\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Petr Hlin\v en\'y} % % \medskip \noindent % % {\bf New Infinite Families of Almost-Planar Crossing-Critical Graphs} % % \vskip 5mm \noindent % % % % We show that, for all choices of integers $k>2$ and $m$, there are simple $3$-connected $k$-crossing-critical graphs containing more than $m$ vertices of each even degree $\leq2k-2$. This construction answers one half of a question raised by Bokal, while the other half asking analogously about vertices of odd degrees at least $7$ in crossing-critical graphs remains open. Furthermore, our newly constructed graphs have several other interesting properties; for instance, they are almost planar and their average degree can attain any rational value in the interval $\big[3+{1\over5},6-{8\over k+1}\big)$. \bye .