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Abstract. In this paper we prove some results concerning bicentric
quadrilaterals. We offer a new proof of the Blundon-Eddy inequality,
which we use to obtain other inequalities in bicentric quadrilaterals.

1 Introduction

Let ABCD be a bicentric quadrilateral with a = AB,b = BC,c = CD,d =

AD, dy =AC,d; =BD, s = %, R the radius of the circumscribed circle

of the quadrilateral ABCD and r the radius of the inscribed circle, F the area.
In [1] W. J. Blundon and R. H. Eddy proved that:

8T<\/4R2—|—T2—T) << (T—I—\/4R—+T)2.

In the following we give a simple proof to this double inequality using the
product
(a=b)*(a=¢)* (a—d)* (b—c)* (b—d)* (c — )7,

then we deduce many other important new inequalities. We mention that the
result concerning the above product is new.
We denote:

o] = Z a,0; = Z ab, 03 = Z abc,x; = bc+ad, x; = ab+cd,x3 = ac+bd.
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2 Main results

Lemma 1 In every bicentric quadrilateral ABCD the following equalities are
true:
1) F?=(s—a) (s—b)(s—c) (s —d) = abcd;

2) X1X2X3 = ]6R2
3) X1 +x2 = S2
4) x7 +x2 +x3 = % 4+ 212 + 2rv/12 + 4RZ;
5) x3 =2r (T+\/4R2+r )
6) ( b)*(a—c)’(a—d)* (b—c)* (b—d)’ (c— d)* = (x1 —x2)* (x2 — x3)?
(x3 —X1)2-
Proof.

1) We have a +c¢ = b + d. It results that s — b = d and three similar
equalities which imply

(s—a)(s—b)(s—c)(s—d) =abced.
2) From Ptolemy’s theorem it results that x3 = dyd,. We have the equali-

ties:
adsin A + bcsin C = 2F, absinB + dcsinD = 2F
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We obtain (ad + be) di =4RF, (ab + dc) dy = 4RF which implies
(ad + be) (ab + dec) didy = 16R*F? or x1x2x3 = 16R*r?s?. (1)

3) We have x; +x; = ad+bc+ab+cd = (a+¢)(d+b) = (a+c)’ =

(a+b—2i-c+d) — SZ.

4) From (1) it results that

(ab +be) (ad + de) (ac + bd) = 16R*F*  or

abed ) o + 03 — 2abedo, = 16R*F or (2)

03 —4s*r?oy + 4s'r? = 16R* 5%y,
But (s—a)(s—b)(s—c)(s—d) = s?r? or —s> + 025 — 03 = 0 which
implies

03=s ((72 — sz> . (3)

From (2) and (3) we have:

2
s (Gz — sz) — 4s%1% 05 + 4s*r? = 16R*1?s% or
05 — (252 + 4r2) o2 + st + 25212 — 16r2R% = 0.

It results that: 0; = s% 4 212 + 2rv/12 + 4R2. But 0, = X1 4+ X2 + X3, S0 it
follows that

X1 +Xx)+x3= sz+2rz+2r\/m. (4)
5) From 4) since x1 4+ x; = s? it follows that x3 = 212 + 2rv/4RZ + 12,
6) We have (a—b)*(a—c)*(a—d)?(b—c)* (b—d)?(c—d)* =
[(a=1b)(c—d))* [[a—c) (b—d)*[(a—d) (b—c)) =
(x1 —x2)% (x2 —x3)* (x2 — x1)%.

O

Theorem 1 In every bicentric quadrilateral ABCD the following equality is
true:

(a—b)*(a—c)*(a—d)*(b—c)*(b—d)*(c—d)

= 161%s? [sz —8r (\/4R2 +12— r)} [Sz — (r + V/4RZ + r2>2r.
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Proof. We denote A = (a —b)? (a—c)? (a—d)? (b—c)* (b—a)%(c —d)*.
From Lemma 1 6) we have:

= (x1 —x2)* (x3 — x1)% (x5 — x2)°
i . )
[ X1+ x2) —4x1x2} |:X3 —x3 (X7 +x2) —|—x1xz} .
From Lemma 1 2) and 5) it results that:
8R21252
T (1‘ +V4R2 4+ 1‘2>

From Lemma 1 3), 5) and equalities (5), (6) we obtain:

2
A= [54 — 8r<\/4R2 + 12 —r) sz} [4# <r+ 4R? +r2)
2
—2s%r <T + V4R + r2> + 2r<\/ 4R? 412 — T) Sz}

2 2
=g’ [32—8r< 4R2+r2_r>} [4r2 <r 4R2+r2> _4T252}
2
:161‘452[ 81‘( 4R2—|—T2—T>] [SZ <T—|— 4R2—|—T2) :|

Theorem 2 In every bicentric quadrilateral ABCD the following double in-
2
equality is true: 8r (\/4R2 + 12 —T) <2< (T + V4R2 +1‘2> . The equality

holds in the case of two bicentric quadrilaterals A1B1C1Dy and A;B,C,D;
with the sides

ap=c¢ = \/Zr\/4R2 + 12 —2r2
by = \/Zr\/ 4R2 412 — 212 — \/Zr\/ 4R2 + 12 — 612

d) = \/Zr\/ 4RZ 412 — 212 + \/Zr\/ 4RZ 412 — 612

T4+ V12 + 4RZ — \/4RZ — 212 — 27\/4RZ 1 12
2

T4+ V2 £ 4RZ + \/4R2 — 212 — 2r\/ARZ + 12
3 .

0

a=d=

by=c =
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Proof. We have (x3 —x1) (x3—%x2) = (a—b)(b—=¢)(c—d)(d—a) and be-
cause a + ¢ = b + d it results that (a—b)(b—c)(c—d)(d—a) = (a—b)2
(b — c)2 > 0, which implies (x3 —x1) (x3 —x2) > 0 or
2
s? < (r—i— 4R2+r2> .
But, from Theorem 1 since A > 0, it results that

8r <\/4R2 ) —r) < s,

It remain to study the equality cases for s <s <'s, where

s1 = \/81‘ (\/4R2+r2—r), $2 =T+ VARZ + 12,

From Theorem 1 it results that we may have the cases:

Case 1.

We denote a = x. Then
a=x,b=y,c=%x,d=2x—y.
From Lemma 1 we have:
x3 = 21 (r+ 4R2+r2) or x> +y(2x—y) =2r <r+ 4R2+r2>.
But F2 = abed or (2x —y)y = 412, It results that x* = 2rv/4RZ + 12 — 212,

Since s§ = 4x? = 8r (\/ 4R2 4+ 12 — T) represents the left side of the inequality
from the statement, so:

x = \/2T\/4R2 +12—2r2
(y—x)?=2rV4R2 + 12 —6r% or [y —x| = \/Zr\/ 4RZ 412 — 612,

We denote w; = 2rv/4R2 4+ 12 — 2r2, uy = 2rV4R2 + 12 — 6172,
If x <y we have

a=x=yu, b=y=yu + U, c=yu, d=2x—y =u —/u.
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If x >y we have

a=x=4yu, b=y =x—y/w = Jui—/u, c =/uj, d=2x—y = /u+,/U.

It results that the equality from the left side of the inequality of the statement
holds in the case of bicentric quadrilateral A;B;C;D; with the sides

\/1T1)\/1T1_\/1T2)\/1T1)\/171+ \/1T2

Case 2.
a=d=x,b=c=vy.

In this case m (£D) = m (£B) = 90°, AC = 2R. It results that F = st = 2%}
orxy = (x+y)r.

We denote « =x + vy, =xy.

We have B = oar. But x? +y? = 4R? which implies «” —2f = 4R? so we have
o —2ar —4R? = 0.

It results that o« = v+ /12 + 4R2,

But sy = x +y = « = v+ V12 +4R% which represents the right side of
X+y=u«o

, 80 x,y are the
Xy =T

the inequality from the statement. We have {

solutions of the equation u? — aut + r& = 0 which implies:

x—vVoZ—dra T4 V12 +4R? — V4R — 212 — 21\/4RZ 4 12

X =

2 2 ’
Y- T+ V12 +4R% + \/4R2 — 212 — 2r/ARZ + 12
— 5 )

So, the equality for the right side of the inequality from the statement is true
in the case of bicentric quadrilateral A;B,C,D, with the sides

a =x,bp=x,c0 =y,dr =y.

O

Theorem 3 In every bicentric quadrilateral ABCD the following inequalities
are true:

2r (r + V/4R% 4 rz) < min{ab + cd, bc + ad} < 4r (\/4]22 +12— 1‘)
< max{ab + cd + be + ad} < 4R%.
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Proof. We suppose that x; < xp, x1 +x2 = sz, x1x2 = as® where

B 8R2r B S
OC_W_ZT(VAI’R +7r —T).

2 S A A2 24 /4 2 . :
It results that: x; = =% das” 'y, = &+ > 4as” We consider the functions

f,g:(0,4+00) — R.

fls) = s — Vst — dxs? (s) = s 4+ Vs — dxs?
a 2 ’ a 2

After differentiation we obtain:

s (Vst —das? —s? + 2u s (Vst —das? + 52 —da
' (s) = <0, ¢'(s) = >0
Vst —4os? - Vst —4os? -

From Theorem 2 it results that: s? > 8r (\/4]22 +1— 1‘) = 4.
It results that f is a decreasing and g is an increasing function. Because

s <1+ V4R? + 12 we have f (T + V4RZ + r2> < f(s) =xq. If follows that

1 2
x1zz[(r+ 4R2+r2)
—(r+ 4R2+T2>\/(r+ 4R2+T2>2—8r<\/4R2+T2—r>]
(r+ vaRzT$7?)
= [r—l— 4RZ 4 12
2
— /12 +4R% + 12 4 2r\/4R? + 12 — 8r\/4R? + 12 + 8er
T+ VARZ + 12
:< 5 >[r+m_\/(¢m)z+9rz_6rm

zzr(r—i— 4R2—|—r2>.

It follows that
X1 > 2r (r + VA4R2 + Tz) . (7)
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From s < r + v/4R2 + 12 it results also that
x2=g9(s)<g (r—i— 4R2—|—r2)
1

:z[<r+ 4R2—|—1‘2>2

+<T+ 4R2+r2)\/<r+ 4R2+r2>2—8r(\/4kzi+r2—r>}
(VAR ) (VAR ) ik

Thus we get the following inequality

X2 S 4R2. <8>

Since 8r (\/4R2 + 12— T) < s?wehavex; =f(s) < f <\/8r <\/4R2 + 12— r))

or in an equivalent form
1
X <5 [& <\/4R2 T2 r)

—\/Sr(\/m—r>\/8r(\/éﬂi27—i—rZ—r>—8r<\/m—r>]
:4r(\/41227—i—rz—r>.

It follows that

X1 < 4r (\/4R2—|—r2—r). 9)

Because 8r (\/ 4R? + 12 —T) < s% and g is an increasing function it follows
that:

g <\/81“ (\/4R2+1‘2—r)> < g(s)=xporx; >4r (\/4R2+1‘2—1‘>. (10)

From (7) (8) (9) and (10) it results that:

X3 =21 (r—l— 4R2—|—r2) <xy <4r (\/4R2+1‘2—1‘> < x; < 4R%.
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Remark 1 From Theorem 3 it results that 2r (T—I—\/4R2 + 1‘2) < 41‘(\/4]22 + 12—

T) which, after performing some calculation, represent the well-known Fejes
inequality R > v/2r.

Theorem 4 In every bicentric quadrilateral ABCD the following inequalities
are true:

T(\/4R2+T2+T> VRIS 2 41 (\/4R2+r2—r>r
o < min{d;, dy} < B 3

< max{d;, d2} < 2R.

Proof. We suppose that x; < x;.
From Ptolemy’s theorem it results that ’;—; = g—; which implies d; < d.
Because d;d; = x3 we have

2
2 JF—das?
X s2 — /s% — 4os2 (s s —4as )
d% = —1X3 = X3 = X3
X2 82 + /s — 4as? 4ous?

25t —dos? — 282V/sT —das? X3 (sz — 20 —V/s* — 4ocsz>

- 4xs? N 2
772
_ 2r (T+ VAR + 1 ) [Sz_ J _40682_20(}
4r (\/4R2 +1s— r)
2
VARZ + 12+ 1
= ( Ty ) [sz — Vst —4as? — Za} =B (2x1 — 2«),
— 2
where we denote B = (A‘R;%H).

But from Theorem 3 we have
4r (r+ 4R2 +r2> < 2x; < 8r (\/4}22 + 12 —r) .

We obtain
4r <r+ 4R2+1‘2) — 200 < 2% — 2 < 87 (\/4R2—|—r2—r) —2x or

81‘2 SZX] —206§4T(\/m_r>0r
8r°B < B (2x) — 2«) < 4r (\/‘W—T) B or

812 (VAR #1741 ar (VAR v (VAR £ v’
8R2 8R2 .

)2
<di<
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It results that:

r@MW+ﬂ+ﬂ VIR F 2 4t @MW+#—OT
<d; < . (11)
T R 2
Also
2
2

2o X2, _SHVs —das? _(SjLSA‘_WS2> X
2T T e "t 4as? ’

= 4;(;2 (234 —4as? 4 2s%/st — 4ocsz> = (sz + Vst —das? — Z(X)

y (VaRT+77 4 r) (2% — 200)

3
= (2x» — 2 —
752X~ 2%) 8R2

But we have proved that 4r (\/4R2 +1— T) < xy < 4R. It results that:
4r (\/4R2 Fr2 o r) < 2% —2a<2 (4R2 4212 — 2r\/4R2 1 r2> or

2
VAR § 12
4r (\/4R2 + 12 —T) <—2;;]; +T> < d%

2
12)
ZQMW+ﬂ+Q (
<2 (\/ 4R? 4 12 — T) T or
’/4R2+T2—|—T (\/4R2+r2—T>T
<d; <2R.
R 2
From (11) and (12) it results the inequalities from the statement. O

Theorem 5 Let be &, p € R so that s < «R + Br is true in every bicen-
tric quadrilateral ABCD. Then 2R + (4 — 2\/2) T < &R + B is true in every
bicentric quadrilateral ABCD.

Proof. We Consider the case of the square with the sidesa=b=c=d=1.
We have 2 < oc 5+ [3; It results that

4 < V204 B. (13)
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If a=b=1,c=d =0 it results that R:%,r:o.
It follows that

1§%0ro¢22. (14)
We know that
R > V2r. (15)

From (13), (14) and (15) it results that
(6—2)R+ (ﬁ—4+z\fz)r2 (e—2)V2r + (@—4+z\/2)r
(O(\/Z+f>—4)1‘20,

therefore
aR + Br > 2R + (4—2\/2) r.

0

Theorem 6 In every bicentric quadrilateral the following inequality is true:

S§2R+(4—2\/Z)T.

Proof. From the Theorem 1 we have s < 1+ v4R2 + r2. We denote x = 5.
We prove that

T+ V4ARZ + 12 < 2R+ (4—2\/§>r,

or in an equivalent form

T+ VA2 +1<2x4+4—-2V2 or VAx2 +1<2x+3—2V2 or
(—z+2ﬁ) (4—2\/2)
4(3—2\5) '

1 34(3—2\/Z)x+(3—2\/2)2 or x >

After performing some calculation it results that x > v/2 which represents just
the Fejes’s inequality [2]. O

Theorem 7 In every bicentric quadrilateral ABCD the following inequalities
are true:

1) 4r (3\/4122 2 —Sr) < a2 4b24+c2+dl<8R2;
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2) Zr\/8r <\/4R2 + 71— r) (7\/4]22 + 71— 9T> <Y a’b < 8R? 4 2v%;

3) k(SW—%} §Zab§4(R2+r2+r\/m);

4) 32r*\/4R? 412 (\/4]{2 +12— r) <Y a’be

2
< 4rV4RZ 412 (r +VART T rl) ;

5) (ZTZ + Zrm>\/8r (\/4187442 — T) <) abc
< 2r (r - W)Z.

Proof. We have 0; = s + «, 03 = s where o = 212 + 2rv/12 4+ 4R2.

1) Y a? = (2s)* —20; = 4s? — 20) = 4s? — 252 — 42 — 4r\/ARZ 12,
It results that: Y a? = 2s% — 4% — 4rV/4R2 4 12,

From Theorem 2 we obtain

4y (3\/4122 T2 —Sr) <a?+b2+c?+d? < 8RL

2) a’b = ab(2s —b—c —d) = 2sab — ab? — abc — abd or a’b + ab? =

2sab — abc — abd.

It results that } a’b = 2s0; — 303 = 2% — sac = s (2s? — «) which

implies 5 a’b =s (Zs2 = oc) . We consider the increasing function
f:(0,+00) — R, f(s) =2s® — sx, with ' (s) = 65> — o > 0 as

212 + 2112 + 4R2
szzgr(\/m_r>z%c: r+r\6/r+7.

The last inequality may be written as:

24\/4R%2 412 — 241 > 1 4+ \/4R? 4+ 12 or 23/ 4R2 + 12 > 257,

But from inequality of Fejes it results that

23V/4R2 4+ 12 > 25V 912 = 751 > 257
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From Theorem 2 it results that:
for (VAR ) (16 (VAR 7 ) 20 - 2r /R
<) alb< (r+ VAR +72)

<2r2 + 8RZ 4+ 217 + 2r/4R2 + 12 — 21F — 21\/4R2 + r2>

which is equivalent with the inequality from the statement.

3) 0 =) ab =s’+xor8r (\/4R2 + 71— r) +2r242rVARZ 412 < Y ab <
2+ 4R? + 12 + 2rV/ARZ + 12 4 212 4 2rV/ARZ 412

which is equivalent with the inequality from the statement.

4) a’bc = a abc = (2s —b — ¢ — d) abc = 2sabc — ab’c — abc? — abed or
a’bc + ab?c + abc? = 2sabc — abed or Y a’be = 2s03 — 4abed = 2s

sax—4s?r? or Y a’be = §? (20— 4r?) = §? (4r2 + 4rV4RZ 12 — 4r2> =
4rV/4RZ + 1252,
From Theorem 2 it results the inequality from the statement.

5) > abc = sa.

According to Theorem 2 it results the inequality from the statement.

Theorem 8 Let be &, B,y € R, B >4 so that s* < aR? + BRr +yr? is true in
all bicentric quadrilateral. Then

4R? + 4Rt + (8 — 4\/2) 1 < aR? + BRr + yr?
is true in all bicentric quadrilateral.

Proof. We consider the case of the bicentric quadrilateral with a =b =c =
d = 1. It results that 4 < § + 555 + ¥ or 16 < 20+ V2B +.

In the case of a =b =1, ¢c = d =0 it results that R:%,r:OandoczéL
But from inequality R > v/2r we have:
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(x—4)R*+ (B —4)Rr+ (y—8+4\/§)r2

> (=427 + V2 (B -4+ (v —8+4v2) 72
> (a =42 + V2 (B =417 + (Y—8—|—4\/§)r2
= (Zoc+\/§(5+y—16)rzzo,

O

Theorem 9 In every bicentric quadrilateral ABCD the following inequality
18 true:

s> <4R* +4Rr + (8 — 4\/2) .
2
Proof. Since s < (r + VA4RZ 4 1‘2> it is sufficient to prove that:

(\/4X27+1+1>2§4X2+4x+8—4\/20r

A2 1414+ 2V42 +1 <43 +4x + 8 —4V2 or

2742 +1 < 4x+6—4v2 or

Va2 1 <2x+3-2vV2 or 42 + 1 g4x2+(12—8\/2)x+ 3—2\/2)2 or

. (1—3+z\/2) (1+3—2\/§) ) (\/2—1) (2—\/2) 5
4(3—2\/2) 3-2V2

0

Theorem 10 In every bicentric quadrilateral ABCD the following inequalities
are true:

1) ¥ abc < 8R?r + 8Rr? + (16 - sﬁ) 13
2) ) ab<4 [R2+2Rr+ (4_2\/Z>T2};

3) Y a?be < 32R%r + 16Rr + (80 - 3zﬁ) R22 4 (32 - 16ﬁ) .
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Proof.

2
1) We proved that Y abc < 2r (T + VA4RZ + rz) , and

2
(r +V/4R2 + r2> < 4R? 4+ 4Rr + (8 — 4\5) ?
It results that

Z abc < 2r (4R2 + 4Rr + (8 — 4\6) r2> .

2) Since V4RZ +12 < 2R+ (3 — ) r, from Theorem 7 3) it results that:

(3-2
Zab§4(R +r +T\/4Rzi—i—r2)
<R+ v (2R+ (3-2v2)1)]
=4[R 412+ 2R+ (3-2v2) 7] or

> ab <4[R+2Rr+ (4-2v2) .
3) From Theorem 7 4) it results that:

> a’be < 4rV/4R2 412 (r VAR rz)z
= 4r\/4R2 4 12 (rz +4RT + 1% + Zr\/W)
— 8rV/4R2 417 (2R? 4 v 4 1/4R2 417
= (16R2T + 8r3) VAR2 412 + 81 (4R2 + T2>
< (16R%r +8r%) [2R+ (3 2v2) | + 32R%? + &
= 32R%r + (48— 32V2) R3 + 16R + (24— 16v2) r*
+ 32R*? + 81,
which is equivalent with the inequality from the statement.

O

Theorem 11 In every bicentric quadrilateral ABCD the following inequalities
are true:



Some inequalities in bicentric quadrilateral 35

1) Zr\/8r <\/4R2 + 12— r) (5\/4]22 + 12— 11?) <yad
<2 (1‘ + V4RZ + rz) (4R2 — 12 —1V4R2 + r2> ;
2) 352R%12 4+ 2081 — 240131/4RZ 4 12
2
<Y a’b < (T + VA4RZ + rz) (8R? —412) .
Proof.
1) ®=a?’(2s—b—c—d)=2a’s—a’b—a’c—a’dor Y a’>=2sy a’—
> a’b =25 (2s* — 2a) — 2% + sa.
It results that 5 a® = 2s3 — 3as.
We consider the function f : (0,+0c0) — R, f(s) = 25> — 3«s, with the
derivate ' (s) = 6s* — 3x. We prove that ' (s) > 0 or s > 2.
But sZ > 8r (\/4R2 +12 — T) . It will be sufficient to prove that:
8r (\/4R2 + 12— T) > 12 4 7V4R2 + 12 or
9
8VAx2+1—8>T+ Va2 +Tor Vax2+1> -
which is true because v4x2 + 1 > 2 according to Fejes inequality.
Since f is an increasing function it results from Theorem 2 that:
\/8r <\/4R2 2o r) [1 6 <\/4R2 NI r) — 612 — 6r\/4R2 + rl}
< Z @ < (1‘ + V4R? + r2> [21‘2 + 8R? + 212
+ 4r\/4R2 412 — 612 — 67/4R? + rz} ,
which is equivalent with the inequality from the statement.
2) @b = ab (Y a?—b?—c?—d?) = ab) a’ — ab’ — abc? — abd? or

adb+abd=aby a?—abc?—abd?or }_ a*b=3 ab) a’?—3 a’bc=
(s + ) (28 —2a) — (2oc — 4r%) s or 3 a’b = 25 — (200 — 412) s2— 202

We denote s =t and consider the function: f: (0, +c0) — R,

f(t) =2t> — (2(1 — 4r2) t—2a?
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and

A2 942
tv:Za 41':(1 2r :T\/m.

4 2

We prove that t > t,,.

s > rV4ARZ + 12, But s2 > 8r (\/4R2 + 12 —r) . It will be sufficient to
prove that

8r (\/4R2 +1‘2—r2) > 1vV4R2 + 12 or V4R2 412 > ;

which is true because V4R2 4+ 12 > 3.

It results that f is an increasing function which implies:
1281 (4R? 4207 — 2rV/ARZ +12) — dr/ARZ +128r (VARE 12— v)
-2 (21‘2 + 21“\/4]2274—1“2)2 < Z a’b <2 (1‘ + V4R? + 1‘2>4
—arV/aR e (v VAR 1) 2 (27 4 2rv/aRE 1)

or

512R%r2 4+ 2561* — 25613 \/4R2 4 12 — 3212 (4R2 + rz) 43203 /4R2 1 2
— 8t — 81 (4R2 +r2) —16r VAR 112 < Y P <2 (r—l— 4R? —|—r2)2
(v + 4R 2 4 2r /AR 72— 2r/ARZ 1 12) — 8 (v 4 VARZ 1)
or

352R%r2 42081 — 240r° VARZ 112 < Y @’b < (r + VAR + rZ)Z

(4r2 4 8R? — 8r2> .

0

Theorem 12 In every bicentric quadrilateral ABCD the following inequalities
are true:

1) ¥ o < 16R + (24— 16v2) Rr — 8Re* — (16— 8v2) r¥;

2) T a®b < 32R*—16R2124+32R3 1+ 16R + (64 - 32\/2) R2r2— (32 - 16\/2) 1
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3) Y a’b > 352R%r2 + (480ﬁ - 512) 14 — 480R13.

Proof.
1) From Theorem 11 it results that:

Z a® < (r + V4R? + rz) (SR2 — 27— Zr\/m)
— 8R%r —21° — 2r2\/41227+r2+ 8R2\/4RZ + 12
—2r \/412274”2 8R2r —
- (SRZ - 4r2) AR 4 12 — 4
< (8R2—4?) [2R+ (3-2v2) | — 4r°
— 1613 + (24 - 16\6) R%r — 8Rr? — (12 - sfz) 43,
which is equivalent with inequality from the statement.
2) From Theorem 11 it results that
Y dv< (r + VAR + T2>2 (8R2 - 4r2>
and
(r +V/4R2 + rz)z < 4R? 4+ 4Rr + (8 — 4\5) ?
It results that:
Y b < [4122 4 4Ry + (8 - 4\/2) rz} <8R2 - 4#)
= 32R* — 16R*? + 32R%r — 16R+° + (64 — 32v2) R+?
— (32— 16V2)1*,
which is equivalent with the inequality from the statement.
3) We prove that:
>~ a®b > 352R*? + 208r* — 24013 \/4RZ + 12
> 352R%r% + 2081* — 24013 [ZR n (3 - 2\/2) 1‘}
— 352R212 4+ 208r* — 480Rr> — (720 - 480\/Z> ™,

which is equivalent with the inequality from the statement.
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