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Semicontinuous integrands as jointly measurable maps

ORIOL CARBONELL-NICOLAU

Abstract. Suppose that (X,.A) is a measurable space and Y is a metrizable,
Souslin space. Let A% denote the universal completion of A. For z € X, let
f(z,-) be the lower semicontinuous hull of f(z,-). If f: X xY — Ris (A* ®
B(Y), B(R))-measurable, then f is (A* ® B(Y), B(R))-measurable.
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Let (X,.A) be a measurable space. For every bounded measure p on (X, .A),
let A* denote the completion of A with respect to p. Let

A" = ﬂ {A* : u is a bounded measure on (X, A)}.

The o-algebra A" is called the universal completion of A.

Let Y be a topological space, and let B(Y') represent the o-algebra of Borel
subsets of Y. The space Y is said to be Souslin if it is Hausdorff and there exist
a Polish space P and a continuous surjection from P to Y.

Given f: X xY — R, define the map f: X xY — R by

x,y) :=sup inf f(z,z),
f(z,y) u Zevyf( )

where V, ranges over all neighborhoods of y. For each 2 € X, f(z,-) is the lower
semicontinuous hull of f(x,-). If Y is metrizable, f can be expressed as

r,y) = su inf x,z),
i( 2 nell\)lzeN%(y)f( )

where N1 (y) represents the open %—neighborhood of y.

Theorem. Suppose that (X,.A) is a measurable space and Y is a metrizable,

Souslin space. Suppose further that the map f : X xY — Ris (A*@B(Y), B(R))-
measurable. Then f is (A" ® B(Y'), B(R))-measurable.
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PROOF: Define ¢" : X x Y — R by

"(x,y) := inf z,2).
g"(@y):= il f(@2)

We first show that ¢” is (A* @ B(Y'), B(R))-measurable for each n.
Let

D" = {(%y,z) GXXYXY:ZGNL(?J)}'

The map ¢g" is (A" ® B(Y), B(R))-measurable if for a € R,

(1) {(z,y) e X XY : g"(z,y) < a} € A*®@B(Y).
Given a € R we have

(2) {(z,y) € X xY : g"(2,y) < a} =Projx.y(E"),
where

E" :={(z,y,2) € D" : f(x,2) < a}

and Projy .y (E™) represents the projection of E™ onto X x Y. Thus, to establish
(1) it suffices to show that Projy .y (E™) belongs to A* @ B(Y).

Because Y is a Souslin space, Y is a Lindelof space, and since Y is in addition
metrizable, Y is separable. Because Y is separable, there is a countable, dense
subset Q of Y. Let {y',%?,...} be an enumeration of this set. For a > 0 and
y €Y, define

AV = [(z,2) € X x No(y) : f(z,2) <a}.

Let Projy(A¥) be the projection of A(®¥) onto X. Let Q denote the set of
rational numbers in (0, 1). Define

S”::{(a,ﬁ)e@x@:a—i—ﬁg%}.

We have

(3) Projx .y (E") = U [Pron(A<”"ym") X Na(ym)} :
(m,(,8))ENXS™

To see this, observe that given (z,y) € Projyy (E™), there exists z such that
(z,y,2) € D" (i.e., (x,y,2) € X XY xY and z € N1(y)) and f(zx,z) < a. Let d
be a compatible metric on Y, and fix

ce (0.3 (2 - dw.)).
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For y' € N.(y) we have
d(y',z) <d(y',y) +d(y,z) <e+d(y,z) < 5 (£ —d(y, 2)) +d(y, 2),

so there is a rational number

pes(n—dy2).5 (5 —dy.2)

such that d(y’,z) < 8+ d(y, z) for all ¥’ € N.(y), and hence there is a rational
number

@€ (B+d(y 2),5 (5 —dy,2) +dy, 2))
such that d(y’, z) < « for all y’ € N.(y). Consequently, since by denseness of @) in
Y one may choose m such that y™ € N.(y), we have z € N,(y™). It follows that
(z,2) € X x No(y™) and f(z,2) < a (so that x € Projy (A®¥™))) and, since

dy,y™) <e< 3 (L —d(y,2)) <8,

we have y € Ng(y™). We conclude that (x,y) € Projy(A®¥™)) x Ng(y™) with
(o, ) € Q x Q and

a+B8<i(E—d(y,2)+dy,2)+1(L—dy2) <.

Conversely, if (x,y) € Projy (A®¥™)) x Ng(y™) for some (m, (o, B)) € N x S™,
then there exists z such that (z,z) € X x N,(y™) and f(z,z) < a. In addition,

d(y,z) < d(y,y™) +d(y™,z) <B+a<

1
Consequently, (z,y,2) € X XY xY and z € N1 (y) (so that (z,y,z) € D™) and
f(z, z) < a, which implies that (z,y) € PronXyn(E”).

Because f is (A" @ B(Y), B(R))-measurable, we have A(®¥) ¢ A* @ B(Y) for
every a > 0 and y € Y. Therefore, because Y is a Souslin space, the measurable
projection theorem (e.g., Sainte-Beuve [6, Theorem 4]) gives Projy (A(®¥) € A
fora > 0andy € Y.! Inlight of (3), therefore, we conclude that Projy .y (E™) €
A" @ B(Y).

Because Projy .y (E™") € A*@B(Y), g™ is (A*®@B(Y), B(R))-measurable (recall
(2) and (1)). It only remains to observe that

f(z,y) =sup inf f(z,2)=supg"(z,v),
neN ZEN% (y) neN

so fis (A" ® B(Y), B(R))-measurable. O

In the remainder of the paper we present an application of the above result.
Let (X, A, ) be a finite measure space with A = A%. Let Y be a metrizable Lusin
space (i.e., a metrizable topological space which is homeomorphic to a Borel subset

IFor the case when Y is Polish, the measurable projection theorem can also be found in
Cohn [5, Proposition 8.4.4].
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of a compact metrizable space). A transition probability with respect to (X,.A)
and (Y, B(Y)) is a function o : B(Y) x X — [0, 1] satisfying the following:
e o(-|x) is a probability measure on (Y, B(Y)) for every z € X;
e o(B|) is (A, B(]0,1]))-measurable for every B € B(Y).
The set of transition probabilities with respect to (X,.A) and (Y, B(Y)) is denoted
by S.
A normal integrand on X x Y is amap f : X x Y — R satisfying the following:

e f(x,-) is lower semicontinuous on Y for every z € X;

o fis (A® B(Y),B(R))-measurable.

Let L1(X, A, 1) represent the set of (A, B(R))-measurable functions £ : X — R
such that

Awwmm<m.

The set of all normal integrands f on X xY for which there exists £ € L1 (X, A, )
such that £(z) < f(x,y) for all (z,y) € X XY is denoted by F.
For f € F, the functional I; : S — R is defined by

10) = [ | samotdyiont).

The narrow topology on S is the coarsest topology that makes the functionals
in {I; : f € F} lower semicontinuous. This topology has been studied by Balder
[1], [2], [3] and applied to the theory of games with incomplete information (e.g.,
Balder [2] and Carbonell-Nicolau and McLean [4]).

Suppose that the map f : X xY — Ris (A®@B(Y), B(R))-measurable. Suppose
further that there exists £ € L1 (X, A, u) such that {(x) < f(z,y) for all (z,y) €
X xY. Then f satisfies p(z) < f(x,y) for all (z,y) € X x Y and for some
¢ € Li1(X, A, p). In addition, f(z,-) is lower semicontinuous on Y for every x € X,

and, by virtue of Theorem, f is (A ® B(Y'), B(R))-measurable. Consequently,
[ € F. It follows that if S is endowed with the narrow topology, for each € > 0
and every o € S there exists an open set V in S containing ¢ such that

It(v) > If(0) —¢, forall veV.
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