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On graph associated to co-ideals of commutative semirings

Yahya Talebi, Atefeh Darzi

Abstract. Let R be a commutative semiring with non-zero identity. In this paper,
we introduce and study the graph Ω(R) whose vertices are all elements of R

and two distinct vertices x and y are adjacent if and only if the product of
the co-ideals generated by x and y is R. Also, we study the interplay between
the graph-theoretic properties of this graph and some algebraic properties of
semirings. Finally, we present some relationships between the zero-divisor graph
Γ(R) and Ω(R).
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1. Introduction

The concept of the zero-divisor graph of a commutative ring R was first intro-
duced by Beck [3]. He defined this graph as a simple graph where all elements
of the ring R are the vertex-set of this graph and two distinct elements x and
y are adjacent if and only if xy = 0. Beck conjectured that χ(R) = ω(R) for
every ring R. In [2], Anderson and Livingston introduced the zero-divisor graph
with vertices Z(R)∗ = Z(R) \ {0}, the set of non-zero zero-divisors of R. Some
other investigations into properties of zero-divisor graph over commutative semi-
ring may be found in [5], [6]. In [11], Sharma and Bhatwadekar defined another
graph on a ring R with vertices as elements of R and there is an edge between
two distinct vertices x and y in R if and only if Rx + Ry = R. Further, in [10],
Maimani et al. studied the graph defined by Sharma and Bhatwadekar and called
it comaximal graph. Also, in [1], Akbari et al. studied the comaximal graph over
non-commutative ring.

Note that throughout this paper all semirings are considered to be commutative
semirings with non-zero identity. First, we introduce the concept of product of co-
ideals in the semiring R. Next, we define an undirected graph over commutative
semiring in which vertices are all elements of R and two distinct vertices x and
y are adjacent if and only if the product of the co-ideals generated by x and y
is R (i.e. F (x)F (y) = R). We denote this graph by Ω(R). In Section 2, we recall
some notions of semirings which will be used in this paper. In other sections, we
study some graph-theoretic properties of Ω(R) and its subgraphs such as diameter,
radius, girth, clique number and chromatic number.
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In a graph G, we denote the vertex-set of G by V (G) and the edge-set by E(G).
A graph G is said to be connected , if there is a path between every two distinct
vertices and we say that G is totally disconnected , if no two vertices of G are
adjacent. For a given vertex x, the number of all vertices adjacent to it, is called
degree of the vertex x, denoted by deg(x). For distinct vertices x and y of G, let
d(x, y) be the length of the shortest path from x to y (d(x, x) = 0 and d(x, y) = ∞
if there is no such path). The diameter of G is diam(G) = sup{d(x, y) : x and y
are distinct vertices of G}. The girth of G, denoted by gr(G), is defined as the
length of the shortest cycle in G. If G has no cycles, then gr(G) = ∞ and G is
called a forest . Also, G is called a tree if G is connected and has no cycles. A clique

in a graph G is a complete subgraph of G. The clique number of G, denoted by
ω(G), is the number of vertices in a largest clique of G. An independent set in a
graph G is a set of pairwise non-adjacent vertices. A graph in which each pair of
distinct vertices is joined by an edge is called a complete graph. We denote the
complete graph on n vertices by Kn. For a positive integer k, a k-partite graph
is one whose vertex-set can be partitioned into k independent sets. A k-partite
graph G is said to be a complete k-partite graph, if each vertex is joined to every
vertex that is not in the same partition. The complete bipartite graph (2-partite
graph) with parts of sizes m and n is denoted by Km,n. We will sometimes call
a K1,n a star graph. We write G \ {x} or G \ S for the subgraph of G obtained
by deleting a vertex x or set of vertices S. An induced subgraph is a subgraph
obtained by deleting a set of vertices. Also, a spanning subgraph of G is a subgraph
with vertex-set V (G). A general reference for graph theory is [12].

2. Preliminaries

In this section, we recall various notions about semirings which will be used
throughout the paper. A semiring R is an algebraic system (R, +, ·) such that
(R, +) is a commutative monoid with identity element 0 and (R, ·) is a semigroup.
In addition, operations + and · are connected by distributivity and 0 annihilates R
(i.e. x0 = 0x = 0 for each x ∈ R). A semiring R is said to be commutative if
(R, ·) is a commutative semigroup and R is said to have an identity if there exists
1 ∈ R such that 1x = x1 = x.

Recall that, throughout this paper, all semirings are commutative with non-
zero identity. The following definitions are given in [7], [9].

2.1 Definition. Let R be a semiring.
(1) A non-empty subset I of R is called a co-ideal of R if and only if it is closed

under multiplication and satisfies the condition that a + r ∈ I for all a ∈ I and
r ∈ R. According to this definition, 0 ∈ I if and only if I = R. Also, a co-ideal I
of R is called strong, if 1 ∈ I.

(2) A co-ideal I of semiring R is called subtractive if x ∈ I and xy ∈ I, implies
y ∈ I for all x, y ∈ R. So every subtractive co-ideal is a strong co-ideal.

(3) A proper co-ideal P of R is called prime if a + b ∈ P , implies a ∈ P or
b ∈ P for all a, b ∈ R.
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(4) A proper co-ideal I of R is called maximal if there is no co-ideal J such
that I ⊂ J ⊂ R.

(5) An element a of a semiring R is multiplicatively idempotent if and only if
a2 = a and a is called additively idempotent if and only if a+a = a. A semiring R
is said to be idempotent if it is both additively and multiplicatively idempotent.

(6) An element x of a semiring R is called a zero-sum of R, if there exists an
element y ∈ R such that x+ y = 0. It is clear that, y is the unique element which
satisfies x + y = 0. We will denote the set of all zero-sums of R by ZS(R). It is
easy to see that ZS(R) is an ideal of R. Also, a semiring R is a ring if and only
if ZS(R) = R and R is called zero-sumfree if and only if ZS(R) = 0.

(7) If A is a non-empty subset of a semiring R, then the set F (A) of all elements
of R of the form a1a2 . . . an + r, where ai ∈ A for all 1 ≤ i ≤ n and r ∈ R, is
a co-ideal of R containing A. In fact, F (A) is the unique smallest co-ideal of R
containing A.

By the above definition, we can consider the co-ideal generated by a single
element x ∈ R as follows: F (x) = {xn + r : r ∈ R and n ∈ N}. It is obvious
that, if x ∈ I for some co-ideal I, then F (x) ⊆ I.

By definition of co-ideal, if R is a ring, then R has no proper co-ideals and so
throughout this paper we consider semirings which are not rings. For a semiring
R, we denote the set of maximal co-ideals, the union of all the maximal co-ideals
and the intersection of all the maximal co-ideals of R by Co − Max(R), UM(R)
and IM(R), respectively. Also, if the semiring R has exactly one maximal co-
ideal, then we say that the semiring R is c-local and R is said to be a c-semilocal

semiring, if R has only a finite number of maximal co-ideals.

2.2 Lemma ([7]). Let I1, . . . , In be co-ideals of a semiring R and P be a prime

co-ideal containing
⋂n

i=1 Ii. Then Ii ⊆ P for some i = 1, . . . , n. Moreover, if

P =
⋂n

i=1 Ii, then P = Ii for some i.

2.3 Lemma. Let R be a semiring. Then x ∈
√

ZS(R) if and only if F (x) = R.

Proof: Let x ∈
√

ZS(R). Thus xn ∈ ZS(R) for some positive integer n. This
implies xn + r = 0 for some r ∈ R. Hence 0 ∈ F (x), since xn + r ∈ F (x) and so
F (x) = R.

The converse follows, since all conclusions are reversible. �

2.4 Proposition. Let R be a semiring. Then R \
√

ZS(R) = UM(R).

Proof: Assume that x ∈ R \
√

ZS(R). Thus F (x) 6= R and by [7, Propo-
sition 2.1], there exists m ∈ Co − Max(R) such that x ∈ F (x) ⊆ m. Hence

R \
√

ZS(R) ⊆ UM(R).
Conversely, suppose that x ∈ UM(R). Thus there is a maximal co-ideal m

such that x ∈ m. Now, if x ∈
√

ZS(R), then F (x) = R by Lemma 2.3 and so

R = F (x) ⊆ m, that is impossible. Hence UM(R) ⊆ R \
√

ZS(R). This implies

R \
√

ZS(R) = UM(R). �
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2.5 Remark. Note that the Prime Avoidance Theorem is explained for subtrac-
tive prime co-ideals of a commutative semiring R in [4, Theorem 3.8]. Also, by [8,
Proposition 2.5] and [7, Theorem 3.10], every maximal co-ideal is a subtractive
and prime co-ideal, so we can conclude that the Prime Avoidance Theorem and
Lemma 2.2 also hold for the case where co-ideals are maximal.

In the following, we define the product of co-ideals of a semiring R. It is
straightforward to verify that the product of co-ideals with this definition is a co-
ideal.

2.6 Definition. Let I and J be two co-ideals of a semiring R. We define the
product of I and J as follows:

IJ = {xy + r : x ∈ I, y ∈ J and r ∈ R}.

Similarly, we define the product of any finite family of co-ideals. Moreover, In is
defined for any co-ideal I and In = {a1 . . . an + r : ai ∈ I and r ∈ R}.

Let I and J be co-ideals of R such that x ∈ I and y ∈ J . Note that with this
definition, if I and J are strong co-ideals, then x, y ∈ IJ because x = x1 + 0 and
y = 1y + 0 but this may not be true in general.

3. Some basic properties of Ω(R)

As mentioned in the introduction, the graph Ω(R) is a graph with all the
elements of R as its vertex-set and two distinct vertices x and y are adjacent if
and only if F (x)F (y) = R. Let Ω1(R) be the subgraph of Ω(R) with vertex-

set
√

ZS(R) and Ω2(R) be the subgraph of Ω(R) with vertex-set UM(R). If

x ∈
√

ZS(R), then by Lemma 2.3, F (x) = R and this implies x is adjacent to
any other vertex of R. With this comment, we can say that Ω1(R) is a complete
graph. Also, if x, y ∈ m for some maximal co-ideal m of R, then x and y cannot
be adjacent because F (x)F (y) ⊆ m. Hence, if the semiring R has one maximal
co-ideal, then Ω2(R) is a totally disconnected graph.

3.1 Lemma. Let m be a maximal co-ideal of a semiring R and x ∈ R. If x /∈ m,

then mF (x) = R.

Proof: Suppose that x /∈ m. Thus F (m ∪ {x}) = R since m ( F (m ∪ {x}) and
m is a maximal co-ideal. Now, since 0 ∈ R, we split the proof into three cases for
F (m ∪ {x}):

Case 1: There exist a1, . . . , ak ∈ m and r ∈ R for some positive integer k
such that a1 . . . ak + r = 0. This implies 0 ∈ m since m is co-ideal. This is
a contradiction because m is a maximal co-ideal.

Case 2: xt + r = 0 for some r ∈ R and a positive integer t. In this case,
F (x) = R because 0 = xt + r ∈ F (x) and so mF (x) = R.

Case 3: yxt + r = 0 for some y ∈ m, r ∈ R and a positive integer t. Hence
mF (x) = R since 0 = yxt + r ∈ mF (x). �
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As an immediate consequence of Lemma 3.1, we have the next proposition:

3.2 Proposition. Let m be a maximal co-ideal of a semiring R and x ∈ R. If

x /∈ m, then there is an element y ∈ m such that x is adjacent to y in Ω(R).

Proof: Suppose that m is a maximal co-ideal and x /∈ m. By Lemma 3.1, we
have mF (x) = R. This implies y(xt + r) + k = 0 for some r, k ∈ R, y ∈ m and
a positive integer t. Hence yxt +s = 0 for some s ∈ R and so F (x)F (y) = R since
0 = yxt + s ∈ F (x)F (y). Therefore, x and y are adjacent in Ω(R). �

3.3 Proposition. Let R be a semiring and x ∈ R. Then x ∈ IM(R) if and only

if x is adjacent to no vertex of Ω2(R).

Proof: Let x ∈ IM(R). Assume contrary that y ∈ UM(R) is adjacent to x in
Ω2(R). Thus there exists m ∈ Co−Max(R) such that y ∈ m and F (x)F (y) = R.
On the other hand, x ∈ IM(R) gives x ∈ m. Hence F (x)F (y) ⊆ m, that is
a contradiction.

Conversely, assume that x is not adjacent to any vertex of Ω2(R). If x /∈
IM(R), there exists m ∈ Co − Max(R) such that x /∈ m. By Proposition 3.2,
there is an element y ∈ m such that x is adjacent to y, which is contrary to our
assumption. �

By Proposition 3.3, for each x ∈ IM(R), degΩ2(R)(x) = 0. So it will be
interesting to study the properties of the graph Ω2(R) \ IM(R) with vertex-set
UM(R) \ IM(R). Note that if R is a c-local semiring, then Ω2(R) \ IM(R) is an
empty graph.

3.4 Theorem. Let R be a semiring which is not c-local. Then Ω2(R) \ IM(R)
is a complete bipartite graph if and only if R has exactly two maximal co-ideals.

Proof: First, assume that Ω2(R) \ IM(R) is a complete bipartite graph with
vertex-sets V1 and V2. Clearly, m is contained in one of the partitions for any
maximal co-ideal m. Thus, suppose that mi \ IM(R) ⊆ Vi for i = 1, 2. If R has
another maximal co-ideal such as m3, then m3 \ IM(R) ⊆ Vi for some i = 1, 2,
which is impossible, since m1m3 = m2m3 = R. Hence R can have only two
maximal co-ideals.

Conversely, suppose that Co − Max(R) = {m1, m2}. Then the vertex-set of
Ω2(R)\IM(R) is (m1\m2)∪(m2\m1). Clearly, the subgraphs m1\m2 and m2\m1

are totally disconnected. Let x ∈ m1 \ m2 and y ∈ m2 \ m1. Now to complete
the proof, it suffices to show that F (x)F (y) * m1 and F (x)F (y) * m2. If
F (x)F (y) ⊆ m1, then xy ∈ m1. This implies that y ∈ m1, since m1 is subtractive,
a contradiction. Similarly, it can be shown that F (x)F (y) * m2. Therefore we
have F (x)F (y) = R. Hence Ω2(R) \ IM(R) is complete bipartite graph with
vertex-set m1 \ m2 and m2 \ m1. �

In the following, we give an example of semiring R in which R has two maximal
co-ideals and show that Ω2(R) \ IM(R) is complete bipartite graph.
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3.5 Example. Let S = {0, 1, a} be an idempotent semiring in which a + 1 =
1 + a = a and let R = S × S. The maximal co-ideals of R are as follows:

m1 = {(0, 1), (0, a), (1, a), (a, 1), (1, 1), (a, a)},

m2 = {(1, 0), (a, 0), (1, a), (a, 1), (1, 1), (a, a)}.

It can be shown that Ω2(R) \ IM(R) is complete bipartite with vertex-sets
{(0, 1), (0, a)} and {(1, 0), (a, 0)}.

In the next theorem, we study the clique number of the graph Ω2(R) \ IM(R)
for a c-semilocal semiring. Also, with this theorem, we give a result about the
girth of Ω2(R) \ IM(R).

3.6 Theorem. Let R be a c-semilocal semiring and |Co − Max(R)| ≥ n with

n ≥ 2. Then Ω2(R) \ IM(R) has a clique of order n. In particular, if |Co −
Max(R)| = n, then ω(Ω2(R) \ IM(R)) = n.

Proof: Let {m1, . . . , mn} be a subset of Co − Max(R). We claim that for
any x1 ∈ m1 \

⋃n

j=2 mj , there exists a clique with vertex-set {x1, . . . , xn} in

Ω2(R) \ IM(R), where xi ∈ mi \
⋃n

j=1
j 6=i

mj for i = 1, . . . , n. We prove this claim

by induction on n. For n = 2, the proof is similar to the proof of Theorem 3.4.
Now, suppose that n ≥ 3. By Remark 2.5, m1 ∩ mn *

⋃n−1
j=2 mj . Thus there

exists y ∈ (m1 ∩ mn) \
⋃n−1

j=2 mj and so x1 + y ∈ (m1 ∩ mn) \
⋃n−1

j=2 mj . By

induction hypothesis, there is a clique with vertex-set {x1+y, x2, . . . , xn−1}, where

xi ∈ mi\
⋃n−1

j=1
j 6=i

mj for 2 ≤ i ≤ n−1. Indeed, x2, . . . , xn−1 /∈ mn since x1+y ∈ mn.

On the other hand, since x1 + y is adjacent to x2, . . . , xn−1, hence x1 is adjacent
to x2, . . . , xn−1 because F (x1 + y) ⊆ F (x1). Now, since x1 + · · · + xn−1 /∈ mn

(mn is prime), so by Proposition 3.2, there exists xn ∈ mn which is adjacent to
x1 + · · · + xn−1. This implies that xn is adjacent to x1, . . . , xn−1 and we can
conclude {x1, . . . , xn} is a clique of order n in Ω2(R) \ IM(R).

Now, suppose that |Co−Max(R)| = n. Thus we have ω(Ω2(R)\ IM(R)) ≥ n.
If Ω2(R) \ IM(R) has a clique of order k in which k ≥ n, then by the Pigeon
Hole Principal, two elements of the clique should belong to one maximal co-ideal,
which is a contradiction. Hence ω(Ω2(R) \ IM(R)) = n. �

Theorem 3.6 leads to the following corollary:

3.7 Corollary. Let R be a c-semilocal semiring with |Co−Max(R)| ≥ 3. Then

gr(Ω2(R) \ IM(R)) = 3.

Proof: Let |Co − Max(R)| ≥ 3. By Theorem 3.6, Ω2(R) \ IM(R) has a clique
of order 3, so gr(Ω2(R) \ IM(R)) = 3. �

In the next theorem, we will compute the girth of Ω2(R) \ IM(R) when R is
a c-semilocal semiring.

3.8 Theorem. Let R be a c-semilocal semiring with |Co − Max(R)| ≥ 2. If

Ω2(R) \ IM(R) contains a cycle, then gr(Ω2(R) \ IM(R)) ≤ 4.
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Proof: Assume that Ω2(R) \ IM(R) contains a cycle and gr(Ω2(R) \ IM(R)) 6=
3. So Corollary 3.7 implies that |Co − Max(R)| = 2. Hence by Theorem 3.4,
Ω2(R) \ IM(R) is complete bipartite graph and so gr(Ω2(R) \ IM(R)) = 4. �

3.9 Example. Let X = {a, b, c} and R = (P (X),∪,∩) be a semiring, where
P (X) is the power set of X . For this semiring we have 1R = X and 0R = ∅. In
this case, the maximal co-ideals of semiring R are as follows:

m1 = {{a}, {a, b}, {a, c}, X},

m2 = {{b}, {a, b}, {b, c}, X},

m3 = {{c}, {a, c}, {b, c}, X}.

For the graph Ω2(R) \ IM(R) the vertex-set is P (X) \ {∅, X} and {{a},{b},{c}}
is a maximal clique. This implies that ω(Ω2(R) \ IM(R)) = 3 and so gr(Ω2(R) \
IM(R)) = 3.

3.10 Proposition. Let R be a c-semilocal semiring with |Co − Max(R)| ≥ 2.

Then Ω2(R)\IM(R) is star graph if and only if there is a vertex of Ω2(R)\IM(R)
which is adjacent to every other vertex.

Proof: The necessity is obvious by definition, thus we need to prove the suffi-
ciency. Assume that there exists x ∈ Ω2(R)\IM(R) that is adjacent to every other
vertex. Let x ∈ m for some m ∈ Co −Max(R). We must have |m \ IM(R)| = 1,
because if x and y are distinct vertices of m \ IM(R), then by assumption x
and y are adjacent, which is impossible. Now, if |Co − Max(R)| ≥ 3, then
|m \ IM(R)| ≥ 3 for any maximal co-ideal m of R. Hence R cannot contain more
than two maximal co-ideals. It is straightforward to verify that Ω2(R) \ IM(R)
is a star graph by Theorem 3.4. �

3.11 Theorem. Let R be a c-semilocal semiring with |Co−Max(R)| ≥ 2. Then

the following statements are equivalent:

(1) Ω2(R) \ IM(R) is a tree;

(2) Ω2(R) \ IM(R) is a forest;

(3) |Co − Max(R)| = 2 and |m \ IM(R)| = 1 for some m ∈ Co − Max(R);
(4) Ω2(R) \ IM(R) is a star graph.

Proof: (1) ⇒ (2), (3) ⇒ (4) and (4) ⇒ (1) are clear.
(2) ⇒ (3) Let Ω2(R) \ IM(R) be a forest. Thus by Corollary 3.7, we have

|Co− Max(R)| = 2. Now, if |m \ IM(R)| ≥ 2 for each maximal co-ideal m, then
Ω2(R)\IM(R) contains a cycle of order 4, because by Theorem 3.4, Ω2(R)\IM(R)
is a complete bipartite graph, a contradiction. Hence |m \ IM(R)| = 1 for some
m ∈ Co − Max(R). �

3.12 Proposition. Let R be a c-semilocal semiring. Then Ω2(R) \ IM(R) is a

complete graph if and only if it is in the form K1,1.

Proof: Let Ω2(R) \ IM(R) be a complete graph. So we can say that there
is a vertex of Ω2(R) \ IM(R) that is adjacent to every other vertex. Hence by



300 Talebi Y., Darzi A.

Proposition 3.10, Ω2(R)\IM(R) is a star graph and Theorem 3.11 implies that R
has exactly two maximal co-ideals m1 and m2 so that |mi\IM(R)| = 1 for some i.
Now, since for each maximal co-ideal mi, the vertex-set mi \ IM(R) is a partition
of Ω2(R)\IM(R), we must have |mi \IM(R)| = 1 for any i, because the elements
of mi \ IM(R) are not adjacent to each other. In this case, Ω2(R) \ IM(R) is in
the form K1,1.

The converse is obvious. �

3.13 Example. Let X = {a, b} and R = (P (X),∪,∩) be a semiring, where
P (X) is power set of X and 1R = X and 0R = ∅. The maximal co-ideals of
semiring R are as follows:

m1 = {{a}, X},

m2 = {{b}, X}.

Thus by Theorem 3.4, Ω2(R)\IM(R) is a complete bipartite graph with vertex-
sets V1 = {{a}} and V2 = {{b}}. Indeed, Ω2(R) \ IM(R) forms K1,1. Hence
Ω2(R) \ IM(R) is complete graph that is a star graph and a tree. Also, since
Ω2(R) \ IM(R) does not contain any cycle, so it is a forest and gr(Ω2(R) \
IM(R)) = ∞.

3.14 Theorem. Let R be a c-semilocal semiring which is not a c-local. Then

the following hold.

(i) If |Co − Max(R)| = n, then Ω2(R) \ IM(R) is n-partite.

(ii) If Ω2(R) \ IM(R) is n-partite, then |Co − Max(R)| ≤ n. In this case, if

Ω2(R) \ IM(R) is not (n − 1)-partite, then |Co − Max(R)| = n.

Proof: (i) Suppose that Co − Max(R) = {m1, . . . , mn}. Let V1 = m1 \ IM(R)

and Vi = mi \
⋃i−1

j=1 mj for 2 ≤ i ≤ n. By Remark 2.5, Vi 6= ∅ for each i. Also,

clearly that
⋃n

i=1 Vi = UM(R) \ IM(R) and for every x, y ∈ Vi, they are not
adjacent in Ω2(R) \ IM(R). Hence Ω2(R) \ IM(R) is n-partite graph.

(ii) Assume contrary that |Co − Max(R)| ≥ n + 1. By Theorem 3.6, Ω2(R) \
IM(R) has a clique with cardinality n + 1. Thus by the Pigeon Hole Principal,
two elements of this clique should belong to one part of Ω2(R) \ IM(R), which is
a contradiction.

Now, if Ω2(R) \ IM(R) is not (n − 1)-partite and |Co − Max(R)| = k < n,
then by part (i), Ω2(R) \ IM(R) can be a k-partite graph, a contradiction. �

3.15 Proposition. Let R be a semiring with |Co − Max(R)| ≥ 2. If Ω2(R) \
IM(R) is complete n-partite graph, then n = 2.

Proof: Let {m1, m2} ⊆ Co−Max(R). By Proposition 3.2, it is clear that there
exists at least one element of m1 \ IM(R) which is adjacent to one element of
m2\IM(R). Also, mi\IM(R) is totally disconnected for any mi ∈ Co−Max(R),
so m1 \ IM(R) and m2 \ IM(R) are entirely contained in one of partitions of
Ω2(R) \ IM(R). This implies that (m1 \ IM(R)) ∩ (m2 \ IM(R)) = ∅ and hence
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m1∩m2 ⊆ IM(R). Therefore we have m1∩m2 = IM(R). Thus |Co−Max(R)| =
2 and by Theorem 3.4, Ω2(R) \ IM(R) is a complete bipartite graph. �

As mentioned in the introduction, Beck conjectured that χ(R) = ω(R) for
every ring R. In the following theorem we want to establish Beck’s conjecture for
the graph Ω2(R) \ IM(R) of c-semilocal semiring.

We recall that the chromatic number of the graph G, denoted by χ(G), is the
minimal number of colors which can be assigned to the vertices of G in such a
way that any two adjacent vertices have different colors.

3.16 Theorem. Let R be a c-semilocal semiring with |Co−Max(R)| = n. Then

χ(Ω2(R) \ IM(R)) = ω(Ω2(R) \ IM(R)) = n.

Proof: Let Co − Max(R) = {m1, . . . , mn}. By Theorem 3.6, we know that
ω(Ω2(R) \ IM(R)) = n. Also, it is obvious that χ(G) ≥ ω(G) for any graph G,
so χ(Ω2(R) \ IM(R)) ≥ n. On the other hand, Ω2(R) \ IM(R) is n-partite by
Theorem 3.14, thus the elements of each part can be colored by an identical color
because these elements are not adjacent. Hence χ(Ω2(R) \ IM(R)) = n. �

4. Diameter and radius of Ω(R)

In this section, we show that Ω2(R)\IM(R) is a connected graph and diam(Ω2

(R) \ IM(R)) ≤ 3. Also, we compute the eccentricity of the vertices of Ω2(R) \
IM(R).

4.1 Theorem. Let R be a semiring. The graph Ω2(R) \ IM(R) is connected

with diam(Ω2(R) \ IM(R)) ≤ 3.

Proof: Let x, y ∈ Ω2(R) \ IM(R) that are not adjacent. We consider two cases:

Case 1: Suppose that x + y /∈ IM(R). By Proposition 3.3, F (x + y)F (a) = R,
for some a ∈ Ω2(R) \ IM(R). This implies that F (x)F (a) = F (y)F (a) = R
since F (x + y) ⊆ F (x), F (y). Hence x − a − y is a path in Ω2(R) \ IM(R) and
d(x, y) = 2.

Case 2: Suppose that x + y ∈ IM(R). Thus for each m ∈ Co − Max(R),
we have x ∈ m or y ∈ m. Since x /∈ IM(R), by Proposition 3.3, there exists
a ∈ Ω2(R) \ IM(R) such that x is adjacent to a in Ω2(R) \ IM(R). Hence if
x ∈ m for maximal co-ideal m, then a /∈ m. Now, there exists n ∈ Co − Max(R)
in which y /∈ n, since y /∈ IM(R). This implies that x ∈ n and a /∈ n. As n is
prime co-ideal, we have a + y /∈ IM(R). So by Case 1, d(a, y) ≤ 2 and hence
d(x, y) ≤ 3. �

We recall that for a graph G, the eccentricity of a vertex x is e(x) =
Max{d(y, x); y ∈ V (G)}. A vertex x with smallest eccentricity is called a center

of G and its eccentricity is called the radius of G and is denoted by rad(G).

4.2 Proposition. Let R be a c-semilocal semiring with |Co − Max(R)| ≥ 3. If

x ∈ Ω2(R) \ IM(R) belongs to at least two maximal co-ideals, then e(x) = 3.
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Proof: Suppose that for x ∈ Ω2(R)\IM(R) there exist at least two maximal co-
ideals mi and mj so that x is contained in mi∩mj . By Theorem 4.1, d(x, y) ≤ 3 for
any y ∈ Ω2(R)\IM(R). Now to complete the proof, it suffices to show that, there
is an element y in Ω2(R)\IM(R) such that d(x, y) = 3. Let y ∈

⋂n
k=1
k 6=i

mk\IM(R).

Clearly that d(x, y) 6= 1, since x, y ∈ mj . If d(x, y) = 2, then x − a − y is a path
for some a ∈ Ω2(R) \ IM(R). Now, as x ∈ mi ∩ mj , thus a /∈ mi, mj . Also,
y ∈

⋂n
k=1
k 6=i

mk \ IM(R) implies that a /∈ mk, for 1 ≤ k ≤ n and k 6= i. Indeed,

this implies that a /∈ m for any m ∈ Co−Max(R), that is impossible. So we can
conclude that d(x, y) = 3 and hence e(x) = 3. �

4.3 Corollary. Let R be a c-semilocal semiring with |Co−Max(R)| ≥ 3. Then

diam(Ω2(R) \ IM(R)) = 3.

Proof: We know that diam(Ω2(R)\IM(R)) ≤ 3, by Theorem 4.1. On the other
hand, |Co − Max(R)| ≥ 3 implies that there is an element x in Ω2(R) \ IM(R)
that belongs to at least two maximal co-ideals. Now, the proof is immediate from
Proposition 4.2. �

4.4 Proposition. Let R be a semiring with |Co − Max(R)| = 2. If |mi \
IM(R)| ≥ 2 for some i, then diam(Ω2(R) \ IM(R)) = 2.

Proof: Assume that |Co − Max(R)| = 2. By Theorem 3.4, Ω2(R) \ IM(R)
is complete bipartite graph and thus diam(Ω2(R) \ IM(R)) ≤ 2. On the other
hand, diam(Ω2(R) \ IM(R)) 6= 1 because |mi \ IM(R)| ≥ 2 for some i. Hence
diam(Ω2(R) \ IM(R)) = 2. �

4.5 Theorem. Let R be a semiring. If diam(Ω2(R) \ IM(R)) = 2, then R
has an infinite number of maximal co-ideals or |Co − Max(R)| = 2 such that

|mi \ IM(R)| ≥ 2 for some i = 1, 2.

Proof: Assume that diam(Ω2(R) \ IM(R)) = 2 and |Co − Max(R)| is finite. If
n ≥ 3, then by Corollary 4.3, diam(Ω2(R)\IM(R)) = 3, which is a contradiction.
Thus we must have |Co − Max(R)| = 2. Now, if |mi \ IM(R)| = 1 for each i,
then diam(Ω2(R) \ IM(R)) = 1 because Ω2(R) \ IM(R) is a complete bipartite
graph, this is a contradiction. Hence |mi \ IM(R)| ≥ 2 for some i. �

4.6 Theorem. Let R be a c-semilocal semiring with |Co − Max(R)| = n ≥ 2.

If Ω2(R) \ IM(R) is not a star graph, then we have:

e(x) =







2 if x ∈ mi \
⋃n

j=1
j 6=i

mj

3 otherwise.

Proof: First, we claim that for any a ∈ Ω2(R) \ IM(R), e(a) 6= 1. Suppose that
there is an element x of Ω2(R) \ IM(R) such that e(x) = 1. This means that x is
adjacent to any vertex of Ω2(R)\IM(R) and so Ω2(R)\IM(R) is a star graph by
Proposition 3.10, which is a contradiction. Now, suppose that x ∈ mi \

⋃n
j=1
j 6=i

mj .
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For any y ∈
⋃n

j=1
j 6=i

mj \ mi, if F (x)F (y) 6= R, then F (x)F (y) ⊆ mk for some

mk ∈ Co − Max(R). Hence x, y ∈ mk, that is a contradiction. Therefore, in
this case d(x, y) = 1. But, if y ∈ mi \ IM(R) and y 6= x, then by proof of
Theorem 4.1, d(x, y) ≤ 2 since x + y /∈ IM(R). Clearly x and y are not adjacent
and so d(x, y) = 2. According to the assumption, since Ω2(R)\ IM(R) is not star
graph thus by Theorem 3.11 ((4) ⇒ (3)) |Co−Max(R)| ≥ 2 and |m\IM(R)| ≥ 2
for each m ∈ Co − Max(R). Hence e(x) = 2 for any x ∈ mi \

⋃n
j=1
j 6=i

mj .

Now, suppose that x /∈ mi \
⋃n

j=1
j 6=i

mj for any maximal co-ideal mi. Hence

there are at least two maximal co-ideals mk and mj so that x is contained in
mk ∩mj . This implies that |Co−Max(R)| ≥ 3, thus by Proposition 4.2 we have
e(x) = 3. �

4.7 Corollary. Let R be a c-semilocal semiring with |Co−Max(R)| = n ≥ 2. If

Ω2(R) \ IM(R) is not a star graph, then the elements of mi \
⋃n

j=1
j 6=i

mj are center

of Ω2(R) \ IM(R) for each mi ∈ Co − Max(R) and rad(Ω2(R) \ IM(R)) = 2.

Proof: This is an immediate consequence of Theorem 4.6. �

4.8 Proposition. Let R be a semiring with |Co − Max(R)| = 2. Then

rad(Ω2(R) \ IM(R)) = 1 or 2.

Proof: We know by Theorem 3.4, Ω2(R) \ IM(R) is a complete bipartite graph
when |Co − Max(R)| = 2. Now, if Ω2(R) \ IM(R) is a star graph, clearly
rad(Ω2(R) \ IM(R)) = 1. Otherwise, rad(Ω2(R) \ IM(R)) = 2 and all elements
of Ω2(R) \ IM(R) are center. �

5. The relations between Ω(R) and Γ(R)

In this section, we will investigate the relations between the zero-divisor graph
Γ(R) and Ω(R). We show that Γ(R) is a subgraph of the Ω(R). Also, we determine
a family of commutative semirings whose zero-divisor graph Γ(R) and Ω2(R) are
isomorphic.

We recall that an isomorphism from a simple graph G to a simple graph H is
a bijection f : V (G) → V (H) such that x and y are adjacent in G if and only
if f(x) and f(y) are adjacent in H . We say G is isomorphic to H , if there is an
isomorphism from G to H , denoted by G ∼= H .

5.1 Theorem. The zero-divisor graph Γ(R) is a subgraph of the graph Ω(R).

Proof: Suppose that x and y are two distinct adjacent vertices in Γ(R). Thus
xy = 0 and this implies F (x)F (y) = R, since 0 = xy ∈ F (x)F (y). Hence x and
y are adjacent in Ω(R). Now, since the vertex-set of zero-divisor graph is Z(R)∗,
thus we can conclude that Γ(R) is a subgraph of Ω(R). �

5.2 Theorem. Let R be a multiplicatively idempotent and zero-sumfree semi-

ring. Then the zero-divisor graph Γ(R) is an induced subgraph of the graph Ω(R).
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Proof: By Theorem 5.1, Γ(R) is a subgraph of Ω(R). Thus it is enough to
show that if x, y ∈ Z(R)∗ and they are adjacent in Ω(R), then x and y are
adjacent in Γ(R). Assume that x, y ∈ Z(R)∗ and F (x)F (y) = R. So we have
(xn + r)(ym + s) + k = 0 for some positive integers n, m and r, s, k ∈ R. Since R
is a multiplicatively idempotent, then we have xy + a = 0 for some a ∈ R. Hence
xy = 0 because R is a zero-sumfree semiring. This implies x and y are adjacent
in Γ(R). �

Note that if UM(R) = Z(R)∗, then Γ(R) is a spanning subgraph of Ω2(R)
by Theorem 5.1. Thus, if R is a multiplicatively idempotent and zero-sumfree
semiring, then we have the following result:

5.3 Corollary. Let R be a multiplicatively idempotent and zero-sumfree semi-

ring. If Z(R)∗ = UM(R), then the zero-divisor graph Γ(R) and Ω2(R) are isomor-

phic. In particular, if Z(R)∗ = UM(R) \ IM(R), then Γ(R) and Ω2(R) \ IM(R)
are isomorphic.

Proof: This is an immediate consequence of Theorems 5.1 and 5.2. �

To this end, we give an example that clarifies the previous results:

5.4 Example. Let S = {0, 1, a} and R = (S×S, +, ·) be a semiring as defined in
Example 3.5. We know that R is a multiplicatively idempotent. For this semiring,
the vertex-set of Γ(R) is

Z(R)∗ = {(0, 1), (1, 0), (0, a), (a, 0)}

and the vertex-set of Ω2(R) is UM(R) = R \ {(0, 0)}. Clearly Γ(R) is an induced
subgraph of Ω(R) and Ω2(R). On the other hand, (0, 0) is only zero-sum of R,
thus R is zero-sumfree semiring. We see that UM(R) \ IM(R) = Z(R)∗, so we
can conclude that Γ(R) and Ω2(R) \ IM(R) are isomorphic by Corollary 5.3.
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