\magnification=1200 \hsize=4in \overfullrule=0pt \nopagenumbers \noindent % % {\bf Nagi H. Nahas} % % \medskip \noindent % % {\bf On the Crossing Number of $K_{m,n}$} % % \vskip 5mm \noindent % % % % The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$. \bye .