\magnification=1200 \hsize=4in \overfullrule=0pt \nopagenumbers \noindent % % {\bf Ping Wang, Baoguang Xu and Jianfang Wang} % % \medskip \noindent % % {\bf A Note on the Edge-Connectivity of Cages} % % \vskip 5mm \noindent % % % % A $(k;g)$-graph is a $k$-regular graph with girth $g$. A $(k;g)$-cage is a $(k;g)$-graph with the smallest possible number of vertices. In this paper we prove that $(k;g)$-cages are $k$-edge-connected if $k \geq 3$ and $g$ is odd. \bye .