\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym \nopagenumbers \noindent % % {\bf Paulo Barcia and J. Orestes Cerdeira} % % \medskip \noindent % % {\bf $k$-Colour Partitions of Acyclic Tournaments} % % \vskip 5mm \noindent % % % % Let $G_{1}$ be the acyclic tournament with the topological sort $0<1<2<\dots2$ we identify a class of facet inducing inequalities. For $k=2$ we show that these inequalities turn out to be equations, and that no other facet defining inequalities exists besides the trivial nonnegativity constraints. \bye .