\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Matja\v z Konvalinka} % % \medskip \noindent % % {\bf Non-Commutative Sylvester's Determinantal Identity} % % \vskip 5mm \noindent % % % % Sylvester's identity is a classical determinantal identity with a simple linear algebra proof. We present combinatorial proofs of several non-commutative extensions, and find a $\beta$-extension that is both a generalization of Sylvester's identity and the $\beta$-extension of the quantum MacMahon master theorem. \bye .