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On the range of a closed operator
in an L;-space of vector-valued functions

RYOTARO SATO

Abstract. Let X be a reflexive Banach space and A be a closed operator in an Li-
space of X-valued functions. Then we characterize the range R(A) of A as follows. Let
0 # An € p(A) for all 1 < n < oo, where p(A) denotes the resolvent set of A, and assume
that limp— oo An = 0 and sup,,;>1 [|An(An —A)71|| < co. Furthermore, assume that there
exists Moo € p(A) such that ||[Aoo(Moo — A)71|| < 1. Then f € R(A) is equivalent to
sup,>1 [[(An —A) "1 f|l1 < co. This generalizes Shaw’s result for scalar-valued functions.
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1. Introduction

Let A be a (bounded or unbounded) closed operator in a Banach space Y with
range R(A) and domain D(A). By assuming that the resolvent set p(A) of A
includes a countable set {\, : n > 1}, with A\, # 0 for all n > 1, such that
limy,—o00 A = 0 and sup,,>1 [|[An(An — A) 71| < oo, it was shown in [11] that the
obviously necessary condition

sup ||(An — A)71z|| < 0o
n>1

is sufficient for an element 2 of Y to be in the range R(A) of A when Y is reflexive.
This can be regarded as a generalization of a result of Browder [2]; motivated by
a result of Gottschalk and Hedlund (cf. Theorem 14.11 in [5]), he studied the
problem of finding a necessary and sufficient condition for an element x of a
Banach space Y to be in the range of T'— I when T is power-bounded on Y, and
proved that the obviously necessary condition
n—1

(%) sup Z TFz|| < oo
k=0

n>1

is sufficient when Y is reflexive.
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It was shown in [8] that also for T" a contraction of Lj(x) condition (*) implies
x € R(T —I), and in [6] an analogue for semigroups of contractions in L (u)
was proved. A unified treatment of these two results was given in [11]. The
problem whether in L (p) the norm condition ||T'|| < 1 can be replaced by power-
boundedness is still unresolved; a partial answer was given in [1].

In this paper we treat the case of operators in the space Li((Q2, B, 1); X) of
vector-valued norm-integrable functions on a o-finite measure space (2, B, u),
with values in a reflexive Banach space X. The main result (Theorem 1) is the
vector-valued version of [11]. The applications extend accordingly the results of
(8], [6] and [11].

Let (X, |- ||x) be a reflexive Banach space, and (€, 3, 1) be a o-finite measure
space. For 1 < p < oo, let Ly(Q; X) = Ly((2, B, 1); X) denote the usual Banach
space of all X-valued strongly measurable functions f on {2 with the norm

1/p
||f||pz—</||f(w)|§<du(w)> coe if 1<p<oo,

[ flloo :=esssup{|| f(w)||x :weE N} <00 if p=occ.

We consider a closed operator A in L1(€; X) with range R(A) and domain
D(A). We assume that the resolvent set p(A) of A includes a countable set {\y, :
n > 1}, with Ay, # 0 for all n > 1, such that limy,— 00 A, = 0 and sup,,>1 [|An(An —
A)7Y| < co. Then we prove that sup,>q [[(An — A)"Lf|l1 < oo implies f €
R(A), under the additional hypothesis that there exists Moo € p(A) such that
[Adoo (Moo — A)~L|| < 1. It would be interesting to ask whether this implication
holds without the additional hypothesis. Concerning the problem the author
would like to note that Assani [1] considered a power-bounded linear operator T'
on L1 of scalar-valued functions, and under the hypothesis that

() lim hp, =0 a.e. implies lim Thy, =0 ae.,
n—oo n—oo

he proved that sup,~; || Sp_; TFf|l1 < oo is equivalent to f € R(T —I). It
seems to the author that it is an open problem to prove this equivalence relation
without assuming condition (xx). (See also [10], where similar results are proved
for vector-valued functions.)

As applications of the result we characterize the range R(A) of A, where A is
the generator of a discrete semigroup {T" : n > 0}, or a Cp-semigroup {7T'(t) :
t > 0}, or a strongly continuous cosine family {C(t) : —oco < ¢t < oo} of linear
contractions on Lj(€2; X). The results obtained below generalize Shaw’s results
(see [11, Corollaries 4, 6, and 8]) for scalar-valued functions. See also Lin and
Sine [8], Krengel and Lin [6] for related topics.
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2. The range of a closed operator in L (; X)
The following theorem is our main result.

Theorem 1 (cf. Theorem 2 of Shaw [11]). Let X be a reflexive Banach space,
and A be a closed operator in L1(§; X) with domain D(A) and range R(A). Let
p(A) denote the resolvent set of A, and assume that 0 # A, € p(A) for alln > 1
and limp—00 Ay = 0. If M := sup,>1 [[An(An — A)7L|| < oo, and there exists
Ao € p(A) such that |[Aoo(Aoo — A)7Y| < 1, then the following conditions are
equivalent for f € L1(; X).
(1) sup,>1 [[(An = A) 71 fll1 < oo
(II) f € R(A).
To prove this theorem we need the following lemma, which may be regarded as

a generalization of the Yosida-Hewitt theorem on vector-measures (see [3, p. 30,
Theorem 1.5.8]).

Lemma 1. Let X be a reflexive Banach space, and let { € Loo(Q;X*)*
(= L1(; X)**). Then there exist unique {. and £, in Loo(2; X*)* such that

(a) €= Le+Lp, and |[£]| = [|Cc]| + [1€p]];
(b) there exists g € L1(; X) with

M Gl = [ @@ @) ) forall §7 € Lo(@ X7
(c) if we define a scalar-valued function Gy on B for each z* € X* by

(2) Gz(B) :=tp(xp()z") (B € B),

then Gy~ is a purely finitely additive measure on B, i.e., there is no (count-
ably additive) measure A on B satisfying 0 < A(B) < |Gg+|(B) for all
B € B, where |G+| denotes the variation of G+ (cf. [3, p.2]).

PRrROOF: For B € B, define a linear functional F(B) on X* by
3) F(B)(z") = t(xp()z")  (z" € X7).

Since |F(B)(x*)] < ||€||||=*]|, it follows that [|[F(B)| < ||¢||. Thus we may regard
F(B) as an element of X** = X, and hence we can write

(4) (F(B), %) = l(xp(")z")  (BeB,a"€X")
Clearly, F : B — X is finitely additive. To see that F' is a finitely additive
vector-measure of bounded variation, let {Bj,...,Bp} be a finite measurable

decomposition of 2, and z7 € X*(j =1,... ,n) be such that [|27|| < 1. Then

_ ‘g(; XBj<~>x;)\ <l jZZjlxzej<~>x3*

(F(Bj), zj)
1

<l
Loo (€, X*)

n

J
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so that Z?:l |F(Bj)|| < [[£]]. Therefore, F is of bounded variation. Let |F|
denote the variation of F.. Then, since |F|(Q) < ||£]|, it follows from Corollary I1.5.3
of [3] that F' is strongly additive; and hence by the Yosida-Hewitt theorem (cf.
[3, p. 30, Theorem 1.5.8]), there exist unique strongly additive X-valued measures
F. and F}, on B (which are of bounded variation) such that

(i) Fg is countably additive;
(i) for each z* € X*, x*F), is purely finitely additive on B;
(ili) F = F.+ F;

(iv) F. and F) are mutually singular, i.e., for each € > 0 there exists £ € B

such that [F¢|(Q\ E) + |Fp|(E) < &

(v) |F| = |Fel + |Fp.

Since X has the Radon-Nikodym property (cf. [3, p.82, Corollary II1.3.4]),
there exists g € L1(£; X) such that F.(B) = [ gdu for all B € B. Using this g,
we define a linear functional £, on L (2; X*) by

te(f) = /Q (0@), FF@)duw)  (f* € Lol X)),

It is clear that £ € Loo(€2; X™)* and ||4c]| = ||g]|1. We then put
by =L — L,

so that £) € Loo(; X*)* and ¢ = (. + {p. Let 2* € X* and B € B. Then, by (2)
and (3),

Ga+(B) = lp(xB()z") = (€ — L) (xB()z") = L(xB()z") — Le(xB()z")
= (F(B), 2%) = (Fe(B), %) = (Fp(B), z¥),

which implies that *F;, = G~ on B for each * € X*. Thus, G~ is purely
finitely additive on B by (ii).

Next, we prove that ||¢|| = ||lc|| + [|¢p|l. To do this, let € > 0. Then, by (iv)
there exists E € B such that

() [Fe[(2\ E) + [Fp|(E) <e.

Since the set of all countably X *-valued functions in Lo (€2; X™*) is a dense subset
of Loo(£2; X™), there exists fi € Loo(€2; X*) of the form

[ee]
n=1

where z € X*, ||z}]| <1, and {By, : n > 1} is a countable measurable decompo-
sition of €, such that

(6) 1o (fD)] > lI6pll — .
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Write Ep, = EN (U7 Bj). It follows that E, T E as n — oo, and

F(Q\ E) = /Q ol dute)
= Jin [ o)l du) = Jim |F(@\ En).

Hence, we can choose Fp satisfying (5) with Ey in place of E. Then we can
choose f5 € Loo(£3; X*) of the form

=1

where y* € X*, ||ly7|| < 1, and {D; : j > 1} is a countable measurable decompo-
sition of the set E}y, such that

0 weI=| [ ). s> [ ) -
EN EN
Lastly, define an X *-valued function f* on by

N ) if weQ\ Ey,
! (w)_{fz*(w) if we Ep.

It is clear that f* € Loo(; X™) and ||f*|lco < 1. Furthermore, by (5) with En
in place of E, (6) and (7),

L) = 106F) + L) + Lelxan oy 1) + Lol ) — Loy 111
> ( [ gl dute) - ) (Il =€) — eelxen /7))

= 16p(f2)| = o (xEN )
> (el = 2€) + ([lep]l — €) — € — e — e = [[€c]| + [[€p]| — Ge.

Since € was arbitrary, this proves [|£|| > ||¢c|| + ||¢p||. Consequently, ||¢|| = ||4c|| +
4]l

The uniqueness of the decomposition ¢ = /. + ¢, follows from the uniqueness
of the decomposition F' = F + F},, and this completes the proof. O

PrROOF OF THEOREM 1: (I) = (II). We may assume here that Ao # 0, because
Moo = 0 implies R(A) = L1(%; X). Since {(Ay — A)71f : n > 1} is a bounded
subset of the dual space of Loo(2; X*), it is relatively compact with respect to
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the weak*-topology. It follows that there exists n € L1(Q; X)** which is a weak*-
cluster point of the sequence {(\, — A)~1f}%2 ;.

Let u € Loo(2;,X*) and 0 # X € p(A). Then there exists a subsequence
{n;}72; of the sequence {n}32 such that

(A= A7)0, ) = (0, A = A) 7))
= fim (O, = A7 A= 4) 7))

= lim (A\A = A) " O, — A) 7L, )

J—0

= 1.
=00 A=A,

= <777 u> - <()‘ - A)_1f7 u>7

Ay = AT = (A= AT )

where the last but one equality is due to the resolvent equation. Consequently,
we obtain that

(®) A=) )™ p=n—A—-A)7"f  (Aep(d), A#0).

Here, we apply Lemma 1 for n as follows. By Lemma 1, there exist unique 7. and
np in L1(€; X)** such that

(i) there exists g € L1(€; X) with

) = [ (90 0 @) dn(e) (1€ Lol X))
(i) if we define a scalar-valued function G+ on B for each z* € X* by

G+ (B) := mp(xp()z*) (B € B),

then G is a purely finitely additive measure on B;
(iii) 1 = ne + np, and [[n]| = |nell + [[npl]-

By (i) we may identify 7. with g. Then, putting A = Ao, we have by (8)
(Moo (hoo = A) ™) n = g +1p — (Aoo — A) 1.
On the other hand, we also have

(Ao (Moo — A)_l)**n = (Moo (Moo — A)_l)**(g + 1p)
= Xoo(Aoo = A) g+ (Moo (Aoo — A)_l)**%
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whence
9 (Moo =A™ ™ =np+ 9 — (Moo = A) 71 = Aoc(Moo — A) 7 Lg.

Since ||(Aso (Moo — A)71)**|| = [[Aoo(Aoo — A)7L|| < 1 by hypothesis, it follows
that

Inpll = | (Moo (Aoo = A) ™1 npll = llnp + 9 — (Ao = A) 71 f = Aso (Moo — A) 9.

Here we notice that g — (\; — A)"1f — A1 (A1 — A)"lg is a function in L1 (Q; X)
and 7, is an element of L1(§; X)** satisfying condition (ii). Thus by Lemma 1
we have

npll = ol + llg = (A = A7 = M (A = 4) gl

which implies
g=M—A)7f+ M- A7

Consequently, g € D(A) and (A1 — A)g = f + M\1g, so that f = A(—g) € R(A).
(I1) = (I). If f = Ag for some g € L1(Q2; X), then

A=A =0n—A) T Ag=A0 — A) g =M —A) g —yg,

and thus [|[(An — A) 7 fll < A = A)7Hlllglh + llgll < (M +1)[lg]x for all
n>1.
This completes the proof of Theorem 1. ([

Using the argument of the above proof we can prove the following proposition,
which is of independent interest in view of the results of [4] and [12].

Proposition 1. Let X be a reflexive Banach space, and A be a closed operator
in L1(Q; X) with domain D(A) and range R(A). Suppose there exists A € p(A)
such that |A(A\ — A)~1|| < 1. Then A(U N D(A)) is a closed subset of L1(; X),
where U is the closed unit ball of L1(;X), i.e.,, U={f € Li(%X): | fll1 <1}.

Proor: Let f, € UND(A), n = 1,2,..., and f € L1(2;X) be such that
limp—oo |Afn — fll1 = 0. We must prove that f € A(U N D(A)). To do this, let
n € L1(£; X)** be a weak*-cluster point of the sequence { fn}72;(C L1(£; X)**).
Then, for u € Loo(2; X™) there exists a subsequence {nj}‘;il of the sequence

{n}>2, such that

(A =A™, u) = (g, AA = A7) = i (Fg (A= A)7H )

= lim AN —A)"fn,, w) :jling((I + AN = A) ) fry, w)

Jj—00

= lim (fn, + A= A) 7 Afn;, w) = (n+ (A= A) 7L, w).

im
Jj—oo
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It follows that (A(A\ — A)~1)**n = n + (A — A)~1f. Thus, as in the proof of
(I) = (II) of Theorem 1, letting n = 1. + 7, and identifying n. with a function g
in L1(Q; X), we see that

AA= AT+ A= AT =g +mp+ (A= A) T,
so that
A=A =np+ g9+ A=A f=AA -4 g.
By this and the fact ||(A(A — A)~1)**|| < 1, it follows from Lemma 1 that

g+A—A)lr—axA-4)"lg=o.

Hence (A — A)g+ f — A\g = 0, and we see that f = Ag with ¢ € D(A) and
llgll1 < |Inll < 1. This completes the proof. O

3. Applications

Let T be a bounded linear operator on Li(Q; X). For v # —1, =2, ... we
define the Cesaro means of order  (or y-Cesaro means) Cj)(T) of the discrete
semigroup {T™ : n > 0} by

1 <~ A
(10) CUT) = — Z o) TF (n>0),
" k=0

o)
where o = B+1D(B+2)...(64+n)/n! for n > 1, and aoﬁ =1 (ct. [15,
Chapter 3]). Among them are the following two particular means: CO(T) = T™

and CY(T) = (n+1)"1 3°0_, T*. As is well-known, only the case v > —1 is of
interest. The Abel means of {T™ : n > 0} are the operators

[e.e]

(11) Ap(T) = (1=7) Y r"T"

n=0

defined for 0 < r < 1/7(T), where 7(T) := limp,— o0 || T"||*/™ denotes the spectral
radius of T'. It is known (cf. [15, Chapter 3]) that if #(T) <l and 0 < v < 8 < o0,
then

(12)  sup |[T"fll1 > sup |C(T)fllr > sup [CH(T)fllh = sup [[An(T)f]1
n>0 n>0 n>0 o<r<1

for every f € L1(9; X).
The first application of Theorem 1 is the following
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Theorem 2 (cf. Theorem 7 of [8]). Let X be a reflexive Banach space, and T
be a linear contraction on L1(Q2; X). Assume that o > 1. Then the following
conditions are equivalent for f € L1(Q; X).

(I) sup,>onl|CR(T) fll1 < oc.

(I1) supo<y<1 [ 2onzo T fll1 < oo
(I) f e R(T —1).

Proor: (I) = (II). Since

n a

n —1 (op
nCY(T)f = s ZUS_kaf and = R, (n — o0),
" k=0 In

n||CHT)f]l1 = O(1) (n — o0) is equivalent to
C = supH g Z o 1ka|\1 < 00.
77/

Then, for 0 < r < 1 we have
o
Zr"T"f:(l—r 1-r)" Zr"T"f

l_roc<zo_$; 1 n)<ZTnTnf>
n=0

1 n

-1 -1k

=(1-r)" g oo Tn<—a_1 g on T f),
n=0 on k=0

so that

o0
‘ <A=-r*> ol c=cC.
1 n=0

(IT) = (III). Putting A =T — I, we have for A >0

[e.9]

1 1
A—A P =0+1-T) = — ) (—)M1"
(=) = LT = o Y ()T
n=0
whence ||T'|| < 1 implies
o0

A 1
A <« 2 — )" =1.
PO -7 53 Sy
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Furthermore, we get from (IT) that
sup (A= 4)7 7 = sup : ff( )yt |,
s X+l 4 A+l
=1
< nn < o0.
<sun| ST <o

Hence, f € R(A) = R(T — I) by Theorem 1.

(III) = (I). Suppose f = (T — I)g for some g € L1(Q; X). Using the funda-
mental relation Cﬁ(T)(T —1I) =5 (Cg_&( ) —1I) for 3 > 0 and n > 0, which
can be proved by an elementary calculation (cf. [15, Chapter 3]), we see that

nCp(T)f = nCr(T)(T - I)g =

= T (O (1) = Dg.

Then, since ||C’fl‘+11( )|| <1 (which comes from the hypotheses that ||T']| < 1 and

that a > 1), it follows that

| Cr (D) fllr < alC (DI + gl < 2allglly (0 > 0).

This completes the proof of Theorem 2. (I

Remarks (on Theorem 2). (a) If —1 < a < 1, then (III) = (I) does not hold in
general. To see this, first suppose that « # 0 and —1 < a < 1. Then we can use
the equation CF/(T)(T — I) = ;57 (C'n_,_1 (T)-1I).If f=(T—1)g, then

(13) nCg(T)f =nC(T)(T — I)g = ——(CaT1(T)g - g),

n+1
so that limy, . [|CO™1(T)g|l1 = oo implies

nlal

1
TUCT (Mgl = Nlglh) — o0 as n — oo

(14)  [[nCR(T)fIlL =
To see the possibility of the case that limy, o [|C2~H(T)g|l1 = oo, let m be the
counting measure on the set Z of all integers, and L;(Z,m) be the Li-space of
real-valued functions on Z with respect to the measure m. Define a positive
linear isometry T on L1 (Z, m) by T f(k) = f(k—1) for k € Z. Then, the function
9 = X{o0} satisfies T"g = X{n} for n > 0, and hence

n

Z 2Tk

nqr%nml—‘

-2
||03 X{n}Hl = oo‘—_1| -

’ B |0%_1| | n
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as n — 00, since 0271 ~ n® 1/T'(a) (n — oo) (cf. [15, p.77]). (For related
topics we refer the reader to [7].)

Next, suppose that & = 0. In this case, for any isometry T = I and any f # 0,
with f € R(T —I), we have n||CO(T)f|| = n||T™f|| = n||f|| — oo as n — co. This
completes the proof.

(b) The implication (I) = (II) holds for every o > —1, with « # 0. To see this,

it suffices to consider only the case where —1 < a < 1 and « # 0, by Theorem 2.
Now, choose (8 > 0 satisfying 8 + a > 1. Then, since

—sup|| = IZ o 1ka||1<oo,
n

n n k
Zagi_g_lka: ZO’ Z 1Tl and o} fro—1 _ Oﬂ 10 _1,
k=0 k=0 =0
it follows that
1 SBta—1mk ool pon'C

_ Tfl| < =C,

Bt+a—1 Tn—k B8—1_a—1

n k=0 2 k=00 k0%

whence sup,,>( n|\Cg+a(T)f||1 < 00, and thus f € R(T — I) by Theorem 2.
On the other hand, if & = 0, then the implication (I) = (II) fails to hold in
general. To see this, let u be the measure on Z defined by

1 if k<0,
p(ik}) = { (k+1)"1  if k> 1.

Let T be the positive linear contraction on L1(Z, i) defined by T'f(k) = f(k—1)
for k € Z. Then the function g = X{0} satisfies

n
(15)  nllCa(Dglly = n|T gl = nllxgnyli = 1<t (=20

By the definitions,
n

g\ — Ixpli =3 e — 0
j:03+1

asn — 00, 80 g & L1(T —I). Thus (II) with g in place of f does not hold, by
Theorem 2.
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(c) In Theorem 2 the condition supyc,.«1 || Yomeo T f|l1 < oo can be re-
placed with the weaker condition liminf,qq || Y202 r™ T f||1 < oo, which follows
from Theorem 1.

Next, we consider a Cy-semigroup T'(-) = {T'(t) : t > 0} of linear contractions
on L1(; X). Thus, T(s+t) = T(s)T'(t) for all s, t > 0, and limy ¢ |T'(¢) f — fll1 =
0 for each f € L1(Q;X). The infinitesimal generator A of T'(-) is defined by
Af = limy ot~ H(T(t) f — f), with domain D(A) the set of all those f € L1 (€ X)
for which this limit exists. It is known (cf. e.g. [9]) that A is a densely defined
closed operator; and since |T(¢)|| < 1 for all ¢ > 0, if A > 0, then A\ € p(4)
and (A — A)7Lf = [Ce T (s)fds for all f € L1(9;X). Therefore we have
supysq [MA — A)7Y| < 1. The Cesaro means of order v (or y-Cesaro means)
CJ (T(-)) of the semigroup T'(-), where v > 0 and ¢ > 0, are the operators defined
by C2(T(-)) := T(t) for v = 0, and

t
(16) Cﬂﬂ%f%vfféﬁ—ﬂ%ﬁﬁﬁ% (7> 0,1 € L1 X)).

In particular, if v = 1, then we have C}(T(-))f = t1 f(f T(s)fds. The Abel
means Ay(T'(+)) of T'(-) are the operators

o
a0 AT A [ ENTEd (0> 0.5 € Li@:X))
0
Fubini’s theorem and an induction argument on n imply easily the following facts:
(i) If 0 < v, 8 < oo then for every f € L1(Q; X) and t > 0,

Ly _\B=-1[[s s— 7 fy—lT(T)f dr] ds
18 By — ot =97 [Jo(s =) |
( ) t ( ( ))f fg(t _ 8)5—1 U‘(f(s _ 7,)«/_1 d?"} ds

(ii) If n > 1 is an integer, then for every f € L1(Q; X) and ¢ > 0,
(19) CHT(O)f =

_n!t_"/ot Uosl </052 ( (/Osan(sn)fdsn> ...>d53) ds% dsy.

Furthermore, as in the discrete case (cf. (12)), we obtain that if 0 < v < 3 < o0,
then for every f € L1(Q; X),

sup ||T(t) f|l1 > sup |C/ (T () fIl1
>0 >0

(20) 5
> sup |CP(T()) Il > sup [ Ar(T()f1.
t>0 A>0
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Theorem 3 (cf. Corollary 8 of [11]). Let X be a reflexive Banach space, and
A be the infinitesimal generator of a Cy-semigroup T'(-) of linear contractions on
L1(; X). Assume that a > 1. Then the following conditions are equivalent for
ferly (Q; X )

(I) supyo t|CE(T(-)) fll1 < oo
(IT) supysq || fo° e MT(t) f dt|1 < oo.
(IT) f € R(A).

Proor: (I) = (II). We first show that there exists an integer n > « such that
(21) My, := jugfl\C?(T(-))le < oo.
>

To prove this, we may assume that o > 1. We then notice by (16) that the
condition sup;~q t||Cf(T(-)) f]l1 < oo is equivalent to

o I3 = 8)* 71T () ds|y
22) M) = §>g Jot —s)e=2ds

Let 5 > 0. By Fubini’s theorem

/Ot(t — )81 (/Os(s — )T f dr) ds
_/Ot (/Tt(t—5)5_1(5—r)a_1d5)T(r)fdr

- /Ot(t —r)fta-l (/01(1 —s)f-tgarl ds)T(r)fdr

t
~ B(B,a) /O (t = )P0  dr

and

/Ot(t ) i </OS(S — )2 dr> ds = B(B,a — 1) /ot(t —p)Bta=2 g,

where B(p, q) := fol(l —2)P~ L2971 dz (p, ¢ > 0) is the Beta function. Tt follows
that

| fo(t = s)P+a=1T(s) f ds||y

M8+ «) = sup

i R TR
By B e e e as],
 B(3,0) t>g fg(t — )L ([3(s — r)o2dr) ds

B(B, o)
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Therefore, (21) holds for any integer n, with n > a.
Next, by Fubini’s theorem

00 o t
[T ersa=a [T [rngan]a-..

e [ LU (AL s o)

00 n—1
_ )‘H/O e_’\tt—' ECP(T () f] di (by (19)).

n:

Thus we apply (21) to get that for A > 0,

‘ /oo e NT(t) f dt

0
(II) = (III). Since (II) implies

o
sup (3~ )7Ly = sup | [~ e N1 dtls <
A>0 A>0 JO

[e'e) tn—l
< [T e e
1 0 .

n

o0 M
e\ e M lgr = —
n! 0 n

(I1I) follows from Theorem 1.

(IIT) = (I). Suppose f = Ag for some g € L1(92; X). Then, since fot T(s)fds =
T(t)g — g for t > 0, it follows that

(23) My = supt||C{ (T() fll1 = sup | T(t)g — gll1 < 2llgll1 < oo.
>0 >0

Thus, (I) holds for o = 1. If & > 1, then by Fubini’s theorem

/Ot(t—s)a—lT(S)de: /Ot ( /:(a_l) (L= P2 T(s)f dr) .

~(a- 1)/0t(t a2 (/OTT(s)fds> dr,

| s

t
< (a— 1)/ (t — )72 Mydr = My 27,
0

and thus

‘ /Ot(t— $)* T (s) f ds

so that

dr

t
< (o — 1)/0 (t —r)*2

1 1

sup t[|CF(T'(-)) fll1 < aMy.
>0

This completes the proof of Theorem 3. O
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Remarks (on Theorem 3). (d) The implication (III) = (I) does not hold for
0 < a < 1. Indeed, let Lij(—o00, 00) be the usual Li-space of scalar-valued
functions on the real line R := (—o0, c0). Let T'(¢), t € R, be the operators on
Li(—o00, 00) defined by
(24) T(t)f(z) = f(z+1).
Then T'(-) := {T(t) : t > 0} is a Cp-semigroup of positive invertible linear isome-
tries on Lj(—00, 00). The following are well-known:

(i) D(A) ={g € L1(—00, o0) : g is absolutely continuous, and

g € Li(—o0, 00)};

(i) Ag =g’ for g € D(A).

Hence the function f = X[o 1) — X[1,3) + X[3,4) belongs to D(A), and f = Ay,

where g(z) := [T f(s)ds.
Now, suppose 0 < a < 1. Then, for every z with 0 <t —1 < x < t, we have

t
(TN (=) =t~ [ (=) (s =) ds
=atl™® /t(t — ) Lds = 172t — 2)®,

whence .
1
tCP (T (- >tL*i/ t—x)*de=t"" .
T e A
This implies lim¢—,o0 [|[tCE(T(+)) fll1 = o0, because 1 — a > 0. Next, suppose
« = 0. Then, clearly, we have [|tCY(T(-))f|l1 = t||T(t)f|l1 = t||f]1 = 4t — oo as

t — oo.

(e) The computations in the proof of (I) = (II) apply to the case a > 0, so that
the implication (I) = (II) holds for all & > 0. But, if a = 0, then the implication
(I) = (II) fails to hold in general. This can be seen by modifying the example in
Remark (b). Indeed, let w be the function on R defined by w(z) =1 if © > —1,
and w(z) = (—x)"lifz < —1, and let 1 be the measure on R defined by y = w dz,
where dx stands for the Lebesgue measure on R. Then the operators T'(¢), ¢t > 0,
of the form T'(t)f(z) = f(x +t) define a Cp-semigroup T'(-) of positive linear
contractions on L1 (R, u) of scalar-valued integrable functions with respect to p,
and the function f := x|g 1) satisfies

supt[|CP (T()) fll1 = suptl|T'(¢) f |11 = sup tllx_s, —¢41)ll1 < 2.
0 >0 >0

But, it is known that

(i) D(A) ={g € L1(R, u) : g is locally absolutely continuous, and

9" € Li(R, p)};
(i) Ag =g’ for g € D(A).
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Thus, if f = Ah for some h € D(A), then we must have f = x[g, 1) = ', and

t
h(x—|—t)—h(a:)—/0f(x—|—s)ds (t >0,z €R).

Therefore, h(z) = h(1l) for « > 1, and h(x) = h(0) for z < 0. But, since
h(1) — h(0) = fol R/ (s)ds = 1, this proves that h cannot belong to L1(R, p), a
contradiction. Thus, f ¢ R(A), and (II) does not hold by Theorem 3.

Lastly, we give an application to the infinitesimal generator A of a strongly
continuous cosine family C(-) = {C(t) : t € R} of linear contractions on L1 (€; X).
By definition, the family C(-) satisfies

(i) C(s+t)+C(s—t) =2C(s)C(t) forall s,teR;

(i) C(0) =1

(iii) C(¢)f is continuous in ¢ € R for each f € L1(£;X).

The infinitesimal generator A is defined by Af := lim;_o(C(2t)f — f)/2t2,
with domain D(A) the set of all those f € Li(Q;X) for which this limit ex-
ists. Since ||C(t)|] < 1 for all ¢t € R, it is known (cf. e.g. [13], [14]) that A
is a densely defined closed operator such that if A > 0, then A € p(A) and
AAZ —A)~Lf = 5 e~C(s)f ds for all f € Li(;X). Therefore we have
supysg A = A)7H < 1.

The associated sine family S(-) = {S(¢) : t € R} of linear operators on L1(; X)
is defined by

t
(25) S(t)f :—/0 C(s)f ds (teR, feLi(X)).

Elementary properties of S(-) and C(+) can be found in [14]. The Cesaro means
of order v (or y-Cesaro means) C} (S(-)) of the sine family S(-), where v > 0 and
t > 0, are the operators defined by C?(S(+)) := S(t), and

(26)  C/(SO)f =t /Ot(t —s)71S(s)fds (7> 0, f € Li(X)).

It is direct to see that (18), (19) and (20) hold with S(-), S(r), S(sn) and S(t)
in place of T'(+), T'(r), T'(sn) and T'(t), respectively.

Theorem 4 (cf. Corollary 8 of [11]). Let X be a reflexive Banach space, and A
be the infinitesimal generator of a strongly continuous cosine family C(-) of linear
contractions on L1(2; X ). Assume that o > 1. Then the following conditions are
equivalent for f € L1(Q; X).

(1) supo tCH(S()) fllL < oo
(ID) supxso |l fo~ e MS () f dt|l1 < oo.
(I) f € R(A).
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Proor: (I) = (II). We first notice, as in the proof of (I) = (II) of Theorem 3,
that there exists an integer n > a such that

(27) My, = supt[|CF(S() fll1 < oo
t>0
Then, since

/ TS0 1 dt = A7 / Tt [1CF (S())f]dt

0 0 n!

(cf. (19) with S(-) and S(sy) in place of T'(-) and T'(sy,), respectively), it follows
that

H /OOO e MS(t) f dt

M, % M;
< = )\"/ e MnTlgr = (A >0).
1 n. 0 n

(II) = (II). Since (A2 — A)7Lf = AL [Ce™2C(s)fds = [7° e MS(t) fdt
for A > 0, (II) implies

o0
sup (A2 — A)"Lf| = sup | / NS (1) f dt]l1 < oo,
A>0 A>0 0

Hence (III) follows from Theorem 1.

(III) = (I). Assume that f = Ag for some g € L1(92; X). By Lemma 2.15
of [13] we have f(f S(s)fds = f(f S(s)Agds = C(t)g — g for t > 0. Thus M| =
sup;~o || fot S(s)fds|1 < 2|lg|l1, and hence (I) holds for o = 1. If & > 1, then we
can obtain, as in the proof of (III) = (I) of Theorem 3, that sup;~q t[|CF(S(-)) f|l1
< aM{.

This completes the proof of Theorem 4. O

Remarks (on Theorem 4). (f) The implication (III) = (I) does not hold for
0 < a < 1. Indeed, if C(t), t € R, are the operators on L1(—o0, oo) defined by
Ct)f(x) := 27 1(f(x + t) + f(x —t)), then C(-) := {C(t) : t € R} becomes a
strongly continuous cosine family of positive linear contractions on Li(—o00, 00).
It is known (cf. e.g. [13, Theorem 4.12]) that

g and ¢’ are absolutely continuous, }
)

(1) D(A) = {g S Ll(—OO, OO) " and g/, g// c Ll(—OO, OO)

(i) Ag = ¢" for g € D(A).
Thus the function

J=X[0,1) = X[1,3) T X[3,4) — X[4,5) T X[5,7) — X[7,8)
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belongs to R(A). Since S(t)f(z) = fot 27 1(f(x + 5) + f(x — 5)) ds, it follows that
if t > 2 then

(28) St)f(x) >1/4 forall xe[—t+(1/2), —t+ (3/2)],

and thus if s € [t — (1/4), t], then, for all x € [t + (3/4), —t + (3/2)],

(29) S()f(x) = / 2N flo+1) + flo—r))dr > 1/4.

0

Now, suppose 0 < a < 1. Then by (29), for t > 2 and = € [t + (3/4), —t +
(3/2)] we have

t
1CR(S())(x) = ati—e /0 (t - )27 L8 (s)  (x) ds

t 1—
> at! =@ (t—s)* L. 1ds 0

W=

therefore
—t+(3/2) 4l-a 3¢l-a

t|CH(S())f 2/ T = — 00 t — 0).

orsOInz [ = (t o)
Next, suppose a = 0. Then by (28) we get

0 —t+(3/2) 1 t

QXS =@l ze [0 lde =t — e (t—o0)
—t+(1/2)

(g) The implication (I) = (II) of Theorem 4 holds for all « > 0, as observed
in Remark (e). Here it may be of some interest to note that if & = 0 then the
implication (I) = (II) is trivial. Indeed, if (I) holds for @ = 0, then we have
sup;~o t||S(t) fll1 < oo and hence limy . ||S(¢) f||1 = 0, from which we deduce
that f = 0 as follows. For a moment, assume that f # 0. Then there exists
so > 0 such that g := S(sg)f # 0. Then by Proposition 2.1 of [14]

C(t)g = C(t)S(so)f =27 1(S(t + s0)f — S(t — s0)f) — 0 ast — oo,

and thus ¢ = —C(2t)g 4+ 2C(t)2g — 0 as t — oo. But this is a contradiction.
(This proof was communicated to the author by Professor S.-Y. Shaw.)
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