\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Matja\v z Konvalinka} % % \medskip \noindent % % {\bf The Weighted Hook Length Formula III: Shifted Tableaux} % % \vskip 5mm \noindent % % % % Recently, a simple proof of the hook length formula was given via the branching rule. In this paper, we extend the results to shifted tableaux. We give a bijective proof of the branching rule for the hook lengths for shifted tableaux; present variants of this rule, including weighted versions; and make the first tentative steps toward a bijective proof of the hook length formula for $d$-complete posets. \end{document} .