\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Abraham D. Flaxman} % % \medskip \noindent % % {\bf The Lower Tail of the Random Minimum Spanning Tree} % % \vskip 5mm \noindent % % % % Consider a complete graph $K_n$ where the edges have costs given by independent random variables, each distributed uniformly between 0 and 1. The cost of the minimum spanning tree in this graph is a random variable which has been the subject of much study. This note considers the large deviation probability of this random variable. Previous work has shown that the log-probability of deviation by $\varepsilon$ is $-\Omega(n)$, and that for the log-probability of $Z$ exceeding $\zeta(3)$ this bound is correct; $\log {\rm Pr}[Z \geq \zeta(3) + \varepsilon] = -\Theta(n)$. The purpose of this note is to provide a simple proof that the scaling of the lower tail is also linear, $\log {\rm Pr}[Z \leq \zeta(3) - \varepsilon] = -\Theta(n)$. \bye .