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On graph associated to co-ideals of commutative semirings

YAHYA TALEBI, ATEFEH DARZI

Abstract. Let R be a commutative semiring with non-zero identity. In this paper,
we introduce and study the graph Q(R) whose vertices are all elements of R
and two distinct vertices z and y are adjacent if and only if the product of
the co-ideals generated by = and y is R. Also, we study the interplay between
the graph-theoretic properties of this graph and some algebraic properties of
semirings. Finally, we present some relationships between the zero-divisor graph
I'(R) and Q(R).
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1. Introduction

The concept of the zero-divisor graph of a commutative ring R was first intro-
duced by Beck [3]. He defined this graph as a simple graph where all elements
of the ring R are the vertex-set of this graph and two distinct elements x and
y are adjacent if and only if xy = 0. Beck conjectured that x(R) = w(R) for
every ring R. In [2], Anderson and Livingston introduced the zero-divisor graph
with vertices Z(R)* = Z(R) \ {0}, the set of non-zero zero-divisors of R. Some
other investigations into properties of zero-divisor graph over commutative semi-
ring may be found in [5], [6]. In [11], Sharma and Bhatwadekar defined another
graph on a ring R with vertices as elements of R and there is an edge between
two distinct vertices x and y in R if and only if Rz + Ry = R. Further, in [10],
Maimani et al. studied the graph defined by Sharma and Bhatwadekar and called
it comaximal graph. Also, in [1], Akbari et al. studied the comaximal graph over
non-commutative ring.

Note that throughout this paper all semirings are considered to be commutative
semirings with non-zero identity. First, we introduce the concept of product of co-
ideals in the semiring R. Next, we define an undirected graph over commutative
semiring in which vertices are all elements of R and two distinct vertices z and
y are adjacent if and only if the product of the co-ideals generated by x and y
is R (i.e. F(z)F(y) = R). We denote this graph by Q(R). In Section 2, we recall
some notions of semirings which will be used in this paper. In other sections, we
study some graph-theoretic properties of 2(R) and its subgraphs such as diameter,
radius, girth, clique number and chromatic number.
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In a graph G, we denote the vertex-set of G by V(G) and the edge-set by E(G).
A graph G is said to be connected, if there is a path between every two distinct
vertices and we say that G is totally disconnected, if no two vertices of G are
adjacent. For a given vertex x, the number of all vertices adjacent to it, is called
degree of the vertex x, denoted by deg(x). For distinct vertices x and y of G, let
d(x,y) be the length of the shortest path from x to y (d(z,z) = 0 and d(z, y) = oo
if there is no such path). The diameter of G is diam(G) = sup{d(z,y) : = and y
are distinct vertices of G}. The girth of G, denoted by gr(G), is defined as the
length of the shortest cycle in G. If G has no cycles, then gr(G) = oo and G is
called a forest. Also, G is called a tree if G is connected and has no cycles. A clique
in a graph G is a complete subgraph of G. The clique number of G, denoted by
w(@), is the number of vertices in a largest clique of G. An independent set in a
graph G is a set of pairwise non-adjacent vertices. A graph in which each pair of
distinct vertices is joined by an edge is called a complete graph. We denote the
complete graph on n vertices by K,,. For a positive integer k, a k-partite graph
is one whose vertex-set can be partitioned into k£ independent sets. A k-partite
graph G is said to be a complete k-partite graph, if each vertex is joined to every
vertex that is not in the same partition. The complete bipartite graph (2-partite
graph) with parts of sizes m and n is denoted by K, ,. We will sometimes call
a K1, a star graph. We write G \ {z} or G\ S for the subgraph of G obtained
by deleting a vertex x or set of vertices S. An induced subgraph is a subgraph
obtained by deleting a set of vertices. Also, a spanning subgraph of G is a subgraph
with vertex-set V(G). A general reference for graph theory is [12].

2. Preliminaries

In this section, we recall various notions about semirings which will be used
throughout the paper. A semiring R is an algebraic system (R, +,-) such that
(R, +) is a commutative monoid with identity element 0 and (R, -) is a semigroup.
In addition, operations 4+ and - are connected by distributivity and 0 annihilates R
(i.e. z0 = 0z = 0 for each € R). A semiring R is said to be commutative if
(R, ) is a commutative semigroup and R is said to have an identity if there exists
1 € R such that 1z = z1 = x.

Recall that, throughout this paper, all semirings are commutative with non-
zero identity. The following definitions are given in [7], [9].

2.1 Definition. Let R be a semiring.

(1) A non-empty subset I of R is called a co-ideal of R if and only if it is closed
under multiplication and satisfies the condition that a +r € I for all @ € I and
r € R. According to this definition, 0 € [ if and only if I = R. Also, a co-ideal T
of R is called strong, if 1 € I.

(2) A co-ideal I of semiring R is called subtractive if x € I and zy € I, implies
y € I for all x,y € R. So every subtractive co-ideal is a strong co-ideal.

(3) A proper co-ideal P of R is called prime if a +b € P, implies a € P or
be P for all a,b € R.
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(4) A proper co-ideal I of R is called mazimal if there is no co-ideal J such
that I C J C R.

(5) An element a of a semiring R is multiplicatively idempotent if and only if
a® = a and a is called additively idempotent if and only if a+a = a. A semiring R
is said to be idempotent if it is both additively and multiplicatively idempotent.

(6) An element z of a semiring R is called a zero-sum of R, if there exists an
element y € R such that z+y = 0. It is clear that, y is the unique element which
satisfies * + y = 0. We will denote the set of all zero-sums of R by ZS(R). It is
easy to see that ZS(R) is an ideal of R. Also, a semiring R is a ring if and only
if ZS(R) = R and R is called zero-sumfree if and only if ZS(R) =

(7) If A is a non-empty subset of a semiring R, then the set F/(A) of all elements
of R of the form ajas...a, + 7, where a; € Aforalll <i <mnandr € R, is
a co-ideal of R containing A. In fact, F'(A) is the unique smallest co-ideal of R
containing A.

By the above definition, we can consider the co-ideal generated by a single
element = € R as follows: F(z) = {«" +r: r € R and n € N}. It is obvious
that, if z € I for some co-ideal I, then F'(z) C I.

By definition of co-ideal, if R is a ring, then R has no proper co-ideals and so
throughout this paper we consider semirings which are not rings. For a semiring
R, we denote the set of maximal co-ideals, the union of all the maximal co-ideals
and the intersection of all the maximal co-ideals of R by Co — Maxz(R), UM (R)
and IM(R), respectively. Also, if the semiring R has exactly one maximal co-
ideal, then we say that the semiring R is c-local and R is said to be a c-semilocal
semiring, if R has only a finite number of maximal co-ideals.

2.2 Lemma ([7]). Let I1,...,I, be co-ideals of a semiring R and P be a prime
co-ideal containing (\_, I;. Then I; C P for some i = 1,...,n. Moreover, if
P =N, I, then P = I, for some i.

2.3 Lemma. Let R be a semiring. Then x € /ZS(R) if and only if F(x) = R.

PROOF: Let x € \/ZS(R). Thus 2™ € ZS(R) for some positive integer n. This
implies 2™ 4+ r = 0 for some r € R. Hence 0 € F(z), since 2" +r € F(z) and so
F(z) = R.

The converse follows, since all conclusions are reversible. O

2.4 Proposition. Let R be a semiring. Then R\ \/ZS(R) = UM(R).

PROOF: Assume that © € R\ y/ZS(R). Thus F(z) # R and by [7, Propo-
sition 2.1], there eX1sts m € Co — Max(R) such that © € F(x) C m. Hence
R\ \/ZS ) CUM(R

Conversely, suppose that x € UM(R). Thus there is a maximal co-ideal m
such that x € m. Now, if x € \/ZS(R), then F(z) = R by Lemma 2.3 and so
R = F(x) C m, that is impossible. Hence UM (R) C R\ /ZS(R). This implies

R\ \/ZS5(R) = UM(R). 0
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2.5 Remark. Note that the Prime Avoidance Theorem is explained for subtrac-
tive prime co-ideals of a commutative semiring R in [4, Theorem 3.8]. Also, by [8,
Proposition 2.5] and [7, Theorem 3.10], every maximal co-ideal is a subtractive
and prime co-ideal, so we can conclude that the Prime Avoidance Theorem and
Lemma 2.2 also hold for the case where co-ideals are maximal.

In the following, we define the product of co-ideals of a semiring R. It is
straightforward to verify that the product of co-ideals with this definition is a co-
ideal.

2.6 Definition. Let I and J be two co-ideals of a semiring R. We define the
product of I and J as follows:

IJ={zy+r: z€l, yeJ and r € R}.

Similarly, we define the product of any finite family of co-ideals. Moreover, I™ is
defined for any co-ideal I and I" = {ay...a, +7r: a; € [ and r € R}.

Let I and J be co-ideals of R such that z € I and y € J. Note that with this
definition, if I and J are strong co-ideals, then z,y € IJ because z = x1 4+ 0 and
y = ly + 0 but this may not be true in general.

3. Some basic properties of Q(R)

As mentioned in the introduction, the graph Q(R) is a graph with all the
elements of R as its vertex-set and two distinct vertices « and y are adjacent if
and ounly if F(z)F(y) = R. Let ©Q;(R) be the subgraph of Q(R) with vertex-
set v/ZS(R) and Q2(R) be the subgraph of Q(R) with vertex-set UM (R). If
x € \/ZS(R), then by Lemma 2.3, F(z) = R and this implies z is adjacent to
any other vertex of R. With this comment, we can say that Q;(R) is a complete
graph. Also, if z,y € m for some maximal co-ideal m of R, then = and y cannot
be adjacent because F(x)F(y) C m. Hence, if the semiring R has one maximal
co-ideal, then Q5(R) is a totally disconnected graph.

3.1 Lemma. Let m be a maximal co-ideal of a semiring R and x € R. If x ¢ m,
then mF(x) = R.

PROOF: Suppose that x ¢ m. Thus F(m U {z}) = R since m C F(m U {z}) and
m is a maximal co-ideal. Now, since 0 € R, we split the proof into three cases for
F(muU{z}):

Case 1: There exist ay,...,ar € m and r € R for some positive integer k
such that aj...ax + 7 = 0. This implies 0 € m since m is co-ideal. This is
a contradiction because m is a maximal co-ideal.

Case 2: 2zt +r = 0 for some 7 € R and a positive integer ¢. In this case,
F(z) = R because 0 = z' + r € F(z) and so mF(z) = R.

Case 3: yat +r = 0 for some y € m, r € R and a positive integer t. Hence
mF(z) = R since 0 = yx' + 1 € mF(z). O
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As an immediate consequence of Lemma 3.1, we have the next proposition:

3.2 Proposition. Let m be a maximal co-ideal of a semiring R and x € R. If
x ¢ m, then there is an element y € m such that x is adjacent to y in Q(R).

PROOF: Suppose that m is a maximal co-ideal and = ¢ m. By Lemma 3.1, we
have mF(x) = R. This implies y(z* + r) + k = 0 for some 7,k € R, y € m and
a positive integer ¢t. Hence yx'+ s = 0 for some s € R and so F(z)F(y) = R since
0 =yz' + s € F(z)F(y). Therefore, z and y are adjacent in Q(R). O

3.3 Proposition. Let R be a semiring and © € R. Then x € IM(R) if and only
if x is adjacent to no vertex of Qa(R).

PROOF: Let € IM(R). Assume contrary that y € UM (R) is adjacent to z in
Q3(R). Thus there exists m € Co— Max(R) such that y € m and F(z)F(y) = R.
On the other hand, x € IM(R) gives x € m. Hence F(x)F(y) C m, that is
a contradiction.

Conversely, assume that z is not adjacent to any vertex of Qa(R). If z ¢
IM(R), there exists m € Co — Maz(R) such that 2 ¢ m. By Proposition 3.2,
there is an element y € m such that = is adjacent to y, which is contrary to our
assumption. (Il

By Proposition 3.3, for each x € IM(R), dego,(r)(z) = 0. So it will be
interesting to study the properties of the graph Q2(R) \ IM(R) with vertex-set
UM (R)\ IM(R). Note that if R is a c-local semiring, then Qo(R)\ IM(R) is an
empty graph.

3.4 Theorem. Let R be a semiring which is not c-local. Then Q2(R) \ IM(R)
is a complete bipartite graph if and only if R has exactly two maximal co-ideals.

PRrROOF: First, assume that Q(R) \ IM(R) is a complete bipartite graph with
vertex-sets V7 and V5. Clearly, m is contained in one of the partitions for any
maximal co-ideal m. Thus, suppose that m; \ IM(R) C V; for i = 1,2. If R has
another maximal co-ideal such as ms, then ms \ IM(R) C V; for some i = 1,2,
which is impossible, since mims = mams = R. Hence R can have only two
maximal co-ideals.

Conversely, suppose that Co — Maxz(R) = {mi1, mz2}. Then the vertex-set of
Qa(R)\IM (R) is (mq1\mz2)U(mz2\m1). Clearly, the subgraphs m;\mso and mo\my
are totally disconnected. Let x € my \ mo and y € mg \ m;. Now to complete
the proof, it suffices to show that F(z)F(y) € my and F(z)F(y) € mo. If
F(x)F(y) € ma, then xy € my. This implies that y € my, since m; is subtractive,
a contradiction. Similarly, it can be shown that F'(z)F(y) € mo. Therefore we
have F(z)F(y) = R. Hence Q2(R) \ IM(R) is complete bipartite graph with
vertex-set my \ mg and mg \ m;. O

In the following, we give an example of semiring R in which R has two maximal
co-ideals and show that Q3(R) \ IM(R) is complete bipartite graph.
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3.5 Example. Let S = {0,1,a} be an idempotent semiring in which a + 1 =
1+a=aandlet R=5 x S. The maximal co-ideals of R are as follows:

m1 ={(0,1), (0, ) (1,a), (a, ) (1,1), (a,a)},
m2—{(10 ( (7aa( (1 1)5( )}

It can be shown that Qs(R) \ IM(R) is complete bipartite with vertex-sets
{(0,1),(0,a)} and {(1,0), (a,0)}.
In the next theorem, we study the clique number of the graph Qa(R) \ IM(R)

for a c-semilocal semiring. Also, with this theorem, we give a result about the
girth of Qa(R) \ IM(R

3.6 Theorem. Let R be a c-semilocal semiring and |Co — Max(R)| > n with
n > 2. Then Q9(R) \ IM(R) has a clique of order n. In particular, if |Co —
Max(R)| =n, then w(Q2(R) \ IM(R)) = n.

PROOF: Let {mq,...,m,} be a subset of Co — Max(R). We claim that for
any x1 € my \ Uj_, m;, there exists a clique with vertex-set {z1,...,2,} in
Q(R) \ IM(R), where x; € m; \ U?ﬂ_ m; for i = 1,...,n. We prove this claim

J#£
by induction on n. For n = 2, the proof is similar to the proof of Theorem 3.4.
Now, suppose that n > 3. By Remark 2.5, mi N'm, ¢ U;L_Ql m;. Thus there

exists y € (m1 Nmy) \ Uj= —ymj and so 1 +y € (mp Nmy) \ Uj= —, mj. By
induction hypothesas there is a clique with vertex-set {z1+y, za,...,Zn_1}, where
zT; € ml\UJ 1 m;j for 2 <i <n—1. Indeed, xa,...,2p—1 ¢ My since T1+Yy € my,.

On the other hand since x1 4+ y is adjacent to xo,...,z,_1, hence x; is adjacent
to a,...,Tn—1 because F(x1 +y) C F(x1). Now, since 1 + -+ + xp—1 & my,
(my, is prime), so by Proposition 3.2, there exists x,, € m,, which is adjacent to
x1 + -+ + xp—1. This implies that x, is adjacent to z1,...,z,—1 and we can
conclude {x1,...,z,} is a clique of order n in Qo(R) \ IM(R

Now, suppose that [Co— Maz(R)| = n. Thus we have w(Q2(R)\ IM(R)) > n.
If Q2(R)\ IM(R) has a clique of order k in which & > n, then by the Pigeon
Hole Principal, two elements of the clique should belong to one maximal co-ideal,
which is a contradiction. Hence w(Q2(R) \ IM(R)) = n. O

Theorem 3.6 leads to the following corollary:

3.7 Corollary. Let R be a c-semilocal semiring with |Co— Max(R)| > 3. Then
gr(Q2(R)\ IM(R)) = 3.

PRrROOF: Let |Co — Max(R)| > 3. By Theorem 3.6, Q2(R) \ IM(R) has a clique
of order 3, so gr(Q2(R) \ IM(R)) = 3. O

In the next theorem, we will compute the girth of Qo(R) \ IM(R) when R is
a c-semilocal semiring.

3.8 Theorem. Let R be a c-semilocal semiring with |Co — Max(R)| > 2. If
Q2(R) \ IM(R) contains a cycle, then gr(Q2(R)\ IM(R)) < 4.
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PROOF: Assume that Q3(R)\ IM(R) contains a cycle and gr(Q2(R)\ IM(R)) #
3. So Corollary 3.7 implies that |Co — Max(R)| = 2. Hence by Theorem 3.4,
Q2 (R) \ IM(R) is complete bipartite graph and so gr(Q2(R)\IM(R)) =4. O

3.9 Example. Let X = {a,b,c} and R = (P(X),U,N) be a semiring, where
P(X) is the power set of X. For this semiring we have 1g = X and Og = (. In
this case, the maximal co-ideals of semiring R are as follows:

mi = {{a}a {aab}v {aac}vX}a
mg = {{b}a {aab}v {bﬂc}7X}5
ms = {{c},{a,c}, {b,c}, X}.

For the graph Qa(R) \ IM(R) the vertex-set is P(X)\ {0, X} and {{a},{b},{c}}
is a maximal clique. This implies that w(Q2(R)\ IM(R)) = 3 and so gr(Q2(R) \
IM(R)) = 3.

3.10 Proposition. Let R be a c-semilocal semiring with |Co — Max(R)| > 2.
Then Qo (R)\IM(R) is star graph if and only if there is a vertex of Qa(R)\IM (R)
which is adjacent to every other vertex.

PROOF: The necessity is obvious by definition, thus we need to prove the suffi-
ciency. Assume that there exists x € Qa(R)\IM (R) that is adjacent to every other
vertex. Let x € m for some m € Co — Maz(R). We must have |m \ IM(R)| = 1,
because if x and y are distinct vertices of m \ IM(R), then by assumption
and y are adjacent, which is impossible. Now, if |Co — Maz(R)| > 3, then
|m\ IM(R)| > 3 for any maximal co-ideal m of R. Hence R cannot contain more
than two maximal co-ideals. It is straightforward to verify that Q2(R) \ IM(R)
is a star graph by Theorem 3.4. O

3.11 Theorem. Let R be a c-semilocal semiring with |Co— Max(R)| > 2. Then
the following statements are equivalent:
(1) Q2(R)\ IM(R) is a tree;
(2) Q2(R)\ IM(R) is a forest;
(3) |Co— Max(R)| =2 and |m \ IM(R)| =1 for some m € Co — Max(R);
(4) Q2(R)\ IM(R) is a star graph.

PrOOF: (1) = (2), (3) = (4) and (4) = (1) are clear.

(2) = (3) Let Q2(R) \ IM(R) be a forest. Thus by Corollary 3.7, we have
|Co— Max(R)| = 2. Now, if |[m \ IM(R)| > 2 for each maximal co-ideal m, then
Q2(R)\IM (R) contains a cycle of order 4, because by Theorem 3.4, Qs (R)\IM (R)
is a complete bipartite graph, a contradiction. Hence |m \ IM(R)| = 1 for some
m € Co— Max(R). O

3.12 Proposition. Let R be a c-semilocal semiring. Then Q2(R) \ IM(R) is a
complete graph if and only if it is in the form K ;.

PROOF: Let Q2(R) \ IM(R) be a complete graph. So we can say that there
is a vertex of Qa(R) \ IM(R) that is adjacent to every other vertex. Hence by
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Proposition 3.10, Q9 (R)\ IM (R) is a star graph and Theorem 3.11 implies that R
has exactly two maximal co-ideals m; and mg so that |m;\IM(R)| = 1 for some i.
Now, since for each maximal co-ideal m;, the vertex-set m;\ IM(R) is a partition
of Qa2(R)\IM(R), we must have |m;\ IM(R)| = 1 for any ¢, because the elements
of m; \ IM(R) are not adjacent to each other. In this case, Q3(R) \ IM(R) is in
the form Kj ;.

The converse is obvious. g

3.13 Example. Let X = {a,b} and R = (P(X),U,N) be a semiring, where
P(X) is power set of X and 1g = X and Og = (. The maximal co-ideals of
semiring R are as follows:

m1 = {{a}aX}v
mo = {{b},X}

Thus by Theorem 3.4, Qo (R)\IM (R) is a complete bipartite graph with vertex-
sets V1 = {{a}} and Vo = {{b}}. Indeed, Q2(R) \ IM(R) forms K; ;. Hence
Qo(R) \ IM(R) is complete graph that is a star graph and a tree. Also, since
Q2(R) \ IM(R) does not contain any cycle, so it is a forest and gr(Q2(R) \
IM(R)) = .

3.14 Theorem. Let R be a c-semilocal semiring which is not a c-local. Then
the following hold.
(i) If |Co— Max(R)| = n, then Q3(R) \ IM(R) is n-partite.
(ii) If Q2(R) \ IM(R) is n-partite, then |Co — Max(R)| < n. In this case, if
OQ2(R) \ IM(R) is not (n — 1)-partite, then |Co — Max(R)| = n.

PROOF: (i) Suppose that Co — Maxz(R) = {m1,...,mp}. Let Vi = my \ IM(R)
and V; = m; \ U3;11 m; for 2 <i < n. By Remark 2.5, V; # () for each i. Also,
clearly that |J, V; = UM(R) \ IM(R) and for every z,y € V;, they are not
adjacent in Q9(R) \ IM(R). Hence Q2(R) \ IM(R) is n-partite graph.

(ii) Assume contrary that |Co — Max(R)| > n + 1. By Theorem 3.6, Q2(R) \
IM(R) has a clique with cardinality n + 1. Thus by the Pigeon Hole Principal,
two elements of this clique should belong to one part of Qs(R) \ IM (R), which is
a contradiction.

Now, if Q3(R) \ IM(R) is not (n — 1)-partite and |Co — Maz(R)| = k < n,
then by part (i), Q2(R) \ IM(R) can be a k-partite graph, a contradiction. O

3.15 Proposition. Let R be a semiring with |Co — Max(R)| > 2. If Qa2(R) \
IM(R) is complete n-partite graph, then n = 2.

PROOF: Let {m1,ms} C Co— Max(R). By Proposition 3.2, it is clear that there
exists at least one element of my \ IM(R) which is adjacent to one element of
m2\IM(R). Also, m;\IM(R) is totally disconnected for any m; € Co— Max(R),
so my \ IM(R) and mz \ IM(R) are entirely contained in one of partitions of
Q2(R) \ IM(R). This implies that (m; \ IM(R)) N (mg \ IM(R)) = 0 and hence



On graph associated to co-ideals of commutative semirings 301

miNme C IM(R). Therefore we have mi;Nmg = IM(R). Thus |Co—Maz(R)| =
2 and by Theorem 3.4, Q2(R) \ IM(R) is a complete bipartite graph. O

As mentioned in the introduction, Beck conjectured that x(R) = w(R) for
every ring R. In the following theorem we want to establish Beck’s conjecture for
the graph Q2(R) \ IM(R) of c-semilocal semiring.

We recall that the chromatic number of the graph G, denoted by x(G), is the
minimal number of colors which can be assigned to the vertices of G in such a
way that any two adjacent vertices have different colors.

3.16 Theorem. Let R be a c-semilocal semiring with |Co— Max(R)| = n. Then
X(Q(R)\ IM(R)) = w(Q(R) \ IM(R)) = n.

PrOOF: Let Co — Maxz(R) = {m4,...,my}. By Theorem 3.6, we know that
w(Q2(R) \ IM(R)) = n. Also, it is obvious that x(G) > w(G) for any graph G,
so xX(Q22(R) \ IM(R)) > n. On the other hand, Q2(R) \ IM(R) is n-partite by
Theorem 3.14, thus the elements of each part can be colored by an identical color
because these elements are not adjacent. Hence x(Q2(R) \ IM(R)) = n. O

4. Diameter and radius of Q(R)

In this section, we show that Qg (R)\IM(R) is a connected graph and diam(£2y
(R)\ IM(R)) < 3. Also, we compute the eccentricity of the vertices of Q2(R) \
IM(R).

4.1 Theorem. Let R be a semiring. The graph Q2(R) \ IM(R) is connected
with diam(Q2(R) \ IM(R)) < 3.

PROOF: Let z,y € Q2(R) \ IM(R) that are not adjacent. We consider two cases:

Case 1: Suppose that z +y ¢ IM(R). By Proposition 3.3, F(z + y F(a) =
for some a € Q3(R) \ IM(R). This implies that F(z)F(a) = F( F(a) =
since F(z +y) C F(z),F(y). Hence x — a — y is a path in Q(R) \ IM(R) and
d(z,y) = 2.

Case 2: Suppose that © +y € IM(R). Thus for each m € Co — Maz(R),
we have ¢ € m or y € m. Since z ¢ IM(R), by Proposition 3.3, there exists
a € Q2(R) \ IM(R) such that z is adjacent to a in Qo(R) \ ITM(R). Hence if
x € m for maximal co-ideal m, then a ¢ m. Now, there exists n € Co — Maxz(R)
in which y ¢ n, since y ¢ IM(R). This implies that z € n and a ¢ n. As n is
prime co-ideal, we have a +y ¢ IM(R). So by Case 1, d(a,y) < 2 and hence
d(z,y) < 3. O

We recall that for a graph G, the eccentricity of a vertex z is e(z) =
Mazx{d(y,z);y € V(G)}. A vertex x with smallest eccentricity is called a center
of G and its eccentricity is called the radius of G and is denoted by rad(G).

4.2 Proposition. Let R be a c-semilocal semiring with |Co — Maxz(R)| > 3. If
x € Qo(R) \ IM(R) belongs to at least two maximal co-ideals, then e(z) = 3.
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PROOF: Suppose that for x € Q3(R)\ IM (R) there exist at least two maximal co-
ideals m; and m; so that x is contained in m;Nm;. By Theorem 4.1, d(z,y) < 3 for
any y € Qo(R)\IM(R). Now to complete the proof, it suffices to show that, there
is an element y in Q2 (R)\IM (R) such that d(x,y) = 3. Let y € ﬂ%? mi\IM(R).

Clearly that d(x,y) # 1, since z,y € m;. If d(z,y) = 2, then x — a — y is a path

for some a € Q2(R) \ IM(R). Now, as € m; N'm;, thus a ¢ m,;, m;. Also,

y € Nk=1mx \ IM(R) implies that a ¢ my, for 1 < k < n and k # i. Indeed,
ki

this implies that a ¢ m for any m € Co— Maz(R), that is impossible. So we can
conclude that d(z,y) = 3 and hence e(x) = 3. O

4.3 Corollary. Let R be a c-semilocal semiring with |Co— Max(R)| > 3. Then
diam(Q2(R) \ IM(R)) = 3.

PROOF: We know that diam(Q2(R)\ IM(R)) < 3, by Theorem 4.1. On the other
hand, |Co — Maxz(R)| > 3 implies that there is an element x in Qo(R) \ IM(R)
that belongs to at least two maximal co-ideals. Now, the proof is immediate from
Proposition 4.2. O

4.4 Proposition. Let R be a semiring with |Co — Max(R)| = 2. If |m; \
IM(R)| > 2 for some i, then diam(Q(R) \ IM(R)) = 2.

PROOF: Assume that |[Co — Max(R)| = 2. By Theorem 3.4, Q2(R) \ IM(R)
is complete bipartite graph and thus diam(Qz(R) \ IM(R)) < 2. On the other
hand, diam(Q2(R) \ IM(R)) # 1 because |m; \ IM(R)| > 2 for some i. Hence

diam(Q(R) \ IM(R)) = 2. O
4.5 Theorem. Let R be a semiring. If diam(Qz(R) \ IM(R)) = 2, then R
has an infinite number of maximal co-ideals or |Co — Max(R)| = 2 such that

|m; \ IM(R)| > 2 for some i =1,2.

PROOF: Assume that diam(Qz(R) \ IM(R)) =2 and |Co — Maz(R)| is finite. If
n > 3, then by Corollary 4.3, diam(Q2(R)\ IM(R)) = 3, which is a contradiction.
Thus we must have |Co — Maxz(R)| = 2. Now, if |m; \ IM(R)| = 1 for each i,
then diam(Q2(R) \ IM(R)) = 1 because Q3(R) \ IM(R) is a complete bipartite
graph, this is a contradiction. Hence |m; \ IM(R)| > 2 for some 1. O

4.6 Theorem. Let R be a c-semilocal semiring with |Co — Max(R)| = n > 2.
If Q2(R) \ IM(R) is not a star graph, then we have:

2 if zem;\Uj=1m;
e(z) = j#i
3 otherwise.

PROOF: First, we claim that for any a € Q(R)\ IM(R), e(a) # 1. Suppose that
there is an element z of Qo(R) \ IM(R) such that e(x) = 1. This means that z is
adjacent to any vertex of Q2 (R)\ IM(R) and so Q2(R)\ IM(R) is a star graph by

Proposition 3.10, which is a contradiction. Now, suppose that = € m; \ Jj=1 m;.
J#i
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For any y € U?zl_ mj \ m;, if F(z)F(y) # R, then F(x)F(y) C my for some

my € Co — Majz(R). Hence z,y € my, that is a contradiction. Therefore, in
this case d(z,y) = 1. But, if y € m; \ IM(R) and y # =z, then by proof of
Theorem 4.1, d(x,y) < 2 since  + y ¢ IM(R). Clearly x and y are not adjacent
and so d(x,y) = 2. According to the assumption, since Q2 (R)\ IM (R) is not star
graph thus by Theorem 3.11 ((4) = (3)) |Co— Max(R)| > 2 and |[m\ IM(R)| > 2
for each m € Co — Max(R). Hence e(z) = 2 for any x € m; \ Uj=1m;.
J#i
Now, suppose that @ ¢ m; \ Jj=1 m; for any maximal co-ideal m;. Hence

J#i
there are at least two maximal co-ideals mj and m; so that x is contained in

my Nm;. This implies that [Co — Max(R)| > 3, thus by Proposition 4.2 we have
e(x) = 3. O

4.7 Corollary. Let R be a c-semilocal semiring with |Co— Max(R)| =n > 2. If
Q2(R) \ IM(R) is not a star graph, then the elements of m; \ | Jj=1 m; are center

J#i
of Qy(R)\ IM(R) for each m; € Co — Max(R) and rad(Q2(R) \ IM(R)) = 2.
PRrROOF: This is an immediate consequence of Theorem 4.6. (|

4.8 Proposition. Let R be a semiring with |Co — Maxz(R)| = 2. Then
rad(Q2(R)\ IM(R)) =1 or 2.

PROOF: We know by Theorem 3.4, Q3(R) \ IM (R) is a complete bipartite graph
when |Co — Maxz(R)| = 2. Now, if Q3(R) \ IM(R) is a star graph, clearly
rad(Q2(R) \ IM(R)) = 1. Otherwise, rad(Q2(R) \ IM(R)) = 2 and all elements
of Qo (R) \ IM(R) are center. O

5. The relations between Q(R) and I'(R)

In this section, we will investigate the relations between the zero-divisor graph
I'(R) and Q(R). We show that I'(R) is a subgraph of the Q(R). Also, we determine
a family of commutative semirings whose zero-divisor graph I'(R) and 3(R) are
isomorphic.

We recall that an isomorphism from a simple graph G to a simple graph H is
a bijection f : V(G) — V(H) such that « and y are adjacent in G if and only
if f(x) and f(y) are adjacent in H. We say G is isomorphic to H, if there is an
isomorphism from G to H, denoted by G = H.

5.1 Theorem. The zero-divisor graph I'(R) is a subgraph of the graph Q(R).

PROOF: Suppose that z and y are two distinct adjacent vertices in I'(R). Thus
xy = 0 and this implies F(x)F(y) = R, since 0 = zy € F(z)F(y). Hence x and
y are adjacent in Q(R). Now, since the vertex-set of zero-divisor graph is Z(R)*,
thus we can conclude that I'(R) is a subgraph of Q(R). O

5.2 Theorem. Let R be a multiplicatively idempotent and zero-sumfree semi-
ring. Then the zero-divisor graph T'(R) is an induced subgraph of the graph Q(R).
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ProOF: By Theorem 5.1, T'(R) is a subgraph of Q(R). Thus it is enough to
show that if z,y € Z(R)* and they are adjacent in Q(R), then z and y are
adjacent in I'(R). Assume that z,y € Z(R)* and F(z)F(y) = R. So we have
(™ +r)(y™ + s) + k = 0 for some positive integers n,m and r, s,k € R. Since R
is a multiplicatively idempotent, then we have zy + a = 0 for some a € R. Hence
xy = 0 because R is a zero-sumfree semiring. This implies  and y are adjacent
in T'(R). O

Note that if UM(R) = Z(R)*, then T'(R) is a spanning subgraph of Qa(R)
by Theorem 5.1. Thus, if R is a multiplicatively idempotent and zero-sumfree
semiring, then we have the following result:

5.3 Corollary. Let R be a multiplicatively idempotent and zero-sumfree semi-
ring. If Z(R)* = UM(R), then the zero-divisor graph I'(R) and Q2 (R) are isomor-
phic. In particular, if Z(R)* = UM(R)\ IM(R), then I'(R) and Q2(R) \ IM(R)
are isomorphic.

PROOF: This is an immediate consequence of Theorems 5.1 and 5.2. Il
To this end, we give an example that clarifies the previous results:

5.4 Example. Let S ={0,1,a} and R = (Sx .5, +, ) be a semiring as defined in
Example 3.5. We know that R is a multiplicatively idempotent. For this semiring,
the vertex-set of I'(R) is

Z(R)* - {(07 1); (17 O)a (07 a’)ﬂ (av 0)}

and the vertex-set of Qa(R) is UM (R) = R\ {(0,0)}. Clearly T'(R) is an induced
subgraph of Q(R) and Q3(R). On the other hand, (0,0) is only zero-sum of R,
thus R is zero-sumfree semiring. We see that UM (R) \ IM(R) = Z(R)*, so we
can conclude that I'(R) and Q2(R) \ IM(R) are isomorphic by Corollary 5.3.
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