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Abstract. By applying the g-derivative operator of order m (m € Ny),
we introduce two new subclasses of p-valently analytic functions of com-
plex order. For these classes of functions, we obtain the coefficient in-
equalities and distortion properties. Some consequences of the main re-
sults are also considered.

1 Introduction and preliminaries

The theory of g-analysis in recent past has been applied in many areas of
mathematics and physics, as for example, in the areas of ordinary fractional
calculus, optimal control problems, g-difference and g-integral equations, and
in g-transform analysis. One may refer to the books [5], [7], and the recent
papers [1], [2], [3], [4], [8] and [12] on the subject. Purohit and Raina recently in
[10], [11] have used the fractional g-calculus operators in investigating certain
classes of functions which are analytic in the open disk. Purohit [9] also studied
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similar work and considered new classes of multivalently analytic functions in
the open unit disk.

In the present paper, we aim at introducing some new subclasses of functions
defined by applying the g-derivative operator of order m (m € Ny) which are
p-valent and analytic in the open unit disk. The results derived include the
coefficient inequalities and distortion theorems for the subclasses defined and
introduced below. Some consequences of the main results are also pointed out
in the concluding section.

To make this paper self contained, we present below the basic definitions
and related details of the g-calculus, which are used in the sequel.

The g-shifted factorial (see [5]) is defined for «, q € C as a product of n
factors by

1; n=20
(oc;q)n:{ 1—o)(1T—axq)...(1—axq™'); neN"’ (1)

and in terms of the basic analogue of the gamma function by

_ (1—q)"Tq(x+mn)
rq(‘x)
where the g-gamma function is defined by [5, p. 16, eqn. (1.10.1)]

(d%; 9)n (n>0), (2)

. _ 1—x
ramz(mwmﬂ q) 0<q<1. 3)

(9% 9)oo

If |q] < 1, the definition (1) remains meaningful for n = oo, as a convergent
infinite product given by

1°_°I (1—adq)
j=0

We recall here the following g-analogue definitions given by Gasper and
Rahman [5]. The recurrence relation for g-gamma function is given by

(1—q%) Tg(x)

) (4)

and the g-binomial expansion is given by

v v ) 1*(U/X)qn
(X_U)V =X (_U/X;q)v =X . |:1_(y/x)qv+nj| . (5)

n=
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Also, the Jackson’s g-derivative and g-integral of a function f defined on a
subset of C are, respectively, defined by (see Gasper and Rahman [5, pp. 19,
22])

Dasfle) = "o (2£0,a 21 ()

and -
| foagt =20 -a) Y q¥flzq"). (7)

0 k=0

Following the image formula for fractional g-derivative [10, pp. 58-59], namely:

Fq(14+A) _
x A q A—a >
a2 = 0 +A—o) z (x>0, A>—1), (8)

we have for x =m (m € N) :

Fq(T+A) Am

pmoA=- T A>—1).
Q2% R0+ A= )z (meN, A>-—1) 9)
Further, in view of the relation that
. (4%59)n
L = 10
ql;Q (T—q)™ (&)n, (10)

we observe that the g-shifted factorial (1) reduces to the familiar Pochhammer
symbol ()n, where (a)p =1 and (), = x(x+1)...(x+n—1) (ne€N).

2 New classes of functions

By A, (n), we denote the class of functions of the form:

(o)

flz)=2P+ ) @z (n,peN), (11)
k=n+p

which are analytic and p-valent in the open unit disc U={z: z € C, |z| < 1}.
Also, let A;(n) denote the subclass of Ap(n) consisting of analytic and p-
valent functions expressed in the form

f(z) = 2P — Z az®  (ax>0,m, peN). (12)
k=n+p
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Differentiating (12) m times with respect to z and making use of (9), we get

f1+p) - = Mg +k)
DM f(z) = —F T~ _ P _ I
bz Iq(T+p—m) k_;rp Mq(1+k—m) (13)
(n, pe Nym € No,p >m).
By applying the g-derivative operator of order m to the function f(z), we
define here a new subclass MmpO\,é, q) of the p-valent class A;(n), which
consist of functions f(z) satisfying the inequality that

1{ z Dafsz(z) +Aq 2 Déj;mf(z) Cp—m] } <1
8 | Az DiZ™f(z) + (1 —A) DI,f(2) d ’ (14)
m<ppeNmMeNy; 0<ALT 6€C\{0}; 0<q<1; zel),
where the g-natural number is expressed as
1—q"
nlq = T4 0<qg<1). (15)

Also, let /\/{%(7\, 8,q) denote the subclass of Ay (n) consisting of functions
f(z) which satisfy the inequality that

%{Dl,j;mf(z) +Az D3M(z) — [p—m]q}‘ <[p—mlg, (16)

Mm<ppeNmMeNy, 0<A<T, 5cC\{0}; 0<q< 1 zeU).
The following results give the characterization properties for functions of

the form (12) which belong to the classes defined above.

Theorem 1 Let the function f(z) be defined by (12), then f(z) € M, (A, 6, q)
if and only if
> (81— q“ ™ —Klg) Alk,m, A, q) ax < 8] A(p,m,Aq),  (17)
k=n+p

where A(k, m, A, q) is given by

(T+k—m—1]q g A)TH(1+k)

A(k)m)A>q): Fq(1+k—m) )

such that

A(P>m,7\>q)— Z A(k>m))\aq) Ak > 0. (19)
k=n+p
The result is sharp.
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Proof. Let f(z) € M, (A, 8, q), then on using (14), we get

z DIM*Mf(z) + A q 22 D2E™f(2)
gz L TRAE Zas TE g b > o).
Az D™ f(z) + (1 =A) Dg}zf(z)
Now, in view of (13), we have
N =zD{™(z) + A q 2 D;™f(z)
0 +P) o i a T+, m
Fq(p—m) Kt p Mq(k—m)
Tq(1+7p) 2 e qT+%k) e
+Aqt | e ag ——+—— 2z ™
|:Fq(pm1) k%p Mg(k —m—1)
- 1 Aq
=Tq(14+p)zi™ [ + }
P =) TR omo)
—iakr(1+k)zkm[ 1 + Ad }
k=n+p ! Mglk—m)  Tglk—m—1)
_lpml(+p—m—Tlg g Ng(1+P)
i k—mlg(+k—m—1q g M1 +%)
N o T +k—m) z
k=n-+p 4
[e.e]
=lp—mlg Alp,m,Aq) 2 ™= Y a [k—mlg Alk,m,A, q) 2™,
k=n+p

where A(k, m,A, q) is given by (18).
Similarly, we can obtain

D=AzDy™f(z) + (1—A) DL f(z) = A(p,m,A, q)zP ™

o0
— Z ar Ak, M, A, q) 25
k=n+p
Hence

N—[p—m]D = Z q“ ™ [p —klq Ak, m, A, q) @y 25™.
k=n+p
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Therefore, from (20), we obtain the simplified form of the inequality that
( ey @™ [P — kg Alk,my A q) a 24

> —19]. 21
A(p,m,k q Zp m Zk =n+p k m77\>q) Ay Zk_m) ( )

By putting z = r, the denominator of (21) (say DN(r)) becomes

DN(r) = Alp,m,A, Q" ™ — 3 A(k,m,A, q) g T
k=n-+p

=1 A(p,m,?\ q Z Ak, m, A, q) akrk P )
k=n+p

which is positive for r = 0, and also remains positive for 0 < r < 1, with
the condition (19). So that on letting r — 1~ through real values, we get the
desired assertion (17) of Theorem 1.

To prove the converse of Theorem 1, first we would show that

z D]+mf( )+Aqz? Déj;mf(z)
Az DgE™(z) + (1 —A) DI f(z)

—[p- ]q

(22)
Zk:n-i-p ke [p _k] (k m>)\ q) ak
N A(pam))\>q Zk n+p k ma)\ q)
We have
z D]]j;mf(z) +Aq2? Défz’“f(z) )
Az DgzMf(z) + (1—A) DLf(z) ;
S _ _ 23
S8y €™ I~ Ky Ak m, A, ) ™| (23)
) (p)m))\ q Zp m— Zk =n+p k m, 7\>q) akzkim‘
On the other hand if |z| = 1, then
Y d“T p—Kg Alk,mA q) a T
—n+p
Z ‘q —Klq Alk,m, A, q) a 2™ (24)
—n+p
Z q< Alk,m, A, q) a

k=n+p
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and

Alp, myA, q)zP ™ — Z Ak, My A, q)az™

k=n+p
> [Alp,mA @2 = 3 Ak M2 a ™ (25)
k=n-+p
= A(p,myA, q) — Z A(k,m, A, q) ag.
k=n-+p

Now (23), (24) and (25) imply (22), and then by applying the hypothesis (17),
we find that

z Dllf;mf(z) +Aqz? Dé;‘“f(z)

Az Dgi™(z) + (1 —A) DI, f(z)

81 {AmmA Q) — T2y Alk,m, A Q) a
Alp, m, A, q) — Z]‘iﬂﬂ) A(k,my A, q) ax

—[p—mlq

=19].

Hence, by the maximum modulus principle, we infer that
f(z) € M7, (A8, q).

It is easy to verify that the equality in (17) is attained for the function f(z)
given by

3 Alp, m, A, q)

Zn-i—p
(18l + gP~™Mm]q)A(n + p, M, A, q)

f(z) = 2P —

(m <p;p,n € N)m € NO))
(26)
where A(p, myA, q) is given by (18). O

We now derive the following corollaries from Theorem 1.

From Theorem 1, we easily get the following corollary:

Corollary 1 If the function f(z) is defined by (12) and f(z) € M7, (A, 8,4),
then

Y <18l Z(p,n,m A8, ), (27)
k=n+p
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where Z(p,n, my, A, d, q) is defined by

- Alp,myA, q)
= A b = 28
(p)n)m) ) )q) (|6|+qp_m[n]q)A(n-i-p,m,?\,q)’ ( )
and A(k,myA, q) is given by (18).
Corollary 2 If f(z) € M7, (A, 8, q), then
D [Kglk—Tlg---k—p+Tlg ax < 18] ©(p,n,m,A,8,q),  (29)
k=n-+p

where O(p,n, m, A, 8, q) is defined by

lq(1+n+p—m) Alp,m,A, q)

(18l +qP™lg) T+ +p—m—1]g q A)T(T+n)
(30)

@(p)n> m, }\) 6) q) =

)

and A(k,myA, q) is given by (18).

Proof. Since f(z) € M}',(A,8,q), then under the hypotheses of Theorem 1,
we have

i (18] — g ™p — Klg) (14 k—m—1]q q A) Tq(1 +k) o

Nl Iq(1T+k—m) (31)

< 18] Alp,m, A, q),

where A(k, m, A, q) is given by (18).
Using the recurrence relation (4) successively p times, we can write

(1 4K) = Kglk—1lq...[k—p + 1q Tq(k—p+1). (32)

We now show here that
o < Qerly

where

(I8l — g~ ™p—Kg) T+gAk—m—1)T4(1+k—p)
(1 +k—m) (33)

X =

= (Ax) (By) (Cy),
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Ax =8l — ¢ ™p — g,
Bk:]-i-q A [k—m—ﬂq and
Iq(1 +k—p)

L I —

It is sufficient to show that

o (Ax) (Bi) (G <1

O+ (A1) (Bry1)(Cyqr) —

Evidently, for k = n + p, we have

Av _ IBl+qP ™l
A I+ a1y

and since [n + 1]q > [nlg, hence Ay is positive and consequently

Ax
At

< 1. (34)

Also, it follows easily that

By 1+gAMm+p—m-—1]

q
= <L 35
Byt T+gAMm+p—mlg (35)

Further, upon using the familiar asymptotic formula ([6, pp. 311, eqn. (1.7)])
given by

(%) 1—q1"H g (x> o0, 0<qg< 1),

n=0
it can be verified that

+k—p) (=@ "PI,(1—q™)
rq(] _|_k_m) (] _ q)1—1—k+m HTOIO:O(] _ qn-H) (36)
=(1—q)P™ (k—oo, 0<qg<lm<p).

kK =

Thus, for large k, we conclude that

Ky

<1T.
Kk+1
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We, therefore, from (31) and (32) infer that

> Kk —Tg...k—p+1q a
k=n+p
|5| A(k)m)A)q)rq(] +n+p—m)
T (I8l gr )T+ +p—m—1]qg g A) Tq(1+n)’

which in view of (30) yields the desired inequality (31).

Next, we prove the following result.

Theorem 2 Let the function f(z) be defined by (12), then f(z) € NTTP(A, 5,q)

if and only if
Nyt (1+m)
where Q(k, m, A, q) is given by

Ok, m,A, q) = [ :1 ] (14 k—m—1]g \).
q

The result is sharp with the extremal function given by

flz) = 27 — [p—mlg 18] =1+ T4(1+m) Q(p,m,)\,q)]Zner
M+p—mlq Tg(1+m) Q(n+p,m,A, q) '

Proof. Let f(z) € N;;}p(x, d,q), then on using (16), we get
DA {D;;mf(z) + Az DEM(z) — [p — m]q} > — 8] [p—mlg.

Now, in view of (13), we have

M+P) om — Nq(1+Kk)
DT (z) + A z DEM(z) = =4~ FL gpmeT Q"= 7
4z b= rq (p—m) k;rp r‘q (k—m)
Ty (1+7p) e Ng(T+k) o
+Az |1 apme2 Z a —+ = pkm
1 A
=Tg(1+ )zp“”[ + ]
AL Lp—m)  Typ—m—1)

Z [k_m]qQ(k)m)A)q)akg [P—m]q L—~|6|_1 +Q(p)m)7\)q) ) (37)
q

(38)

(39)

—m—1
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1 A
Rk—m) Tqk—m_1)

_ Z ax rq(]—l-k) Zkimf]
k=n+p
[p—mlg(0+p—m—1g g1 +p)_,
z
lq(T+p—m)
_ i a [k—m]q(1+[k—m_”q A)rq(]+k) Zk—m—]
. Nq(1+k—m) '

k=n+p
From (40), we obtain a simplified form of the inequality which is given by

> k—mlg(1+k—m—1g Mq(1+k) g
R — Z ax q q q Zk—m
T+p—m—1]g NI (1+ e
Now taking (38) into account, the above inequality yields
R — Z [k —mlqQ(k, m, A, )T (1 +m) ax Zm-l
k=n+p (41)

—fp —mlq (1 — Ok, m, A, q)Ty(1 +m)zp—m—‘)} > — 18] fp — ml,.

By putting z = r in (41), and letting v — 17 through real values, we get the
desired assertion (37) of Theorem 2.
To prove the converse of Theorem 2, we have

‘{D;fsz(z) +AzDIM(z) — [p— m]q}‘

<D k—mlgQk, mA, @)Tg(1+m) ay 2™
k=n+p

n ‘[p —mlg (1 — Ok, m, A, q)Ty(1 +m)zp—m—1) ‘ .
Letting |z| = 1, we find that
|{DLEme(2) + A 2 D2EM(2) — bp — mly ||
< i [k —mlqQk, m,A, q)T4(14+m) ax

k=n-+p
+ [P _m]q (1 _Q(k)m))\)q)rq(] +m)))
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then by applying the hypothesis (37), we find that
j{D];;“f(z) + Az DEM(z) — [p — m]q}j < 18] Ip — mlq.
Hence, by the maximum modulus principle, we infer that
f(z) € Vb (A, 8, q).
]

The following corollaries follow from Theorem 2 in the same manner as
Corollaries 1 and 2 from Theorem 1.

Corollary 3 If the function f(z) be defined by (12) and f(z) € N{‘}p(?\,é, q),
then

Z ak S X(p)n)m>)\)5)q)) (42)
k=n+p

where X(p,m, m, A, d, q) is given by

_Ip—mlg 3] =1 +T4(1T+m) Q(p, m,A, q)]
X(p)n>m)7\)6)q) — rq(] +m)[n+p_m]q Q(n—i—p,m,?\,q) . (43)

Corollary 4 If f(z) € N\ (A, 8, q), then

o0

D> Kglk—Tg- - k—p+1q a < ¥(p,m,mA8,q),  (44)
k=n-+p

where W(p,n,m, A, 8, q) is given by
W(p,n) m’ A’ 6’ q)

[p—mlq 8] =1+ Tq(1+m) Q(p, M, A\, @)I Tq(1 +n+p—m) (45)
Tq(l+n)m+p—mlg T+ +p—m—1]4 A) '

3 Distortion theorems

In this section, we establish certain distortion theorems for the classes of func-
tions defined above involving the g-differential operator.

Theorem 3 Let A € R and & € C\ {0} € N satisfy the inequalities:

m<p, meNy, p,neN; 0<A<], 0<qg<].



Some classes of analytic and multivalent functions 17

Also, let the function f(z) defined by (12) be in the class ML (A8, q), then
IF(2)] — 2P| < 18] =(p,m, m,A,8,q) 2P (z € 1), (46)
where Z(p,n, m, A\, 8, q) is given by (28).
Proof. Since f(z) € M7}, (A, 8, q), then from the Corollary 1, we have
Z ax <8 =Z(p,m,m,A,d,q),
k=n-+p
where Z(p,n, m, A, 8, q) is given by (28).

This inequality in conjunction with the following inequality (easily obtain-
able from (11)):

[e.e] o0
P Y <RI <P MY a, (47)
k=n+p k=n+p
yields the assertion (46) of Theorem 3. O

To obtain the distortion theorem for a normalized multivalent analytic func-

tion of the form (12), we define here a g-differential operator D', which is
expressed in the form
Iq(1+p—m)
DY f(z) = —————z"D}'f 48
q,z (Z‘) rq(‘l +p) z q,z ( ) ( )

Theorem 4 Let m<p; me Ny, p,ne N, 0<A<1, 6 C\{0}eN, 0<
q <1, and let the function f(z) defined by (12) be in the class M7\, (A, 8,q).
Then

||Dgf(2)| — 2P| <18 Alp,n,m,A,8,q) [2"P, (49)

where

T+p—m—1]3qA

A A G, q) = B
(p,n,m, ) aq) (|6|+qpf‘“[n]q) (] _|-[n—i—p—m—]]q q 7\) ( )
Proof. Since
NPRUL LRSS RV PO P
Dy flz) = Tq(1+p) Pa, —F Z ak PITG (T k—m) =

k=n+p
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therefore, on using the relation (32), we can write

moein v Kgk=Tlg...k=p+TTgI+k—pTg(d+p—m) ;
DRuflz) =2~ ax (1 +p)Tq(1 + k—m) z

k=n+p
=2P =) aKlglk—Tq... k= p+1]q d(k) ¥,
k=n+p
(51)
where
¢(k):Fq(1+k—p)Fq(1+p—m) (52)

(1 +p)T(1+k—m)

Now, we show that the function ¢(k) (m € Ny, k > n+p; p,n € Nym < p)
is a decreasing function of k for m € No, 0 < q < 1.
We note that
dk+1) Tq2+k—pg(1+k—m)

S0 T2 k—my (I tk_p) (=nrrmpel)

and it is sufficient here to consider the value k = n + p, so that on using (4),
we get
dk+1) 1—q'™m

b (k) - qlntp—m (0<qg<1).

The function ¢(k) is a decreasing function of k if d’ék(z)” <1 (n,p € N), and
this gives

1 __q1+n
T g <1 (0<qg<1).
Multiplying the above inequality both sides by 1 — q'*™ ™ (provided that
m < p), we are at once lead to the inequality m < p. Thus, ¢(k) (k >
n+p;n,p € N) is a decreasing function of k for m < p,m € Ny,0 < q < 1.

Using (51), we observe that

[Dgf(2)] 2 127 = 3 Kqlk—1q... Tk —p+1lq b(k) la l2/*
k=n+p

>z — b +p) ™ Y Kk —Tq...k—p+1]g la,
k=n-+p
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which in view of (29) of Corollary 2 leads to

D f(2)| = 127 — [8] d(n+p) Op,n,m, A, 8,q) |27

> [2l” — 8 Alp,n,m,A8,q) [2"P, (53)

where A(p,m, m,A,d, q) is given by (50).
Similarly, it follows that

DIf(z)] < 2P + 18] Alp,n,m,A8,q) 1217, (54)

and hence, (53) and (54) establish the assertion (49) of Theorem 4. O

The following distortion inequalities for the function f(z) € NTTP (A, 8, q) can
be proved in the same manner as detailed in the proof of Theorem 4 above:

Theorem 5 Let A € R and & € C\ {0} € N satisfy the inequalities:
m<pmeNypp,neN, 0<A<L], 0<qg<].
Also, let the function f(z) defined by (12) be in the class J\/'TTP(A,é, q), then
IF(2)] — 2P| < [8] X(p,n, m,A,8,q) [z]""F (z € V), (55)
where X(p,m, m, A, 8, q) is given by (43).

Theorem 6 Let m<p; me Ny, p,ne N 0<A<1, 6 C\{0}eN, 0<
q < 1 and let the function f(z) defined by (12) be in the class N% (A, 8, q).
Then

D f(2)] — 2P| < 18] Blp,m,m,A,8,q) 2P, (56)
where

Cp—mlg 8] =1+ T4(1+m) Q(p, m,A, q)I Tq(1+p—m)
Blp,m,m,A,8,q) = Tq(I+p)n+p—mlg T+Mm+p—m—1]g A)
(57)

)

Q(p,m,A, q) is given by (38).
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4 Some consequences of the main results

In this section, we briefly consider some special cases of the results derived in
the preceding sections.

When m = 0 and 6 = yf (y € C\ {0}, 0 < p < 1), the condition (14)
reduces to the inequality:

] {z Dg.f(z) +A qz? Dé’zf(z) B [p]q}

v | Az Dgaf(z) + (1 - Nf(z) <B (58)

PeN, 0<A<LT; 0<B<T, yeC\{0}; 0<qg< 1 z€l)

and we write

M?l,p()\)YB)q) :Rn,p(}\)f’)y)q)) (59)

where R p(A, B,Y,q) represents a subclass of p-valently analytic functions
which satisfy the condition (58).

Similarly, the condition (16) when m = 0 and & = yf reduces to the in-
equality:
1
‘y {Dq,zf(z) +Az Dé’zf(z) — [p]q}‘ < B [plgs (60)

PeN, 0<A<LT; 0<B<T, yeC\{0}; 0<qg< 1 z€l)

and we write
/V‘T?,p(NYB)(JI) :En,pO\)BaV)q)) (61)

where Ly, (A, B,7, q) is another subclass of p-valently analytic functions which
satisfy the condition (60).

Now, by setting m = 0, & = yf, and making use of the relations (59) and
(61), Theorems 1 and 2 give the following coefficient inequalities for the classes
Rn,p(A) BaYa CI) and £n,p 0‘) B)Y) q)7 respectively.

Corollary 5 Let the function f(z) be defined by (12), then f(z) € Rnp(A, By7Y, q)
if and only if

o0

> (B W—q*p—Kg) (1+Kk—=1g qA) ax <B yI(1+p—1]q qA). (62)
k=n+p

The result is sharp with the extremal function given by

B h(T+lp—1lqqA) nt
=zP - P
flz) == (B Wl +qPlnlg) T+Mn+p—1lgqA) 2

(63)
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Corollary 6 Let the function f(z) be defined by (12), then f(z) € Lnp(A, B,Y,q)
if and only if

o9}

Z klqg (T+k—TqgA) ax <I[plqB WI+p—1lqAl. (64)
k=n+p

The result is sharp with the extremal function given by

[P}q“?’ |Y|+[P*”q Al P

—
flz) =z m+plqg T+ Mn+p—1]4A)

(65)

Again, if we put m = 0, 6 = yf, then Theorem 3 and Theorem 5, respec-
tively, yield the following distortion theorems for the classes Rnp(A, 3,7, q)

and Ln,p(}\a B,Y, q)

Corollary 7 Let A, € R and vy € C\ {0} € N satisfy the inequalities:
p,neN;, 0<ALST, 0<qg<T.
Also, let the function f(z) defined by (12) be in the class Rnp(A, B,Y,q), then
1f(2)l — 2P| < Byl E(p,my A By, q) 12MF (z € 1), (66)

where

[3|Y‘+qp[n]q)(1 +[T1+P—”q q 7\)'

E(pan>)\)B>Y>q) = ( (67)

Corollary 8 Let A\, € R and vy € C\ {0} € N satisfy the inequalities:
p,neN; 0<A<T, 0<qg<T.
Also, let the function f(z) defined by (12) be in the class Lnp (A, B,7Y,q), then
If(2) = 2P| < F(p,myA, By v, 4) 12"F (2 € 1), (68)

where

_ [plg[BlyI+p—1]q Al
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Further, if we set p = 1, then from (59) and (61), we get

M%,]U\ﬂ/ﬁyq) :RnJ (7\>B>Y>q) :’Hno\)Y)B)q) (70)

and

NT?,] (}\)Yﬁ) Q) = ﬁn,] ()\) B)Y) q) - gn()\ﬂ/) B) q)» (71)

where Hn(A,v,B,q) and Gn(A,v,,q) are precisely the subclass of analytic
and univalent functions studied recently by Purohit and Raina [11]. Thus, if we
set p = 1, and taking into consideration the relations (70) and (71), Corollary
5 to Corollary 8 yield the known results obtained recently by Purohit and
Raina [11].

Finally, by letting g — 17, and making use of the limit formula (10), we
observe that the function classes M, (A, 9, q), Nﬂp(?\, 0, q) and the inequal-
ities (17) and (37) of Theorem 1 and Theorem 2 provide, respectively, the
g-extensions of the known results due to Srivastava and Orhan [13, pp. 687-
688, eqn. (11) and (14)].
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