip 5mm \noindent % % % % A polygon $A$ in a configuration $\mathcal{C}$ is called rotary if $\mathcal{C}$ admits an automorphism which acts upon $A$ as a one-step rotation. We study rotary polygons and their orbits under the group of automorphisms (and antimorphisms) of $\mathcal{C}$. We determine the number of such orbits for several symmetry types of rotary polygons in the case when $\mathcal{C}$ is flag-transitive. As an example, we provide tables of flag-transitive $(v_3)$ and $(v_4)$ configurations of small order containing information on the number and symmetry types of corresponding rotary polygons. \end{document} .