\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Sven Herrmann, Anders Jensen, Michael Joswig and Bernd Sturmfels} % % \medskip \noindent % % {\bf How to Draw Tropical Planes} % % \vskip 5mm \noindent % % % % The tropical Grassmannian parameterizes tropicalizations of ordinary linear spaces, while the Dressian parameterizes all tropical linear spaces in ${\Bbb T}{\Bbb P}^{n-1}$. We study these parameter spaces and we compute them explicitly for $n \leq 7$. Planes are identified with matroid subdivisions and with arrangements of trees. These representations are then used to draw pictures. \bye .