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Abstract. Let k be a finite field and consider the finite dimensional path
algebra kQ, where Q is a quiver of tame type i.e. of type An, Dm E6, E7, Es.
Let H(kQ) be the corresponding Ringel-Hall algebra. We are going to de-
termine the Ringel-Hall numbers of the form F';;, with P, P/ preprojective
indecomposables of defect -1 and F& with I, 1’ preinjective indecompo-
sables of defect 1. It turns out that these numbers are either 1 or 0.

1 Introduction

Let k be a finite field with q elements and consider the path algebra kQ
where Q is a quiver of tame type ie. of type An, Dn, Eg, E7, Es. When Q is
of type An we exclude the cyclic orientation. So kQ is a finite dimensional
tame hereditary algebra with the category of finite dimensional (hence finite)
right modules denoted by mod-kQ. Let [M] be the isomorphism class of M €
mod-kQ. The category mod-kQ can and will be identified with the category
rep-kQ of the finite dimensional k-representations of the quiver Q = (Qo =
{1,2,...,n}4Qq). Here Qo = {1,2,...,n} denotes the set of vertices of the
quiver, Qg the set of arrows and for an arrow « we denote by s(«) the starting
point of the arrow and by e(«) its endpoint. Recall that a k-representation of
Q is defined as a set of finite dimensional k-spaces {V;/i = 1,n} corresponding
to the vertices together with k-linear maps Vi : V(«) — Vi(«) corresponding
to the arrows. The dimension of a module M = (V;, V) € mod-kQ = rep-kQ
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62 Cs. Szanté

is then dimM = (dimy V;)
a <biff by —a; > 0 Vi.

Let P(i) and I(i) be the projective and injective indecomposable correspond-
ing to the vertex i and consider the Cartan matrix Cq with the j-th column
being dimP(j). We have a biliniar form on Z" defined as (a,b) = aCétbt.
Then for two modules X,Y € mod-kQ we get

(dimX, dimY) = dimy Hom(X, Y) — dimy Ext' (X, Y).

€ Z™. For a = (a;),b = (by) € Z™ we say that

11n

We denote by q the quadratic form defined by q(a) = (a, a). Then q is positive
semi-definite with radical Zb, that is {a € Z™|q(a) = 0} = Zb. Here b is known
for each type An, Dn, Eg, E7, Eg (see [4]). A vector a € N" is called positive real
root of q if q(a) = 1. It is known (see [4]) that for all positive roots a there is
a unique indecomposable module M € mod-kQ (unique up to isomorphism)
with dimM = a. The rest of the indecomposables are of dimension td, with t
positive integers. The defect of a module M is OM = (8, dimM) = —(dimM, §).
For a short exact sequence 0 - X — Y — Z — 0 we have that 0Y = 0X + 0Z.

Consider the Auslander-Reiten translates T = D Ext'(— kQ) and 7! =
Ext'(D(kQ),—), where D = Homy(—, k). An indecomposable module M is
preprojective (preinjective) if exists a positive integer m such that T™(M) =0
(T7™(M) = 0). Otherwise M is said to be regular. Note that the dimension vec-
tors of preprojective and preinjective indecomposables are positive real roots
of q. A module is preprojective (preinjective, regular) if every indecomposable
component is preprojective (preinjective, regular). Note that an indecompos-
able module M is preprojective (preinjective, regular) iff oM < 0 (M > 0,
oM = 0). Moreover if Q is of type An then OM = —1 for M preprojective
indecomposable and 0M = 1 for M preinjective indecomposable.

We consider now the rational Ringel-Hall algebra H(kQ) of the algebra kQ.
Its Q-basis is formed by the isomorphism classes [M] from mod-kQ and the
multiplication is defined by

The structure constants FM}NZ =H{M D Ul U = N,, M/U = N;}| are called
Ringel-Hall numbers. It is well-known that Ringel-Hall algebras play an impor-
tant role in linking representation theory with the theory of quantum groups.
They also appear in cluster theory. This is why it is important to know the
structure of these algebras, by deriving formulas for Ringel-Hall numbers.
When Q is the Kronecker quiver (i.e. of type A1) then the Ringel-Hall num-
bers were determined in [7] and [3]. It was shown that for P, P’ preprojective
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indecomposables the Ringel-Hall numbers F;{, are 0 or 1. A dual statement
could be formulated for preinjectives. This result was important since it played
a crucial role in obtaining other formulas for Ringel-Hall numbers.

Our main theorem generalizes this result for every tame case. More precisely
we show that the Ringel-Hall numbers of the form FP]; with P, P’ preprojective
indecomposables of defect -1 and F x with I, 1" preinjective indecomposables
of defect 1 are either 1 or 0. We also describe the modules X for which these
Ringel-Hall numbers are 1.

We should remark that the main result of this paper is a fundamental tool
in obtaining other important formulas for the Ringel-Hall products in tame
cases (see also the paper [9]).

Finally we note that the left to right implication part of Lemma 4 appears
as main result in [10], however for the sake of completeness we include the full
proof of it.

2 Facts on tame hereditary algebras

For a detailed description of the forthcoming notions we refer to [1],[2],[4],[6]
and [12].

Let k be a finite field with q elements and consider the path algebra kQ
where Q is a quiver of tame type.

The vertices of the Auslander-Reiten quiver of kQ are the isomorphism
classes of indecomposables and its arrows correspond to the so-called irre-
ducible maps. It will have a preprojective component (with all the isoclasses
of preprojective indecomposables), a preinjective component (with all the iso-
classes of preinjective indecomposables). All the other components (containing
the isoclasses of regular indecomposables) are “tubes” of the form ZA.,/m,
where m is the rank of the tube. The tubes are indexed by the points of the
scheme IP)IL, the degree of a point x € IP’]L being denoted by deg x. A tube of rank
1 is called homogeneous, otherwise it is called non-homogeneous. We have at
most 3 non-homogeneous tubes indexed by points x of degree degx = 1. All
the other tubes are homogeneous. Notice that the number of points x € IP’]
of degree 1 is q + 1 and there are N(q,1) = | Zdu p )q¢ points of degree
1l > 2, where p is the Mdbius function and N(q,1) is the number of monic,
irreducible polynomials of degree 1 over a field with q elements (see [12]).

Indecomposables from different tubes have no nonzero homomorphisms and
no non-trivial extensions. Note that all regular modules form an extension-
closed abelian subcategory of mod-kQ, the simple objects in this subcate-
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gory being called quasi-simple modules; any indecomposable regular module
is regular uniserial and hence it is uniquely determined by its quasi-socle and
quasi-length, and also by its quasi-top and quasi-length.

In case of a homogeneous tube Ty we have a single quasi-simple regular
denoted by Ry[1] with dimR4[1] = (degx)d, which lies on the “mouth” of
the tube. Ry[t] will denote the regular indecomposable with quasi-socle Ry[1]
and quasi-length t. In case of a non-homogeneous tube T, of rank m on the
mouth of the tube we have m quasi-simples denoted by R;[]] i= 1,7111 such
that ZlL diimR;[H = 9. R;[t] will denote the regular indecomposable with
quasi-socle R;[H and quasi-length t.

The following lemma is well-known.

Lemma 1 a) For P preprojective, 1 preinjective, and R reqular module we have
Hom(R, P) = Hom(I,P) = Hom(I,R) = Ext' (P,R) = Ext' (P, 1) = Ext'(R,I) =
0.

b) If x # x' and Ry (Ry/) is a reqular with components from the tube Ty
(Ty/), then Hom(Ry, Ry/) = Ext! (Ry, Ry/) = 0.

c) For tyx homogeneous and Ry[t], Ry[t'] indecomposables from Ty we have
dimy Hom(Ry [t], Ry[t]) = dimy Ext'(Ry[t], Re[t’]) = min(t, t’) degx.

d) For T, non-homogeneous of rank m and RL[t] an indecomposable from T
such that lm < t < (L4 1)m we have dimy End(RL[t]) =1+ 1.

e) For Ty non-homogeneous of rank m and RL[t] an indecomposable from Ty
such that lm < t < (1+ 1)m we have dimy Ext' (RL[t], RE[L]) = 1.

f) For P preprojective and 1 preinjective indecomposable modules we have
End(P) = k, End(I) = k, |Aut(P)| = |Aut(I)] = q — 1 and Ext'(P,P) =
Ext'(I,1) = 0.

3 Some Ringel-Hall numbers

Consider the Ringel-Hall numbers of the form qul, with P, P’ preprojetive in-
decomposables of defect -1 and F};( with I, I’ preinjective indecomposables of
defect 1. We are going to show that these numbers are either 1 or 0.

We consider the preprojective case, the preinjective case being dual. We
begin with some lemmas. The first lemma is well known (see for example in

[11]).

Lemma 2 Let P be a preprojective indecomposable with defect OP = —1, P/ a
preprojective module and R a reqular indecomposable. Then we have:
a) Every nonzero morphism f: P — P’ is a monomorphism.
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b) For every nonzero morphism f: P — R, f is either a monomorphism or
Imf is reqular. In particular if R is quasi-simple and Imf is reqular then f is
an epimorphism.

Proof. a) Consider the short exact sequence 0 — Ker f — P — Im f — 0. Since
Kerf C P and Imf C P’ we have that Ker f and Im f are either preprojective
(so with negative defect) or 0. Moreover we have that 0 Ker f +0Imf = 0P =
—1 and we know that Imf # 0 (since f is nonzero). It follows that Ker f = 0.

b) Consider the short exact sequence 0 — Kerf — P — Imf — 0. Since
Ker f C P we have that Ker f is either preprojective (so with negative defect)
or 0. On the other hand Im f C R implies that Im f can contain preprojectives
and regulars as direct summands (and it is nonzero since f is nonzero). The
equality 0 Kerf + 0Imf = 0P = —1 gives us two cases. When 0 Kerf = 0
then Ker f is 0 so f is monomorphism. In the second case (when 0 Ker f = —1)
0Imf =0, so Imf can contain just regular direct summands. O

Lemma 3 Let P be a preprojective indecomposable with defect 9P = —1 (Then
dimP # & since dimP is a positive real root of q).

a) Suppose that dimP > 6. Then P projects to the quasi-simple reqular Ry[1]
from each homogeneous tube Ty, with (degx)d < dimP. Also P projects to a
unique quasi-simple reqular from the mouth of each non-homogeneous tube Ty.
We will denote these quasi-simple requlars by RE[1] where for T, homogeneous
with (degx)d < dim P we have RE[]] = R, [1].

b) Suppose that dimP < &. Then P projects at most to a single quasi-simple
regular from each non-homogeneous tube T, denoted by RE[1].

Proof. a) Suppose that Ry[1] denotes the quasi-simple regular from the mouth
of the homogeneous tube T, with dimRy[1] = (degx)d < dimP. Then we have
Ext](P, Rx[1]) =0 (see Lemma 1) so

dimy HOIH(P, Rx[”) = <dlimp» @Rx[1]> = <dl7mpa (degx)é) =

(degx)(—0P) = degx # 0.

This means that we have a nonzero morphism f : P — R,[1] with dimP >
dimRy[1]. Using Lemma 2 we deduce that f is not a monomorphism, so Im f
is regular and Ry[1] is quasi-simple, which means that f is an epimorphism.
Denote by Ri[1], i = T,m the i-th quasi-simple regular from the mouth of
the non-homogeneous tube Ty of rank m > 2. Notice that this time degx =1,



66 Cs. Szanté

S M, dimRi[1] = § and Ext' (P,RL[1]) = 0, so we have

> dimy Hom(P,R{[1]) = ) (dimP, dimRY[1])

i=1 i=1

m
= (dimP, ) dimR}[1]) = (dimP, 8) = —0P = 1.

i=1

It follows that 3lip such that Hom(P, R}f 1 # 0, so we have a nonzero mor-
phism f : P — RY°[1] with dimP > & > dimR[1]. Using Lemma 2 we deduce
that f is not a monomorphism, so Im f is regular and R[] is quasi-simple,
which means that f is an epimorphism. Let RE[H = RY[1].

b) Since dimP < & clearly P could project only on quasi-simple regulars from
non-homogeneous tubes. Denote again by RL[1], i = T, m the i-th quasi-simple
regular on the mouth of the non-homogeneous tube T, of rank m > 2. As above
we can deduce that J!ip such that Hom(P, R [1]) # 0, so we have a nonzero
morphism f : P — RP[1]. But if dimP % dimR}°[1] then f is a monomorphism
and not an epimorphism. O

Remark 1 Notice that dimy, Hom(P, RF[1]) = degx.

Lemma 4 Let P 2 P’ be preprojective indecomposables with defect —1. Then
F;; = 0 iff X satisfies the following conditions:

i) it is a regular module with dimX = dimP’ — dimP;

ii) if it has an indecomposable component from a tube Ty then the quasi-top
of this component is the quasi-simple regular R,':/[H;

iii) its indecomposable components are taken from pairwise different tubes.

Proof. “=” Suppose F';G/, # 0. We will check the conditions i), ii) and iii).

Condition i). Since F%, # 0 we have a short exact sequence 0 — P — P’ —
X — 0. Then dimX = dimP’ — dimP and 0P’ = 0P + 0X, but 0P’ = 0P = —1,
so 0X = 0. Notice that X can’t have preprojective components, for if P” would
be such a component then P/ — P” 22 P’ which is impossible due to Lemma 2
a). So X is regular.

Condition ii). Let R be an indecomposable component of X taken from the
tube Tx. Denote by topR its quasi-top which must be quasi-simple due to
uniseriality. Then P/ — X — R — topR so using Lemma 3 topR = RE .

Condition iii). Suppose X = X' @ Ry & ... & Ry, where Ry,..., Ry are taken
from the same tube Ty. Then by Condition ii) they have the same quasi-top
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RP'[1] and we have the monomorphism
0 — Hom(X, RY'[1]) — Hom(P/,RY'[1]).

It follows that
dimy Hom(X, Rzl[ﬂ) < dimy Hom(P’, RE/[H) = degx.

We can conclude that

1
dimy Hom(X, RY'[1]) = dimy Hom(X’, RY'[1])+ ) dimy Hom(R;, RE'[1]) < degx,

i=1

dimy Hom(R;, RY ny = degx for Ty homogeneous

and

dim Hom(Ry, RE l[l]) > 1 = degx for T, non-homogeneous.

It follows that 1 =1.

“&” Let R be an indecomposable regular module with dimR < dimP’ sat-
isfying condition ii). By Lemma 2 b) it follows that for a nonzero morphism
f: P’ — R, Imf is regular. We will show that P’ projects on R. Observe that
if R= RE "[1] the assertion is true due to Lemma 3. Suppose now that R is not
a quasi-simple.

If R is from a homogeneous tube T, then R = R,[t], dimR = t(degx)d and
Hom(P’,R) # 0 since dimy Hom(P’,R) = (dimP’, t(degx)8) = —t(degx)oP’' =
tdeg x. Notice that in the case when there are no epimorphisms in Hom(P’, R)
then using Lemma 2 b) and the uniseriality of regulars we would have
Hom(P’,R) = Hom(P’, R¢[t]) = Hom(P’, Ry [t—1]), a contradiction. So we have
an epimorphism P’ — R. .

If R is from a non-homogeneous tube Ty of rank m then degx =1, R = R [t]
and topR = RE/ 1] = R;[]] (condition ii)). We have that dimR = dimR)[t—1]+
dim(topR), so dimy Hom(P’,R) = (dimP’, dimR)[t—1])+(dimP’, dim(topR)) =
dimy Hom(P’, R, [t—1]) +1 > 0. If there is no epimorphism P’ — R then using
uniseriality and Lemma 2 b) for nonzero f € Hom(P’,R) we have that Im f =
RL[U with 1 <1< t and P’ projects on top Im f so topR[l] = topRL[t] = topR
(see Lemma 3). But this means that t —1 = sm with s > 1 so if t < m we
have a contradiction and if t > m as in the homogeneous case we would have
that Hom(P’, R\[t]) = Hom(P’,R\[t — m]) that is

0 = (dimP’, dimR} [t] — dimR [t — m]) = (dimP’,8) =1,

again a contradiction.
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Suppose now that the module X = R; & ... @ Ry satisfies conditions i), ii)
and iii). From the discussion above we have the epimorphisms f; : P’ — R;.
Let f: P/ = X, f(x) = >_ fi(x) the diagonal map. Due to Lemma 2 b) we have
that Im f is regular, so due to uniseriality Imf = R} @ ... ® R/ with R/ C R;.
Since fi = pif are epimorphisms we have that R{ = Ry, so f is an epimorphism.
Notice that Kerf C P’ hence it is preprojective, 0 Kerf = 0P’ — 09X = —1
therefore Ker f is an indecomposable preprojective with dim Ker f = dimP. It
follows that Kerf = P, so we have an exact sequence 0 — P — P/ — X — 0
which implies that F;; # 0. U

Lemma 5 Let P 2 P’ be preprojective indecomposables with defect —1 such
that Hom(P,P’) # 0. Suppose the points y; € }P}L, i=1,s (s =0,1,2,3) are
indezing the non-homogeneous tubes (in case s =0 we have only homogeneous
tubes). Then dimP’ —dimP = to6+ Y § ; 09, where 0 < 0¥ < § and 0¥ (in case
it is monzero) is the dimension of a regular from the non-homogeneous tube
Ty, with top RE: (1]. In this case dimy Hom(P,P’) =ty + 1 so tg is unique.

Proof. Since Hom(P, P’) # 0 we have a monomorphism P — P’ with factor X
satisfying conditions i),ii),iii) from the previous lemma. It follows that dimP’—
dimP = dimX = t§ + ) ;_; 0y, where 0 < o0y (in case it is nonzero) is the
dimension of a regular R; from the non-homogeneous tube T, with top Ryp_: (1].
Suppose o; = ;0 + o‘? with 0 < o‘? < & and 0 < t;. If t; # O then there is a
unique regular Ry; of dimension t; from the non-homogeneous tube Ty, which
embeds into Ri; the factor will be of dimension ¢¢ with top RS: (1] (if oY #0).
Let to =t+ > ;ti.

We show that dimy Hom(P,P’) = ty 4+ 1. Suppose first that we don’t have
non-homogeneous tubes, so we are in the Kronecker case (see [12]). In this
case 6 = (1,1), dimP’ — dimP = t¢ and then dimy Hom(P,P’) =ty + 1. (see
for example [7] Lemma 2.1). Consider now the case when we do have non-
homogeneous tubes, so s > 1 and suppose tpd + O'(]) # 0 . Then there are
unique regular indecomposables Ry € Ty, of dimension tod + O‘(]) and top RHP]’ (1]
and R; € Ty, of dimension G? and top Rg: Mforiel={1i= ﬂlog % 0}
Suppose that 1’ = {i = 1,s]0{ # 0} and |I’| =1 (where we can have 1 = 0). Let
R = Ry & (@j; Ri). It follows from the previous lemma that FE{, # 0 so we
have a short exact sequence 0 — P — P’ — R — 0 which induces the exact
sequences

0 — End(P) — Hom(P,P’) — Hom(P,R) — Ext' (P, P)
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and
0 — End(R) — Hom(P’,R) — Hom(P,R) — Ext' (R,R) — Ext'(P’,R).
We deduce using Lemma 1 and Remark 1 that
dimy Hom(P, P/) = dimy Hom(P,R) + 1 =
dimy Hom(P’, R) 4 dimy Ext' (R, R) — dimy End(R) + 1,

where

S
dimy Hom(P’, R) = (dimP’, dimR) = (dimP’, tod + ¥ o) =to +1,

i=1

dimy Ext' (R, R) = dimy Ext' (R, Ry) + ) dimy Ext' (R, Ry) = to,
iel
dim End(R) = dimy End(Ry) + ) dimy End(R;) = to + 1,
iel
so it results that dimy Hom(P,P’) = to + 1. O

The following lemma can be found in [5] or in [8].

Lemma 6 For tyg nonnegative integer we have that

to+1 _
X o=t
q—1
(JCX)XGJP’11<
ty € Z,ty >0

> t(degx) =to

Now we are ready to prove the main theorem.

Theorem 1 Let P 2 P’ be preprojective indecomposables with defect —1. If
Hom(P,P’) = 0 then F%, = 0 for every X. If Hom(P,P’) # 0 then F;ll, =1 for
any X satisfying conditions i), i) and iii) from Lemma 4, otherwise F;; =0.

Proof. Suppose Hom(P,P’) # 0. Then using the notation from Lemma 5
dimP’ —dimP = to8+ Y | ; 0, where 0 < 09 < § and o? (in case it is nonzero)
is the dimension of a regular from the non-homogeneous tube Ty, with top
RyPil [1]; also we have dimy Hom(P, P’) = ty+1. Since by Lemma 2 every nonzero
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morphism in Hom(P, P’) is a monomorphism and | Aut(P)| = g — 1. We have
that the number of submodules of P’ which are isomorphic to P is

pr |Hom(P,P)|—1  qtotl —1

YT AR T g1

A regular module X satisfying conditions i), ii) and iii) from Lemma 4 will be
called of good type. By Lemma 4 we have that

LLI]?’ = Z F])D(P = Z F;P)
(XI X]
X of good type

the terms in the last sum being nonzero. We will count now the number of
nonisomorphic regulars of good type. For T, a homogeneous tube and t > 1
denote by Ry(t) the regular Ry[t] of quasi-length t and let R (0) = 0. For Ty,
(i = 1,s) a non-homogeneous tube and t # 0 denote by Ry, (t) the unique
indecomposable from Ty, of dimension tb + O'g with top Ryp_: [1]. For t =0 and

o‘? # 0 let Ry, (0) be the unique indecomposable from Ty, of dimension o‘? with
top Rypil [1]. For t =0 and 0'? =0 let Ry, (0) = 0. Then the modules

D Re(ty)

(tX)XEPL
ty € Z,ty > 0
Zx tx(deg X) =t
are nonisomorphic regulars of good type, so by the previous lemma we have
1
at least 9% of them. It follows that

qto-i-] —1

q —1 = Z Ff(P’
(X]
X of good type
the number of nonzero terms in the sum being at least 9%, so the assertion
of the theorem follows. g

Remark 2 [t follows from the previous theorem that for P % P’ preprojective
indecomposables with defect —1 such that Hom(P,P’) # 0 the decomposition
from Lemma 5 dimP’ — dimP = tod + ) |, O'g (where 0 < G? < & and (Y(i) (in
case it is nonzero) is the dimension of a regular from the non-homogeneous
tube Ty, with top RUP: (1]) is unique, so both ty and O‘g are unique.
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We can dualize the previous results for preinjective modules. So we have the
dual of Lemma 3.

Lemma 7 Let I be a preinjective indecomposable with defect 01 = 1.

a) Suppose that diml > &. Then the quasi-simple regular Ry[1] from each
homogeneous tube T with (degx)d < dim I embeds into 1. Also, a unique quasi-
simple regular from the mouth of each non-homogeneous tube Tty embeds into 1.
We will denote these quasi-simple regulars by R}C[H, where for T, homogeneous
with (degx)d < dim I we have R,I([ﬂ = R, [1].

b) Suppose that diml < §. Then at most a single quasi-simple regular from
each non-homogeneous tube Ty embeds into 1. We denote this quasi-simple
regular by RL[1].

The dual of Theorem 1 is

Theorem 2 Let I 21’ be preinjective indecomposables with defect 1.

If Hom(I',I) = 0 then Fg( =0 for every X. If Hom(I',1) # 0 then Fg( =1
for X satisfying the conditions i), i) and iii) below, otherwise Fg( =0.

i) X is a regular module with dimX = dimP’ — dimP;

ii) If X has an indecomposable component from a tube Ty then the quasi-socle
of this component is the quasi-simple reqular R)I(/ 1;

iii) The indecomposable components of X are taken from pairwise different
tubes.
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