

# On graph associated to co-ideals of commutative semirings

YAHYA TALEBI, ATEFEH DARZI

*Abstract.* Let  $R$  be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph  $\Omega(R)$  whose vertices are all elements of  $R$  and two distinct vertices  $x$  and  $y$  are adjacent if and only if the product of the co-ideals generated by  $x$  and  $y$  is  $R$ . Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph  $\Gamma(R)$  and  $\Omega(R)$ .

*Keywords:* semiring; co-ideal; maximal co-ideal

*Classification:* 16Y60, 05C75

## 1. Introduction

The concept of the *zero-divisor graph* of a commutative ring  $R$  was first introduced by Beck [3]. He defined this graph as a simple graph where all elements of the ring  $R$  are the vertex-set of this graph and two distinct elements  $x$  and  $y$  are adjacent if and only if  $xy = 0$ . Beck conjectured that  $\chi(R) = \omega(R)$  for every ring  $R$ . In [2], Anderson and Livingston introduced the zero-divisor graph with vertices  $Z(R)^* = Z(R) \setminus \{0\}$ , the set of non-zero zero-divisors of  $R$ . Some other investigations into properties of zero-divisor graph over commutative semiring may be found in [5], [6]. In [11], Sharma and Bhatwadekar defined another graph on a ring  $R$  with vertices as elements of  $R$  and there is an edge between two distinct vertices  $x$  and  $y$  in  $R$  if and only if  $Rx + Ry = R$ . Further, in [10], Maimani et al. studied the graph defined by Sharma and Bhatwadekar and called it *comaximal graph*. Also, in [1], Akbari et al. studied the comaximal graph over non-commutative ring.

Note that throughout this paper all semirings are considered to be commutative semirings with non-zero identity. First, we introduce the concept of *product* of co-ideals in the semiring  $R$ . Next, we define an undirected graph over commutative semiring in which vertices are all elements of  $R$  and two distinct vertices  $x$  and  $y$  are adjacent if and only if the product of the co-ideals generated by  $x$  and  $y$  is  $R$  (i.e.  $F(x)F(y) = R$ ). We denote this graph by  $\Omega(R)$ . In Section 2, we recall some notions of semirings which will be used in this paper. In other sections, we study some graph-theoretic properties of  $\Omega(R)$  and its subgraphs such as diameter, radius, girth, clique number and chromatic number.

In a graph  $G$ , we denote the vertex-set of  $G$  by  $V(G)$  and the edge-set by  $E(G)$ . A graph  $G$  is said to be *connected*, if there is a path between every two distinct vertices and we say that  $G$  is *totally disconnected*, if no two vertices of  $G$  are adjacent. For a given vertex  $x$ , the number of all vertices adjacent to it, is called *degree* of the vertex  $x$ , denoted by  $\deg(x)$ . For distinct vertices  $x$  and  $y$  of  $G$ , let  $d(x, y)$  be the length of the shortest path from  $x$  to  $y$  ( $d(x, x) = 0$  and  $d(x, y) = \infty$  if there is no such path). The *diameter* of  $G$  is  $\text{diam}(G) = \sup\{d(x, y) : x \text{ and } y \text{ are distinct vertices of } G\}$ . The *girth* of  $G$ , denoted by  $gr(G)$ , is defined as the length of the shortest cycle in  $G$ . If  $G$  has no cycles, then  $gr(G) = \infty$  and  $G$  is called a *forest*. Also,  $G$  is called a *tree* if  $G$  is connected and has no cycles. A *clique* in a graph  $G$  is a complete subgraph of  $G$ . The *clique number* of  $G$ , denoted by  $\omega(G)$ , is the number of vertices in a largest clique of  $G$ . An *independent set* in a graph  $G$  is a set of pairwise non-adjacent vertices. A graph in which each pair of distinct vertices is joined by an edge is called a *complete graph*. We denote the complete graph on  $n$  vertices by  $K_n$ . For a positive integer  $k$ , a  *$k$ -partite* graph is one whose vertex-set can be partitioned into  $k$  independent sets. A  $k$ -partite graph  $G$  is said to be a *complete  $k$ -partite* graph, if each vertex is joined to every vertex that is not in the same partition. The *complete bipartite* graph (2-partite graph) with parts of sizes  $m$  and  $n$  is denoted by  $K_{m,n}$ . We will sometimes call a  $K_{1,n}$  a *star graph*. We write  $G \setminus \{x\}$  or  $G \setminus S$  for the subgraph of  $G$  obtained by deleting a vertex  $x$  or set of vertices  $S$ . An *induced subgraph* is a subgraph obtained by deleting a set of vertices. Also, a *spanning subgraph* of  $G$  is a subgraph with vertex-set  $V(G)$ . A general reference for graph theory is [12].

## 2. Preliminaries

In this section, we recall various notions about semirings which will be used throughout the paper. A *semiring*  $R$  is an algebraic system  $(R, +, \cdot)$  such that  $(R, +)$  is a commutative monoid with identity element  $0$  and  $(R, \cdot)$  is a semigroup. In addition, operations  $+$  and  $\cdot$  are connected by distributivity and  $0$  annihilates  $R$  (i.e.  $x0 = 0x = 0$  for each  $x \in R$ ). A semiring  $R$  is said to be *commutative* if  $(R, \cdot)$  is a commutative semigroup and  $R$  is said to have an *identity* if there exists  $1 \in R$  such that  $1x = x1 = x$ .

Recall that, throughout this paper, all semirings are commutative with non-zero identity. The following definitions are given in [7], [9].

### 2.1 Definition.

Let  $R$  be a semiring.

(1) A non-empty subset  $I$  of  $R$  is called a *co-ideal* of  $R$  if and only if it is closed under multiplication and satisfies the condition that  $a + r \in I$  for all  $a \in I$  and  $r \in R$ . According to this definition,  $0 \in I$  if and only if  $I = R$ . Also, a co-ideal  $I$  of  $R$  is called *strong*, if  $1 \in I$ .

(2) A co-ideal  $I$  of semiring  $R$  is called *subtractive* if  $x \in I$  and  $xy \in I$ , implies  $y \in I$  for all  $x, y \in R$ . So every subtractive co-ideal is a strong co-ideal.

(3) A proper co-ideal  $P$  of  $R$  is called *prime* if  $a + b \in P$ , implies  $a \in P$  or  $b \in P$  for all  $a, b \in R$ .

(4) A proper co-ideal  $I$  of  $R$  is called *maximal* if there is no co-ideal  $J$  such that  $I \subset J \subset R$ .

(5) An element  $a$  of a semiring  $R$  is *multiplicatively idempotent* if and only if  $a^2 = a$  and  $a$  is called *additively idempotent* if and only if  $a + a = a$ . A semiring  $R$  is said to be *idempotent* if it is both additively and multiplicatively idempotent.

(6) An element  $x$  of a semiring  $R$  is called a *zero-sum* of  $R$ , if there exists an element  $y \in R$  such that  $x + y = 0$ . It is clear that,  $y$  is the unique element which satisfies  $x + y = 0$ . We will denote the set of all zero-sums of  $R$  by  $ZS(R)$ . It is easy to see that  $ZS(R)$  is an ideal of  $R$ . Also, a semiring  $R$  is a ring if and only if  $ZS(R) = R$  and  $R$  is called *zero-sumfree* if and only if  $ZS(R) = 0$ .

(7) If  $A$  is a non-empty subset of a semiring  $R$ , then the set  $F(A)$  of all elements of  $R$  of the form  $a_1 a_2 \dots a_n + r$ , where  $a_i \in A$  for all  $1 \leq i \leq n$  and  $r \in R$ , is a co-ideal of  $R$  containing  $A$ . In fact,  $F(A)$  is the unique smallest co-ideal of  $R$  containing  $A$ .

By the above definition, we can consider the co-ideal generated by a single element  $x \in R$  as follows:  $F(x) = \{x^n + r : r \in R \text{ and } n \in \mathbf{N}\}$ . It is obvious that, if  $x \in I$  for some co-ideal  $I$ , then  $F(x) \subseteq I$ .

By definition of co-ideal, if  $R$  is a ring, then  $R$  has no proper co-ideals and so throughout this paper we consider semirings which are not rings. For a semiring  $R$ , we denote the set of maximal co-ideals, the union of all the maximal co-ideals and the intersection of all the maximal co-ideals of  $R$  by  $Co-Max(R)$ ,  $UM(R)$  and  $IM(R)$ , respectively. Also, if the semiring  $R$  has exactly one maximal co-ideal, then we say that the semiring  $R$  is *c-local* and  $R$  is said to be a *c-semilocal* semiring, if  $R$  has only a finite number of maximal co-ideals.

**2.2 Lemma** ([7]). *Let  $I_1, \dots, I_n$  be co-ideals of a semiring  $R$  and  $P$  be a prime co-ideal containing  $\bigcap_{i=1}^n I_i$ . Then  $I_i \subseteq P$  for some  $i = 1, \dots, n$ . Moreover, if  $P = \bigcap_{i=1}^n I_i$ , then  $P = I_i$  for some  $i$ .*

**2.3 Lemma.** *Let  $R$  be a semiring. Then  $x \in \sqrt{ZS(R)}$  if and only if  $F(x) = R$ .*

PROOF: Let  $x \in \sqrt{ZS(R)}$ . Thus  $x^n \in ZS(R)$  for some positive integer  $n$ . This implies  $x^n + r = 0$  for some  $r \in R$ . Hence  $0 \in F(x)$ , since  $x^n + r \in F(x)$  and so  $F(x) = R$ .

The converse follows, since all conclusions are reversible.  $\square$

**2.4 Proposition.** *Let  $R$  be a semiring. Then  $R \setminus \sqrt{ZS(R)} = UM(R)$ .*

PROOF: Assume that  $x \in R \setminus \sqrt{ZS(R)}$ . Thus  $F(x) \neq R$  and by [7, Proposition 2.1], there exists  $m \in Co-Max(R)$  such that  $x \in F(x) \subseteq m$ . Hence  $R \setminus \sqrt{ZS(R)} \subseteq UM(R)$ .

Conversely, suppose that  $x \in UM(R)$ . Thus there is a maximal co-ideal  $m$  such that  $x \in m$ . Now, if  $x \in \sqrt{ZS(R)}$ , then  $F(x) = R$  by Lemma 2.3 and so  $R = F(x) \subseteq m$ , that is impossible. Hence  $UM(R) \subseteq R \setminus \sqrt{ZS(R)}$ . This implies  $R \setminus \sqrt{ZS(R)} = UM(R)$ .  $\square$

**2.5 Remark.** Note that the Prime Avoidance Theorem is explained for subtractive prime co-ideals of a commutative semiring  $R$  in [4, Theorem 3.8]. Also, by [8, Proposition 2.5] and [7, Theorem 3.10], every maximal co-ideal is a subtractive and prime co-ideal, so we can conclude that the Prime Avoidance Theorem and Lemma 2.2 also hold for the case where co-ideals are maximal.

In the following, we define the product of co-ideals of a semiring  $R$ . It is straightforward to verify that the product of co-ideals with this definition is a co-ideal.

**2.6 Definition.** Let  $I$  and  $J$  be two co-ideals of a semiring  $R$ . We define the product of  $I$  and  $J$  as follows:

$$IJ = \{xy + r : x \in I, y \in J \text{ and } r \in R\}.$$

Similarly, we define the product of any finite family of co-ideals. Moreover,  $I^n$  is defined for any co-ideal  $I$  and  $I^n = \{a_1 \dots a_n + r : a_i \in I \text{ and } r \in R\}$ .

Let  $I$  and  $J$  be co-ideals of  $R$  such that  $x \in I$  and  $y \in J$ . Note that with this definition, if  $I$  and  $J$  are strong co-ideals, then  $x, y \in IJ$  because  $x = x1 + 0$  and  $y = 1y + 0$  but this may not be true in general.

### 3. Some basic properties of $\Omega(R)$

As mentioned in the introduction, the graph  $\Omega(R)$  is a graph with all the elements of  $R$  as its vertex-set and two distinct vertices  $x$  and  $y$  are adjacent if and only if  $F(x)F(y) = R$ . Let  $\Omega_1(R)$  be the subgraph of  $\Omega(R)$  with vertex-set  $\sqrt{ZS(R)}$  and  $\Omega_2(R)$  be the subgraph of  $\Omega(R)$  with vertex-set  $UM(R)$ . If  $x \in \sqrt{ZS(R)}$ , then by Lemma 2.3,  $F(x) = R$  and this implies  $x$  is adjacent to any other vertex of  $R$ . With this comment, we can say that  $\Omega_1(R)$  is a complete graph. Also, if  $x, y \in m$  for some maximal co-ideal  $m$  of  $R$ , then  $x$  and  $y$  cannot be adjacent because  $F(x)F(y) \subseteq m$ . Hence, if the semiring  $R$  has one maximal co-ideal, then  $\Omega_2(R)$  is a totally disconnected graph.

**3.1 Lemma.** Let  $m$  be a maximal co-ideal of a semiring  $R$  and  $x \in R$ . If  $x \notin m$ , then  $mF(x) = R$ .

PROOF: Suppose that  $x \notin m$ . Thus  $F(m \cup \{x\}) = R$  since  $m \subsetneq F(m \cup \{x\})$  and  $m$  is a maximal co-ideal. Now, since  $0 \in R$ , we split the proof into three cases for  $F(m \cup \{x\})$ :

Case 1: There exist  $a_1, \dots, a_k \in m$  and  $r \in R$  for some positive integer  $k$  such that  $a_1 \dots a_k + r = 0$ . This implies  $0 \in m$  since  $m$  is co-ideal. This is a contradiction because  $m$  is a maximal co-ideal.

Case 2:  $x^t + r = 0$  for some  $r \in R$  and a positive integer  $t$ . In this case,  $F(x) = R$  because  $0 = x^t + r \in F(x)$  and so  $mF(x) = R$ .

Case 3:  $yx^t + r = 0$  for some  $y \in m$ ,  $r \in R$  and a positive integer  $t$ . Hence  $mF(x) = R$  since  $0 = yx^t + r \in mF(x)$ .  $\square$

As an immediate consequence of Lemma 3.1, we have the next proposition:

**3.2 Proposition.** *Let  $m$  be a maximal co-ideal of a semiring  $R$  and  $x \in R$ . If  $x \notin m$ , then there is an element  $y \in m$  such that  $x$  is adjacent to  $y$  in  $\Omega(R)$ .*

PROOF: Suppose that  $m$  is a maximal co-ideal and  $x \notin m$ . By Lemma 3.1, we have  $mF(x) = R$ . This implies  $y(x^t + r) + k = 0$  for some  $r, k \in R$ ,  $y \in m$  and a positive integer  $t$ . Hence  $yx^t + s = 0$  for some  $s \in R$  and so  $F(x)F(y) = R$  since  $0 = yx^t + s \in F(x)F(y)$ . Therefore,  $x$  and  $y$  are adjacent in  $\Omega(R)$ .  $\square$

**3.3 Proposition.** *Let  $R$  be a semiring and  $x \in R$ . Then  $x \in IM(R)$  if and only if  $x$  is adjacent to no vertex of  $\Omega_2(R)$ .*

PROOF: Let  $x \in IM(R)$ . Assume contrary that  $y \in UM(R)$  is adjacent to  $x$  in  $\Omega_2(R)$ . Thus there exists  $m \in Co-Max(R)$  such that  $y \in m$  and  $F(x)F(y) = R$ . On the other hand,  $x \in IM(R)$  gives  $x \in m$ . Hence  $F(x)F(y) \subseteq m$ , that is a contradiction.

Conversely, assume that  $x$  is not adjacent to any vertex of  $\Omega_2(R)$ . If  $x \notin IM(R)$ , there exists  $m \in Co-Max(R)$  such that  $x \notin m$ . By Proposition 3.2, there is an element  $y \in m$  such that  $x$  is adjacent to  $y$ , which is contrary to our assumption.  $\square$

By Proposition 3.3, for each  $x \in IM(R)$ ,  $\deg_{\Omega_2(R)}(x) = 0$ . So it will be interesting to study the properties of the graph  $\Omega_2(R) \setminus IM(R)$  with vertex-set  $UM(R) \setminus IM(R)$ . Note that if  $R$  is a c-local semiring, then  $\Omega_2(R) \setminus IM(R)$  is an empty graph.

**3.4 Theorem.** *Let  $R$  be a semiring which is not c-local. Then  $\Omega_2(R) \setminus IM(R)$  is a complete bipartite graph if and only if  $R$  has exactly two maximal co-ideals.*

PROOF: First, assume that  $\Omega_2(R) \setminus IM(R)$  is a complete bipartite graph with vertex-sets  $V_1$  and  $V_2$ . Clearly,  $m$  is contained in one of the partitions for any maximal co-ideal  $m$ . Thus, suppose that  $m_i \setminus IM(R) \subseteq V_i$  for  $i = 1, 2$ . If  $R$  has another maximal co-ideal such as  $m_3$ , then  $m_3 \setminus IM(R) \subseteq V_i$  for some  $i = 1, 2$ , which is impossible, since  $m_1m_3 = m_2m_3 = R$ . Hence  $R$  can have only two maximal co-ideals.

Conversely, suppose that  $Co-Max(R) = \{m_1, m_2\}$ . Then the vertex-set of  $\Omega_2(R) \setminus IM(R)$  is  $(m_1 \setminus m_2) \cup (m_2 \setminus m_1)$ . Clearly, the subgraphs  $m_1 \setminus m_2$  and  $m_2 \setminus m_1$  are totally disconnected. Let  $x \in m_1 \setminus m_2$  and  $y \in m_2 \setminus m_1$ . Now to complete the proof, it suffices to show that  $F(x)F(y) \not\subseteq m_1$  and  $F(x)F(y) \not\subseteq m_2$ . If  $F(x)F(y) \subseteq m_1$ , then  $xy \in m_1$ . This implies that  $y \in m_1$ , since  $m_1$  is subtractive, a contradiction. Similarly, it can be shown that  $F(x)F(y) \not\subseteq m_2$ . Therefore we have  $F(x)F(y) = R$ . Hence  $\Omega_2(R) \setminus IM(R)$  is complete bipartite graph with vertex-set  $m_1 \setminus m_2$  and  $m_2 \setminus m_1$ .  $\square$

In the following, we give an example of semiring  $R$  in which  $R$  has two maximal co-ideals and show that  $\Omega_2(R) \setminus IM(R)$  is complete bipartite graph.

**3.5 Example.** Let  $S = \{0, 1, a\}$  be an idempotent semiring in which  $a + 1 = 1 + a = a$  and let  $R = S \times S$ . The maximal co-ideals of  $R$  are as follows:

$$\begin{aligned} m_1 &= \{(0, 1), (0, a), (1, a), (a, 1), (1, 1), (a, a)\}, \\ m_2 &= \{(1, 0), (a, 0), (1, a), (a, 1), (1, 1), (a, a)\}. \end{aligned}$$

It can be shown that  $\Omega_2(R) \setminus IM(R)$  is complete bipartite with vertex-sets  $\{(0, 1), (0, a)\}$  and  $\{(1, 0), (a, 0)\}$ .

In the next theorem, we study the clique number of the graph  $\Omega_2(R) \setminus IM(R)$  for a c-semilocal semiring. Also, with this theorem, we give a result about the girth of  $\Omega_2(R) \setminus IM(R)$ .

**3.6 Theorem.** Let  $R$  be a c-semilocal semiring and  $|Co - Max(R)| \geq n$  with  $n \geq 2$ . Then  $\Omega_2(R) \setminus IM(R)$  has a clique of order  $n$ . In particular, if  $|Co - Max(R)| = n$ , then  $\omega(\Omega_2(R) \setminus IM(R)) = n$ .

PROOF: Let  $\{m_1, \dots, m_n\}$  be a subset of  $Co - Max(R)$ . We claim that for any  $x_1 \in m_1 \setminus \bigcup_{j=2}^n m_j$ , there exists a clique with vertex-set  $\{x_1, \dots, x_n\}$  in  $\Omega_2(R) \setminus IM(R)$ , where  $x_i \in m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j$  for  $i = 1, \dots, n$ . We prove this claim by induction on  $n$ . For  $n = 2$ , the proof is similar to the proof of Theorem 3.4. Now, suppose that  $n \geq 3$ . By Remark 2.5,  $m_1 \cap m_n \not\subseteq \bigcup_{j=2}^{n-1} m_j$ . Thus there exists  $y \in (m_1 \cap m_n) \setminus \bigcup_{j=2}^{n-1} m_j$  and so  $x_1 + y \in (m_1 \cap m_n) \setminus \bigcup_{j=2}^{n-1} m_j$ . By induction hypothesis, there is a clique with vertex-set  $\{x_1 + y, x_2, \dots, x_{n-1}\}$ , where  $x_i \in m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^{n-1} m_j$  for  $2 \leq i \leq n-1$ . Indeed,  $x_2, \dots, x_{n-1} \notin m_n$  since  $x_1 + y \in m_n$ .

On the other hand, since  $x_1 + y$  is adjacent to  $x_2, \dots, x_{n-1}$ , hence  $x_1$  is adjacent to  $x_2, \dots, x_{n-1}$  because  $F(x_1 + y) \subseteq F(x_1)$ . Now, since  $x_1 + \dots + x_{n-1} \notin m_n$  ( $m_n$  is prime), so by Proposition 3.2, there exists  $x_n \in m_n$  which is adjacent to  $x_1 + \dots + x_{n-1}$ . This implies that  $x_n$  is adjacent to  $x_1, \dots, x_{n-1}$  and we can conclude  $\{x_1, \dots, x_n\}$  is a clique of order  $n$  in  $\Omega_2(R) \setminus IM(R)$ .

Now, suppose that  $|Co - Max(R)| = n$ . Thus we have  $\omega(\Omega_2(R) \setminus IM(R)) \geq n$ . If  $\Omega_2(R) \setminus IM(R)$  has a clique of order  $k$  in which  $k \geq n$ , then by the Pigeon Hole Principal, two elements of the clique should belong to one maximal co-ideal, which is a contradiction. Hence  $\omega(\Omega_2(R) \setminus IM(R)) = n$ .  $\square$

Theorem 3.6 leads to the following corollary:

**3.7 Corollary.** Let  $R$  be a c-semilocal semiring with  $|Co - Max(R)| \geq 3$ . Then  $gr(\Omega_2(R) \setminus IM(R)) = 3$ .

PROOF: Let  $|Co - Max(R)| \geq 3$ . By Theorem 3.6,  $\Omega_2(R) \setminus IM(R)$  has a clique of order 3, so  $gr(\Omega_2(R) \setminus IM(R)) = 3$ .  $\square$

In the next theorem, we will compute the girth of  $\Omega_2(R) \setminus IM(R)$  when  $R$  is a c-semilocal semiring.

**3.8 Theorem.** Let  $R$  be a c-semilocal semiring with  $|Co - Max(R)| \geq 2$ . If  $\Omega_2(R) \setminus IM(R)$  contains a cycle, then  $gr(\Omega_2(R) \setminus IM(R)) \leq 4$ .

PROOF: Assume that  $\Omega_2(R) \setminus IM(R)$  contains a cycle and  $gr(\Omega_2(R) \setminus IM(R)) \neq 3$ . So Corollary 3.7 implies that  $|Co - Max(R)| = 2$ . Hence by Theorem 3.4,  $\Omega_2(R) \setminus IM(R)$  is complete bipartite graph and so  $gr(\Omega_2(R) \setminus IM(R)) = 4$ .  $\square$

**3.9 Example.** Let  $X = \{a, b, c\}$  and  $R = (P(X), \cup, \cap)$  be a semiring, where  $P(X)$  is the power set of  $X$ . For this semiring we have  $1_R = X$  and  $0_R = \emptyset$ . In this case, the maximal co-ideals of semiring  $R$  are as follows:

$$\begin{aligned} m_1 &= \{\{a\}, \{a, b\}, \{a, c\}, X\}, \\ m_2 &= \{\{b\}, \{a, b\}, \{b, c\}, X\}, \\ m_3 &= \{\{c\}, \{a, c\}, \{b, c\}, X\}. \end{aligned}$$

For the graph  $\Omega_2(R) \setminus IM(R)$  the vertex-set is  $P(X) \setminus \{\emptyset, X\}$  and  $\{\{a\}, \{b\}, \{c\}\}$  is a maximal clique. This implies that  $\omega(\Omega_2(R) \setminus IM(R)) = 3$  and so  $gr(\Omega_2(R) \setminus IM(R)) = 3$ .

**3.10 Proposition.** Let  $R$  be a  $c$ -semilocal semiring with  $|Co - Max(R)| \geq 2$ . Then  $\Omega_2(R) \setminus IM(R)$  is star graph if and only if there is a vertex of  $\Omega_2(R) \setminus IM(R)$  which is adjacent to every other vertex.

PROOF: The necessity is obvious by definition, thus we need to prove the sufficiency. Assume that there exists  $x \in \Omega_2(R) \setminus IM(R)$  that is adjacent to every other vertex. Let  $x \in m$  for some  $m \in Co - Max(R)$ . We must have  $|m \setminus IM(R)| = 1$ , because if  $x$  and  $y$  are distinct vertices of  $m \setminus IM(R)$ , then by assumption  $x$  and  $y$  are adjacent, which is impossible. Now, if  $|Co - Max(R)| \geq 3$ , then  $|m \setminus IM(R)| \geq 3$  for any maximal co-ideal  $m$  of  $R$ . Hence  $R$  cannot contain more than two maximal co-ideals. It is straightforward to verify that  $\Omega_2(R) \setminus IM(R)$  is a star graph by Theorem 3.4.  $\square$

**3.11 Theorem.** Let  $R$  be a  $c$ -semilocal semiring with  $|Co - Max(R)| \geq 2$ . Then the following statements are equivalent:

- (1)  $\Omega_2(R) \setminus IM(R)$  is a tree;
- (2)  $\Omega_2(R) \setminus IM(R)$  is a forest;
- (3)  $|Co - Max(R)| = 2$  and  $|m \setminus IM(R)| = 1$  for some  $m \in Co - Max(R)$ ;
- (4)  $\Omega_2(R) \setminus IM(R)$  is a star graph.

PROOF: (1)  $\Rightarrow$  (2), (3)  $\Rightarrow$  (4) and (4)  $\Rightarrow$  (1) are clear.

(2)  $\Rightarrow$  (3) Let  $\Omega_2(R) \setminus IM(R)$  be a forest. Thus by Corollary 3.7, we have  $|Co - Max(R)| = 2$ . Now, if  $|m \setminus IM(R)| \geq 2$  for each maximal co-ideal  $m$ , then  $\Omega_2(R) \setminus IM(R)$  contains a cycle of order 4, because by Theorem 3.4,  $\Omega_2(R) \setminus IM(R)$  is a complete bipartite graph, a contradiction. Hence  $|m \setminus IM(R)| = 1$  for some  $m \in Co - Max(R)$ .  $\square$

**3.12 Proposition.** Let  $R$  be a  $c$ -semilocal semiring. Then  $\Omega_2(R) \setminus IM(R)$  is a complete graph if and only if it is in the form  $K_{1,1}$ .

PROOF: Let  $\Omega_2(R) \setminus IM(R)$  be a complete graph. So we can say that there is a vertex of  $\Omega_2(R) \setminus IM(R)$  that is adjacent to every other vertex. Hence by

Proposition 3.10,  $\Omega_2(R) \setminus IM(R)$  is a star graph and Theorem 3.11 implies that  $R$  has exactly two maximal co-ideals  $m_1$  and  $m_2$  so that  $|m_i \setminus IM(R)| = 1$  for some  $i$ . Now, since for each maximal co-ideal  $m_i$ , the vertex-set  $m_i \setminus IM(R)$  is a partition of  $\Omega_2(R) \setminus IM(R)$ , we must have  $|m_i \setminus IM(R)| = 1$  for any  $i$ , because the elements of  $m_i \setminus IM(R)$  are not adjacent to each other. In this case,  $\Omega_2(R) \setminus IM(R)$  is in the form  $K_{1,1}$ .

The converse is obvious.  $\square$

**3.13 Example.** Let  $X = \{a, b\}$  and  $R = (P(X), \cup, \cap)$  be a semiring, where  $P(X)$  is power set of  $X$  and  $1_R = X$  and  $0_R = \emptyset$ . The maximal co-ideals of semiring  $R$  are as follows:

$$\begin{aligned} m_1 &= \{\{a\}, X\}, \\ m_2 &= \{\{b\}, X\}. \end{aligned}$$

Thus by Theorem 3.4,  $\Omega_2(R) \setminus IM(R)$  is a complete bipartite graph with vertex-sets  $V_1 = \{\{a\}\}$  and  $V_2 = \{\{b\}\}$ . Indeed,  $\Omega_2(R) \setminus IM(R)$  forms  $K_{1,1}$ . Hence  $\Omega_2(R) \setminus IM(R)$  is complete graph that is a star graph and a tree. Also, since  $\Omega_2(R) \setminus IM(R)$  does not contain any cycle, so it is a forest and  $gr(\Omega_2(R) \setminus IM(R)) = \infty$ .

**3.14 Theorem.** Let  $R$  be a  $c$ -semilocal semiring which is not a  $c$ -local. Then the following hold.

- (i) If  $|Co - Max(R)| = n$ , then  $\Omega_2(R) \setminus IM(R)$  is  $n$ -partite.
- (ii) If  $\Omega_2(R) \setminus IM(R)$  is  $n$ -partite, then  $|Co - Max(R)| \leq n$ . In this case, if  $\Omega_2(R) \setminus IM(R)$  is not  $(n-1)$ -partite, then  $|Co - Max(R)| = n$ .

PROOF: (i) Suppose that  $Co - Max(R) = \{m_1, \dots, m_n\}$ . Let  $V_1 = m_1 \setminus IM(R)$  and  $V_i = m_i \setminus \bigcup_{j=1}^{i-1} m_j$  for  $2 \leq i \leq n$ . By Remark 2.5,  $V_i \neq \emptyset$  for each  $i$ . Also, clearly that  $\bigcup_{i=1}^n V_i = UM(R) \setminus IM(R)$  and for every  $x, y \in V_i$ , they are not adjacent in  $\Omega_2(R) \setminus IM(R)$ . Hence  $\Omega_2(R) \setminus IM(R)$  is  $n$ -partite graph.

(ii) Assume contrary that  $|Co - Max(R)| \geq n+1$ . By Theorem 3.6,  $\Omega_2(R) \setminus IM(R)$  has a clique with cardinality  $n+1$ . Thus by the Pigeon Hole Principal, two elements of this clique should belong to one part of  $\Omega_2(R) \setminus IM(R)$ , which is a contradiction.

Now, if  $\Omega_2(R) \setminus IM(R)$  is not  $(n-1)$ -partite and  $|Co - Max(R)| = k < n$ , then by part (i),  $\Omega_2(R) \setminus IM(R)$  can be a  $k$ -partite graph, a contradiction.  $\square$

**3.15 Proposition.** Let  $R$  be a semiring with  $|Co - Max(R)| \geq 2$ . If  $\Omega_2(R) \setminus IM(R)$  is complete  $n$ -partite graph, then  $n = 2$ .

PROOF: Let  $\{m_1, m_2\} \subseteq Co - Max(R)$ . By Proposition 3.2, it is clear that there exists at least one element of  $m_1 \setminus IM(R)$  which is adjacent to one element of  $m_2 \setminus IM(R)$ . Also,  $m_i \setminus IM(R)$  is totally disconnected for any  $m_i \in Co - Max(R)$ , so  $m_1 \setminus IM(R)$  and  $m_2 \setminus IM(R)$  are entirely contained in one of partitions of  $\Omega_2(R) \setminus IM(R)$ . This implies that  $(m_1 \setminus IM(R)) \cap (m_2 \setminus IM(R)) = \emptyset$  and hence

$m_1 \cap m_2 \subseteq IM(R)$ . Therefore we have  $m_1 \cap m_2 = IM(R)$ . Thus  $|Co-Max(R)| = 2$  and by Theorem 3.4,  $\Omega_2(R) \setminus IM(R)$  is a complete bipartite graph.  $\square$

As mentioned in the introduction, Beck conjectured that  $\chi(R) = \omega(R)$  for every ring  $R$ . In the following theorem we want to establish Beck's conjecture for the graph  $\Omega_2(R) \setminus IM(R)$  of c-semilocal semiring.

We recall that the *chromatic number* of the graph  $G$ , denoted by  $\chi(G)$ , is the minimal number of colors which can be assigned to the vertices of  $G$  in such a way that any two adjacent vertices have different colors.

**3.16 Theorem.** *Let  $R$  be a c-semilocal semiring with  $|Co-Max(R)| = n$ . Then  $\chi(\Omega_2(R) \setminus IM(R)) = \omega(\Omega_2(R) \setminus IM(R)) = n$ .*

**PROOF:** Let  $Co-Max(R) = \{m_1, \dots, m_n\}$ . By Theorem 3.6, we know that  $\omega(\Omega_2(R) \setminus IM(R)) = n$ . Also, it is obvious that  $\chi(G) \geq \omega(G)$  for any graph  $G$ , so  $\chi(\Omega_2(R) \setminus IM(R)) \geq n$ . On the other hand,  $\Omega_2(R) \setminus IM(R)$  is  $n$ -partite by Theorem 3.14, thus the elements of each part can be colored by an identical color because these elements are not adjacent. Hence  $\chi(\Omega_2(R) \setminus IM(R)) = n$ .  $\square$

#### 4. Diameter and radius of $\Omega(R)$

In this section, we show that  $\Omega_2(R) \setminus IM(R)$  is a connected graph and  $\text{diam}(\Omega_2(R) \setminus IM(R)) \leq 3$ . Also, we compute the eccentricity of the vertices of  $\Omega_2(R) \setminus IM(R)$ .

**4.1 Theorem.** *Let  $R$  be a semiring. The graph  $\Omega_2(R) \setminus IM(R)$  is connected with  $\text{diam}(\Omega_2(R) \setminus IM(R)) \leq 3$ .*

**PROOF:** Let  $x, y \in \Omega_2(R) \setminus IM(R)$  that are not adjacent. We consider two cases:

Case 1: Suppose that  $x + y \notin IM(R)$ . By Proposition 3.3,  $F(x + y)F(a) = R$ , for some  $a \in \Omega_2(R) \setminus IM(R)$ . This implies that  $F(x)F(a) = F(y)F(a) = R$  since  $F(x + y) \subseteq F(x), F(y)$ . Hence  $x - a - y$  is a path in  $\Omega_2(R) \setminus IM(R)$  and  $d(x, y) = 2$ .

Case 2: Suppose that  $x + y \in IM(R)$ . Thus for each  $m \in Co-Max(R)$ , we have  $x \in m$  or  $y \in m$ . Since  $x \notin IM(R)$ , by Proposition 3.3, there exists  $a \in \Omega_2(R) \setminus IM(R)$  such that  $x$  is adjacent to  $a$  in  $\Omega_2(R) \setminus IM(R)$ . Hence if  $x \in m$  for maximal co-ideal  $m$ , then  $a \notin m$ . Now, there exists  $n \in Co-Max(R)$  in which  $y \notin n$ , since  $y \notin IM(R)$ . This implies that  $x \in n$  and  $a \notin n$ . As  $n$  is prime co-ideal, we have  $a + y \notin IM(R)$ . So by Case 1,  $d(a, y) \leq 2$  and hence  $d(x, y) \leq 3$ .  $\square$

We recall that for a graph  $G$ , the *eccentricity* of a vertex  $x$  is  $e(x) = \text{Max}\{d(y, x); y \in V(G)\}$ . A vertex  $x$  with smallest eccentricity is called a *center* of  $G$  and its eccentricity is called the *radius* of  $G$  and is denoted by  $\text{rad}(G)$ .

**4.2 Proposition.** *Let  $R$  be a c-semilocal semiring with  $|Co-Max(R)| \geq 3$ . If  $x \in \Omega_2(R) \setminus IM(R)$  belongs to at least two maximal co-ideals, then  $e(x) = 3$ .*

PROOF: Suppose that for  $x \in \Omega_2(R) \setminus IM(R)$  there exist at least two maximal co-ideals  $m_i$  and  $m_j$  so that  $x$  is contained in  $m_i \cap m_j$ . By Theorem 4.1,  $d(x, y) \leq 3$  for any  $y \in \Omega_2(R) \setminus IM(R)$ . Now to complete the proof, it suffices to show that, there is an element  $y$  in  $\Omega_2(R) \setminus IM(R)$  such that  $d(x, y) = 3$ . Let  $y \in \bigcap_{\substack{k=1 \\ k \neq i}}^n m_k \setminus IM(R)$ .

Clearly that  $d(x, y) \neq 1$ , since  $x, y \in m_j$ . If  $d(x, y) = 2$ , then  $x - a - y$  is a path for some  $a \in \Omega_2(R) \setminus IM(R)$ . Now, as  $x \in m_i \cap m_j$ , thus  $a \notin m_i, m_j$ . Also,  $y \in \bigcap_{\substack{k=1 \\ k \neq i}}^n m_k \setminus IM(R)$  implies that  $a \notin m_k$ , for  $1 \leq k \leq n$  and  $k \neq i$ . Indeed, this implies that  $a \notin m$  for any  $m \in Co - Max(R)$ , that is impossible. So we can conclude that  $d(x, y) = 3$  and hence  $e(x) = 3$ .  $\square$

**4.3 Corollary.** *Let  $R$  be a  $c$ -semilocal semiring with  $|Co - Max(R)| \geq 3$ . Then  $\text{diam}(\Omega_2(R) \setminus IM(R)) = 3$ .*

PROOF: We know that  $\text{diam}(\Omega_2(R) \setminus IM(R)) \leq 3$ , by Theorem 4.1. On the other hand,  $|Co - Max(R)| \geq 3$  implies that there is an element  $x$  in  $\Omega_2(R) \setminus IM(R)$  that belongs to at least two maximal co-ideals. Now, the proof is immediate from Proposition 4.2.  $\square$

**4.4 Proposition.** *Let  $R$  be a semiring with  $|Co - Max(R)| = 2$ . If  $|m_i \setminus IM(R)| \geq 2$  for some  $i$ , then  $\text{diam}(\Omega_2(R) \setminus IM(R)) = 2$ .*

PROOF: Assume that  $|Co - Max(R)| = 2$ . By Theorem 3.4,  $\Omega_2(R) \setminus IM(R)$  is complete bipartite graph and thus  $\text{diam}(\Omega_2(R) \setminus IM(R)) \leq 2$ . On the other hand,  $\text{diam}(\Omega_2(R) \setminus IM(R)) \neq 1$  because  $|m_i \setminus IM(R)| \geq 2$  for some  $i$ . Hence  $\text{diam}(\Omega_2(R) \setminus IM(R)) = 2$ .  $\square$

**4.5 Theorem.** *Let  $R$  be a semiring. If  $\text{diam}(\Omega_2(R) \setminus IM(R)) = 2$ , then  $R$  has an infinite number of maximal co-ideals or  $|Co - Max(R)| = 2$  such that  $|m_i \setminus IM(R)| \geq 2$  for some  $i = 1, 2$ .*

PROOF: Assume that  $\text{diam}(\Omega_2(R) \setminus IM(R)) = 2$  and  $|Co - Max(R)|$  is finite. If  $n \geq 3$ , then by Corollary 4.3,  $\text{diam}(\Omega_2(R) \setminus IM(R)) = 3$ , which is a contradiction. Thus we must have  $|Co - Max(R)| = 2$ . Now, if  $|m_i \setminus IM(R)| = 1$  for each  $i$ , then  $\text{diam}(\Omega_2(R) \setminus IM(R)) = 1$  because  $\Omega_2(R) \setminus IM(R)$  is a complete bipartite graph, this is a contradiction. Hence  $|m_i \setminus IM(R)| \geq 2$  for some  $i$ .  $\square$

**4.6 Theorem.** *Let  $R$  be a  $c$ -semilocal semiring with  $|Co - Max(R)| = n \geq 2$ . If  $\Omega_2(R) \setminus IM(R)$  is not a star graph, then we have:*

$$e(x) = \begin{cases} 2 & \text{if } x \in m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j \\ 3 & \text{otherwise.} \end{cases}$$

PROOF: First, we claim that for any  $a \in \Omega_2(R) \setminus IM(R)$ ,  $e(a) \neq 1$ . Suppose that there is an element  $x$  of  $\Omega_2(R) \setminus IM(R)$  such that  $e(x) = 1$ . This means that  $x$  is adjacent to any vertex of  $\Omega_2(R) \setminus IM(R)$  and so  $\Omega_2(R) \setminus IM(R)$  is a star graph by Proposition 3.10, which is a contradiction. Now, suppose that  $x \in m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j$ .

For any  $y \in \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j \setminus m_i$ , if  $F(x)F(y) \neq R$ , then  $F(x)F(y) \subseteq m_k$  for some  $m_k \in Co - Max(R)$ . Hence  $x, y \in m_k$ , that is a contradiction. Therefore, in this case  $d(x, y) = 1$ . But, if  $y \in m_i \setminus IM(R)$  and  $y \neq x$ , then by proof of Theorem 4.1,  $d(x, y) \leq 2$  since  $x + y \notin IM(R)$ . Clearly  $x$  and  $y$  are not adjacent and so  $d(x, y) = 2$ . According to the assumption, since  $\Omega_2(R) \setminus IM(R)$  is not star graph thus by Theorem 3.11 ((4)  $\Rightarrow$  (3))  $|Co - Max(R)| \geq 2$  and  $|m \setminus IM(R)| \geq 2$  for each  $m \in Co - Max(R)$ . Hence  $e(x) = 2$  for any  $x \in m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j$ .

Now, suppose that  $x \notin m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j$  for any maximal co-ideal  $m_i$ . Hence there are at least two maximal co-ideals  $m_k$  and  $m_j$  so that  $x$  is contained in  $m_k \cap m_j$ . This implies that  $|Co - Max(R)| \geq 3$ , thus by Proposition 4.2 we have  $e(x) = 3$ .  $\square$

**4.7 Corollary.** *Let  $R$  be a c-semilocal semiring with  $|Co - Max(R)| = n \geq 2$ . If  $\Omega_2(R) \setminus IM(R)$  is not a star graph, then the elements of  $m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j$  are center of  $\Omega_2(R) \setminus IM(R)$  for each  $m_i \in Co - Max(R)$  and  $rad(\Omega_2(R) \setminus IM(R)) = 2$ .*

PROOF: This is an immediate consequence of Theorem 4.6.  $\square$

**4.8 Proposition.** *Let  $R$  be a semiring with  $|Co - Max(R)| = 2$ . Then  $rad(\Omega_2(R) \setminus IM(R)) = 1$  or  $2$ .*

PROOF: We know by Theorem 3.4,  $\Omega_2(R) \setminus IM(R)$  is a complete bipartite graph when  $|Co - Max(R)| = 2$ . Now, if  $\Omega_2(R) \setminus IM(R)$  is a star graph, clearly  $rad(\Omega_2(R) \setminus IM(R)) = 1$ . Otherwise,  $rad(\Omega_2(R) \setminus IM(R)) = 2$  and all elements of  $\Omega_2(R) \setminus IM(R)$  are center.  $\square$

## 5. The relations between $\Omega(R)$ and $\Gamma(R)$

In this section, we will investigate the relations between the zero-divisor graph  $\Gamma(R)$  and  $\Omega(R)$ . We show that  $\Gamma(R)$  is a subgraph of the  $\Omega(R)$ . Also, we determine a family of commutative semirings whose zero-divisor graph  $\Gamma(R)$  and  $\Omega_2(R)$  are isomorphic.

We recall that an *isomorphism* from a simple graph  $G$  to a simple graph  $H$  is a bijection  $f : V(G) \rightarrow V(H)$  such that  $x$  and  $y$  are adjacent in  $G$  if and only if  $f(x)$  and  $f(y)$  are adjacent in  $H$ . We say  $G$  is isomorphic to  $H$ , if there is an isomorphism from  $G$  to  $H$ , denoted by  $G \cong H$ .

**5.1 Theorem.** *The zero-divisor graph  $\Gamma(R)$  is a subgraph of the graph  $\Omega(R)$ .*

PROOF: Suppose that  $x$  and  $y$  are two distinct adjacent vertices in  $\Gamma(R)$ . Thus  $xy = 0$  and this implies  $F(x)F(y) = R$ , since  $0 = xy \in F(x)F(y)$ . Hence  $x$  and  $y$  are adjacent in  $\Omega(R)$ . Now, since the vertex-set of zero-divisor graph is  $Z(R)^*$ , thus we can conclude that  $\Gamma(R)$  is a subgraph of  $\Omega(R)$ .  $\square$

**5.2 Theorem.** *Let  $R$  be a multiplicatively idempotent and zero-sumfree semiring. Then the zero-divisor graph  $\Gamma(R)$  is an induced subgraph of the graph  $\Omega(R)$ .*

PROOF: By Theorem 5.1,  $\Gamma(R)$  is a subgraph of  $\Omega(R)$ . Thus it is enough to show that if  $x, y \in Z(R)^*$  and they are adjacent in  $\Omega(R)$ , then  $x$  and  $y$  are adjacent in  $\Gamma(R)$ . Assume that  $x, y \in Z(R)^*$  and  $F(x)F(y) = R$ . So we have  $(x^n + r)(y^m + s) + k = 0$  for some positive integers  $n, m$  and  $r, s, k \in R$ . Since  $R$  is a multiplicatively idempotent, then we have  $xy + a = 0$  for some  $a \in R$ . Hence  $xy = 0$  because  $R$  is a zero-sumfree semiring. This implies  $x$  and  $y$  are adjacent in  $\Gamma(R)$ .  $\square$

Note that if  $UM(R) = Z(R)^*$ , then  $\Gamma(R)$  is a spanning subgraph of  $\Omega_2(R)$  by Theorem 5.1. Thus, if  $R$  is a multiplicatively idempotent and zero-sumfree semiring, then we have the following result:

**5.3 Corollary.** *Let  $R$  be a multiplicatively idempotent and zero-sumfree semiring. If  $Z(R)^* = UM(R)$ , then the zero-divisor graph  $\Gamma(R)$  and  $\Omega_2(R)$  are isomorphic. In particular, if  $Z(R)^* = UM(R) \setminus IM(R)$ , then  $\Gamma(R)$  and  $\Omega_2(R) \setminus IM(R)$  are isomorphic.*

PROOF: This is an immediate consequence of Theorems 5.1 and 5.2.  $\square$

To this end, we give an example that clarifies the previous results:

**5.4 Example.** Let  $S = \{0, 1, a\}$  and  $R = (S \times S, +, \cdot)$  be a semiring as defined in Example 3.5. We know that  $R$  is a multiplicatively idempotent. For this semiring, the vertex-set of  $\Gamma(R)$  is

$$Z(R)^* = \{(0, 1), (1, 0), (0, a), (a, 0)\}$$

and the vertex-set of  $\Omega_2(R)$  is  $UM(R) = R \setminus \{(0, 0)\}$ . Clearly  $\Gamma(R)$  is an induced subgraph of  $\Omega(R)$  and  $\Omega_2(R)$ . On the other hand,  $(0, 0)$  is only zero-sum of  $R$ , thus  $R$  is zero-sumfree semiring. We see that  $UM(R) \setminus IM(R) = Z(R)^*$ , so we can conclude that  $\Gamma(R)$  and  $\Omega_2(R) \setminus IM(R)$  are isomorphic by Corollary 5.3.

## REFERENCES

- [1] Akbari S., Habibi M., Majidinya A., Manaviyat R., *A note on co-maximal graph of non-commutative rings*, Algebr. Represent. Theory **16** (2013), 303–307.
- [2] Anderson D.F., Livingston P.S., *The zero-divisor graph of a commutative ring*, J. Algebra **217** (1999), 434–447.
- [3] Beck I., *Coloring of commutative rings*, J. Algebra **116** (1988), 208–226.
- [4] Chaudhari J.N., Ingale K.J., *Prime avoidance theorem for co-ideals in semirings*, Research J. Pure Algebra **1(9)** (2011), 213–216.
- [5] Ebrahimi Atani S., *The zero-divisor graph with respect to ideals of a commutative semiring*, Glas. Mat. **43(63)** (2008), 309–320.
- [6] Ebrahimi Atani S., *An ideal-based zero-divisor graph of a commutative semiring*, Glas. Mat. **44(64)** (2009), 141–153.
- [7] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M., *Strong co-ideal theory in quotients of semirings*, J. Adv. Res. Pure Math. **5** (2013), no. 3, 19–32.
- [8] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M., *A fundamental theorem of co-homomorphisms for semirings*, Thai J. Math. **12** (2014), no. 2, 491–497.

- [9] Golan J.S., *Semirings and Their Applications*, Kluwer Academic Publishers, Dordrecht, 1999.
- [10] Maimani H.R., Salimi M., Sattari A., Yassemi S., *Comaximal graph of commutative rings*, J. Algebra **319** (2008), 1801–1808.
- [11] Sharma P.K., Bhatwadekar S.M., *A note on graphical representation of rings*, J. Algebra **176** (1995), 124–127.
- [12] West D.B., *Introduction to Graph Theory*, Prentice-Hall of India Pvt. Ltd, 2003.

DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF MAZANDARAN, BABOL SAR, IRAN

*E-mail:* talebi@umz.ac.ir

a.darzi@stu.umz.ac.ir

(Received December 7, 2016, revised February 2, 2017)