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Abstract. In this paper we prove some results concerning bicentric
quadrilaterals. We offer a new proof of the Blundon-Eddy inequality,
which we use to obtain other inequalities in bicentric quadrilaterals.

1 Introduction

Let ABCD be a bicentric quadrilateral with a = AB,b = BC, c = CD,d =

AD, d1 = AC, d2 = BD, s = a+b+c+d
2

, R the radius of the circumscribed circle
of the quadrilateral ABCD and r the radius of the inscribed circle, F the area.
In [1] W. J. Blundon and R. H. Eddy proved that:

8r
(
√

4R2 + r2 − r
)

≤ s2 ≤
(

r +
√
4R + r

)2

.

In the following we give a simple proof to this double inequality using the
product

(a − b)2 (a − c)2 (a − d)2 (b− c)2 (b− d)2 (c− d)2 ,

then we deduce many other important new inequalities. We mention that the
result concerning the above product is new.
We denote:

σ1 =
∑

a, σ2 =
∑

ab, σ3 =
∑

abc, x1 = bc+ad, x2 = ab+cd, x3 = ac+bd.
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2 Main results

Lemma 1 In every bicentric quadrilateral ABCD the following equalities are

true:

1) F2 = (s− a) (s− b) (s− c) (s− d) = abcd;

2) x1x2x3 = 16R2r2s2;

3) x1 + x2 = s2;

4) x1 + x2 + x3 = s2 + 2r2 + 2r
√
r2 + 4R2;

5) x3 = 2r
(

r+
√
4R2 + r2

)

;

6) (a − b)2 (a − c)2 (a − d)2 (b− c)2 (b− d)2 (c− d)2 = (x1 − x2)
2 (x2 − x3)

2

(x3 − x1)
2 .

Proof.

1) We have a + c = b + d. It results that s − b = d and three similar
equalities which imply

(s− a) (s− b) (s− c) (s− d) = abcd.

2) From Ptolemy’s theorem it results that x3 = d1d2. We have the equali-
ties:

ad sinA+ bc sinC = 2F, ab sinB+ dc sinD = 2F.
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We obtain (ad+ bc)d1 = 4RF, (ab+ dc)d2 = 4RF which implies

(ad+ bc) (ab+ dc)d1d2 = 16R2F2 or x1x2x3 = 16R2r2s2. (1)

3) We have x1 + x2 = ad + bc + ab + cd = (a + c) (d+ b) = (a + c)2 =
(

a+b+c+d
2

)

= s2.

4) From (1) it results that

(ab+ bc) (ad+ dc) (ac + bd) = 16R2F2 or

abcd
∑

a2 + σ2
3 − 2abcdσ2 = 16R2F2 or

σ2
3 − 4s2r2σ2 + 4s4r2 = 16R2r2s2v.

(2)

But (s− a) (s− b) (s− c) (s− d) = s2r2 or −s3 + σ2s − σ3 = 0 which
implies

σ3 = s
(

σ2 − s2
)

. (3)

From (2) and (3) we have:

s2
(

σ2 − s2
)2

− 4s2r2σ2 + 4s4r2 = 16R2r2s2 or

σ2
2 −

(

2s2 + 4r2
)

σ2 + s4 + 2s2r2 − 16r2R2 = 0.

It results that: σ2 = s2 + 2r2 + 2r
√
r2 + 4R2. But σ2 = x1 + x2 + x3, so it

follows that
x1 + x2 + x3 = s2 + 2r2 + 2r

√

r2 + 4R2. (4)

5) From 4) since x1 + x2 = s2 it follows that x3 = 2r2 + 2r
√
4R2 + r2.

6) We have (a− b)2 (a− c)2 (a− d)2 (b− c)2 (b− d)2 (c − d)2 =

[(a− b) (c− d)]2 [(a− c) (b− d)]2 [(a − d) (b− c)]2 =

(x1 − x2)
2 (x2 − x3)

2 (x2 − x1)
2 .

�

Theorem 1 In every bicentric quadrilateral ABCD the following equality is

true:

(a− b)2 (a − c)2 (a− d)2 (b− c)2 (b− d)2 (c − d)2

= 16r4s2
[

s2 − 8r
(
√

4R2 + r2 − r
)]

[

s2 −
(

r+
√

4R2 + r2
)2
]2

.
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Proof. We denote △ = (a − b)2 (a − c)2 (a − d)2 (b− c)2 (b− d)2 (c − d)2 .

From Lemma 1 6) we have:

△ = (x1 − x2)
2 (x3 − x1)

2 (x3 − x2)
2

=
[

(x1 + x2)
2 − 4x1x2

] [

x23 − x3 (x1 + x2) + x1x2

]2

.
(5)

From Lemma 1 2) and 5) it results that:

x1x2 =
8R2r2s2

r
(

r +
√
4R2 + r2

) = 2r
(
√

4R2 + r2 − r
)

s2. (6)

From Lemma 1 3), 5) and equalities (5), (6) we obtain:

△ =

[

s4 − 8r

(

√

4R2 + r2 − r

)

s2
][

4r2
(

r+
√

4R2 + r2
)2

− 2s2r

(

r +
√

4R2 + r2
)

+ 2r

(

√

4R2 + r2 − r

)

s2
]2

= s2
[

s2 − 8r

(

√

4R2 + r2 − r

)][

4r2
(

r+
√

4R2 + r2
)2

− 4r2s2
]2

= 16r4s2
[

s2 − 8r

(

√

4R2 + r2 − r

)][

s2 −

(

r+
√

4R2 + r2
)2]

.

�

Theorem 2 In every bicentric quadrilateral ABCD the following double in-

equality is true: 8r
(√

4R2 + r2 − r
)

≤ s2 ≤
(

r +
√
4R2 + r2

)2
. The equality

holds in the case of two bicentric quadrilaterals A1B1C1D1 and A2B2C2D2

with the sides

a1 = c1 =

√

2r
√

4R2 + r2 − 2r2

b1 =

√

2r
√

4R2 + r2 − 2r2 −

√

2r
√

4R2 + r2 − 6r2

d1 =

√

2r
√

4R2 + r2 − 2r2 +

√

2r
√

4R2 + r2 − 6r2

a2 = d2 =
r +

√
r2 + 4R2 −

√

4R2 − 2r2 − 2r
√
4R2 + r2

2

b2 = c2 =
r+

√
r2 + 4R2 +

√

4R2 − 2r2 − 2r
√
4R2 + r2

2
.
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Proof. We have (x3 − x1) (x3 − x2) = (a− b) (b− c) (c − d) (d− a) and be-
cause a + c = b + d it results that (a− b) (b− c) (c − d) (d− a) = (a − b)2

(b− c)2 ≥ 0, which implies (x3 − x1) (x3 − x2) ≥ 0 or

s2 ≤
(

r+
√

4R2 + r2
)2

.

But, from Theorem 1 since △ ≥ 0, it results that

8r
(
√

4R2 + r2 − r
)

≤ s2.

It remain to study the equality cases for s1 ≤ s ≤ s2 where

s1 =

√

8r
(

√

4R2 + r2 − r
)

, s2 = r+
√

4R2 + r2.

From Theorem 1 it results that we may have the cases:

Case 1.

a = c.

We denote a = x. Then

a = x, b = y, c = x, d = 2x − y.

From Lemma 1 we have:

x3 = 2r
(

r+
√

4R2 + r2
)

or x2 + y (2x− y) = 2r
(

r+
√

4R2 + r2
)

.

But F2 = abcd or (2x − y)y = 4r2. It results that x2 = 2r
√
4R2 + r2 − 2r2.

Since s21 = 4x2 = 8r
(√

4R2 + r2 − r
)

represents the left side of the inequality

from the statement, so:

x =

√

2r
√

4R2 + r2 − 2r2

(y − x)2 = 2r
√

4R2 + r2 − 6r2 or |y− x| =

√

2r
√

4R2 + r2 − 6r2.

We denote u1 = 2r
√
4R2 + r2 − 2r2, u2 = 2r

√
4R2 + r2 − 6r2.

If x ≤ y we have

a = x =
√
u1, b = y =

√
u1 +

√
u2, c =

√
u1, d = 2x − y =

√
u1 −

√
u2.
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If x > y we have

a = x =
√
u1, b = y = x−

√
u2 =

√
u1−

√
u2, c =

√
u1, d = 2x−y =

√
u1+

√
u2.

It results that the equality from the left side of the inequality of the statement
holds in the case of bicentric quadrilateral A1B1C1D1 with the sides

√
u1,

√
u1 −

√
u2,

√
u1,

√
u1 +

√
u2.

Case 2.

a = d = x, b = c = y.

In this case m (∡D) = m (∡B) = 90◦, AC = 2R. It results that F = sr = 2xy
2

or xy = (x+ y) r.

We denote α = x + y,β = xy.

We have β = αr. But x2+y2 = 4R2 which implies α2−2β = 4R2 so we have
α2 − 2αr − 4R2 = 0.

It results that α = r+
√
r2 + 4R2.

But s1 = x + y = α = r +
√
r2 + 4R2 which represents the right side of

the inequality from the statement. We have

{
x + y = α

xy = rα
, so x, y are the

solutions of the equation u2 − αu+ rα = 0 which implies:

x =
α−

√
α2 − 4rα

2
=

r +
√
r2 + 4R2 −

√

4R2 − 2r2 − 2r
√
4R2 + r2

2
,

y =
r +

√
r2 + 4R2 +

√

4R2 − 2r2 − 2r
√
4R2 + r2

2
.

So, the equality for the right side of the inequality from the statement is true
in the case of bicentric quadrilateral A2B2C2D2 with the sides

a2 = x, b2 = x, c2 = y, d2 = y.

�

Theorem 3 In every bicentric quadrilateral ABCD the following inequalities

are true:

2r
(

r+
√

4R2 + r2
)

≤ min {ab+ cd, bc + ad} ≤ 4r
(
√

4R2 + r2 − r
)

≤ max {ab+ cd+ bc+ ad} ≤ 4R2.
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Proof. We suppose that x1 ≤ x2, x1 + x2 = s2, x1x2 = αs2 where

α =
8R2r√

4R2 + r2 + r
= 2r

(
√

4R2 + r2 − r
)

.

It results that: x1 =
s2−

√
s4−4αs2

2 , x2 =
s2+

√
s4−4αs2

2 . We consider the functions
f, g : (0,+∞) → R.

f (s) =
s2 −

√
s4 − 4αs2

2
, g (s) =

s2 +
√
s4 − 4αs2

2
.

After differentiation we obtain:

f′ (s) =
s
(√

s4 − 4αs2 − s2 + 2α
)

√
s4 − 4αs2

≤ 0, g′ (s) =
s
(√

s4 − 4αs2 + s2 − 4α
)

√
s4 − 4αs2

≥ 0.

From Theorem 2 it results that: s2 ≥ 8r
(√

4R2 + r2 − r
)

= 4α.

It results that f is a decreasing and g is an increasing function. Because

s ≤ r+
√
4R2 + r2 we have f

(

r+
√
4R2 + r2

)

≤ f (s) = x1. If follows that

x1 ≥
1

2

[

(

r +
√

4R2 + r2
)2

−
(

r +
√

4R2 + r2
)

√

(

r +
√

4R2 + r2
)2

− 8r
(
√

4R2 + r2 − r
)

]

=

(

r+
√
4R2 + r2

)

2

[

r+
√

4R2 + r2

−

√

r2 + 4R2 + r2 + 2r
√

4R2 + r2 − 8r
√

4R2 + r2 + 8r2
]

=

(

r+
√
4R2 + r2

)

2

[

r+
√

4R2 + r2 −

√

(

√

4R2 + r2
)2

+ 9r2 − 6r
√

4R2 + r2
]

= 2r
(

r +
√

4R2 + r2
)

.

It follows that

x1 ≥ 2r
(

r+
√

4R2 + r2
)

. (7)
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From s ≤ r +
√
4R2 + r2 it results also that

x2 = g (s) ≤ g
(

r+
√

4R2 + r2
)

=
1

2

[

(

r+
√

4R2 + r2
)2

+
(

r +
√

4R2 + r2
)

√

(

r +
√

4R2 + r2
)2

− 8r
(
√

4R2 + r2 − r
)

]

=
(
√

4R2 + r2 + r
)(
√

4R2 + r2 − r
)

= 4R2.

Thus we get the following inequality

x2 ≤ 4R2. (8)

Since 8r
(√

4R2 + r2 − r
)

≤ s2 we have x1 = f (s) ≤ f

(
√

8r
(√

4R2 + r2 − r
)

)

or in an equivalent form

x1 ≤
1

2

[

8r
(
√

4R2 + r2 − r
)

−

√

8r
(
√

4R2 + r2 − r
)

√

8r
(
√

4R2 + r2 − r
)

− 8r
(
√

4R2 + r2 − r
)

]

= 4r
(
√

4R2 + r2 − r
)

.

It follows that

x1 ≤ 4r
(
√

4R2 + r2 − r
)

. (9)

Because 8r
(√

4R2 + r2 − r
)

≤ s2 and g is an increasing function it follows

that:

g

(

√

8r
(
√

4R2 + r2 − r
)

)

≤ g (s) = x2 or x2 ≥ 4r
(
√

4R2 + r2 − r
)

. (10)

From (7) (8) (9) and (10) it results that:

x3 = 2r
(

r+
√

4R2 + r2
)

≤ x1 ≤ 4r
(

√

4R2 + r2 − r
)

≤ x2 ≤ 4R2.

�
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Remark 1 From Theorem 3 it results that 2r
(

r+
√
4R2 + r2

)

≤ 4r
(
√
4R2 + r2−

r
)

which, after performing some calculation, represent the well-known Fejes

inequality R ≥
√
2r.

Theorem 4 In every bicentric quadrilateral ABCD the following inequalities

are true:

r
(√

4R2 + r2 + r
)

R
≤ min {d1, d2} ≤

√
4R2 + r2 + r

R

√

√

√

√

(√
4R2 + r2 − r

)

r

2

≤ max {d1, d2} ≤ 2R.

Proof. We suppose that x1 ≤ x2.

From Ptolemy’s theorem it results that x1
x2

= d1

d2
which implies d1 ≤ d2.

Because d1d2 = x3 we have

d2
1 =

x1

x2
x3 =

s2 −
√
s4 − 4αs2

s2 +
√
s4 − 4αs2

x3 = x3

(

s2 −
√
s4 − 4αs2

)2

4αs2

= x3
2s4 − 4αs2 − 2s2

√
s4 − 4αs2

4αs2
=

x3

(

s2 − 2α −
√
s4 − 4αs2

)

2α

=
2r
(

r+
√
4R2 + r2

)

4r
(√

4R2 + r2 − r
)

[

s2 −
√

s4 − 4αs2 − 2α
]

=

(√
4R2 + r2 + r

)2

8R2

[

s2 −
√

s4 − 4αs2 − 2α
]

= B (2x1 − 2α) ,

where we denote B =
(
√
4R2+r2+r)

2

8R2 .

But from Theorem 3 we have

4r
(

r +
√

4R2 + r2
)

≤ 2x1 ≤ 8r
(
√

4R2 + r2 − r
)

.

We obtain

4r
(

r +
√

4R2 + r2
)

− 2α ≤ 2x1 − 2α ≤ 8r
(
√

4R2 + r2 − r
)

− 2α or

8r2 ≤ 2x1 − 2α ≤ 4r
(
√

4R2 + r2 − r
)

or

8r2B ≤ B (2x1 − 2α) ≤ 4r
(
√

4R2 + r2 − r
)

B or

8r2
(√

4R2 + r2 + r
)2

8R2
≤ d2

1 ≤
4r
(√

4R2 + r2 − r
)(√

4R2 + r2 + r
)2

8R2
.
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It results that:

r
(√

4R2 + r2 + r
)

r
< d1 ≤

√
4R2 + r2 + r

R

√

√

√

√

(√
4R2 + r2 − r

)

r

2
. (11)

Also:

d2
2 =

x2

x1
x3 =

s2 +
√
s4 − 4αs2

s2 −
√
s4 − 4αs2

x3 =

(

s2 +
√
s4 − 4αs2

)2

4αs2
x3

=
x3

4αs2

(

2s4 − 4αs2 + 2s2
√

s4 − 4αs2
)

=
x3

2α

(

s2 +
√

s4 − 4αs2 − 2α
)

=
x3

2α
(2x2 − 2α) =

(√
4R2 + r2 + r

)2
(2x2 − 2α)

8R2
.

But we have proved that 4r
(√

4R2 + r2 − r
)

≤ x2 ≤ 4R. It results that:

4r
(
√

4R2 + r2 − r
)

≤ 2x2 − 2α ≤ 2
(

4R2 + 2r2 − 2r
√

4R2 + r2
)

or

4r
(
√

4R2 + r2 − r
)

(√
4R2 + r2 + r

2
√
2R

)2

≤ d2
2

≤ 2
(

√

4R2 + r2 − r
)2

(√
4R2 + r2 + r

)2

8R2
or

√
4R2 + r2 + r

R

√

√

√

√

(√
4R2 + r2 − r

)

r

2
≤ d2 ≤ 2R.

(12)

From (11) and (12) it results the inequalities from the statement. �

Theorem 5 Let be α, β ∈ R so that s ≤ αR + βr is true in every bicen-

tric quadrilateral ABCD. Then 2R +
(

4− 2
√
2
)

r ≤ αR + βr is true in every

bicentric quadrilateral ABCD.

Proof. We consider the case of the square with the sides a = b = c = d = 1.

We have 2 ≤ α 1√
2
+ β1

2 . It results that

4 ≤
√
2α+ β. (13)
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If a = b = 1, c = d = 0 it results that R = 1
2 , r = 0.

It follows that
1 ≤ α

2
or α ≥ 2. (14)

We know that
R ≥

√
2r. (15)

From (13), (14) and (15) it results that

(α− 2)R +
(

β− 4+ 2
√
2
)

r ≥ (α− 2)
√
2r+

(

β− 4+ 2
√
2
)

r

=
(

α
√
2+ β− 4

)

r ≥ 0,

therefore
αR + βr ≥ 2R +

(

4− 2
√
2
)

r.

�

Theorem 6 In every bicentric quadrilateral the following inequality is true:

s ≤ 2R +
(

4− 2
√
2
)

r.

Proof. From the Theorem 1 we have s ≤ r+
√
4R2 + r2. We denote x = R

r .

We prove that

r +
√

4R2 + r2 ≤ 2R +
(

4− 2
√
2
)

r,

or in an equivalent form

1+
√

4x2 + 1 ≤ 2x+ 4− 2
√
2 or

√

4x2 + 1 ≤ 2x + 3− 2
√
2 or

1 ≤ 4
(

3− 2
√
2
)

x+
(

3− 2
√
2
)2

or x ≥

(

−2+ 2
√
2
)(

4− 2
√
2
)

4
(

3− 2
√
2
) .

After performing some calculation it results that x ≥
√
2 which represents just

the Fejes’s inequality [2]. �

Theorem 7 In every bicentric quadrilateral ABCD the following inequalities

are true:

1) 4r
(

3
√
4R2 + r2 − 5r

)

≤ a2 + b2 + c2 + d2 ≤ 8R2;
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2) 2r

√

8r
(√

4R2 + r2 − r
)(

7
√
4R2 + r2 − 9r

)

≤
∑

a2b ≤ 8R2 + 2r2;

3) 2r
(

5
√
4R2 + r2 − 3r

)

≤
∑

ab ≤ 4
(

R2 + r2 + r
√
4R2 + r2

)

;

4) 32r2
√
4R2 + r2

(√
4R2 + r2 − r

)

≤
∑

a2bc

≤ 4r
√
4R2 + r2

(

r+
√
4R2 + r2

)2
;

5)
(

2r2 + 2r
√
4R2 + r2

)

√

8r
(√

4R2 + r2 − r
)

≤
∑

abc

≤ 2r
(

r +
√
4R2 + r2

)2
.

Proof. We have σ2 = s2 + α, σ3 = sα where α = 2r2 + 2r
√
r2 + 4R2.

1)
∑

a2 = (2s)2 − 2σ2 = 4s2 − 2σ2 = 4s2 − 2s2 − 4r2 − 4r
√
4R2 + r2.

It results that:
∑

a2 = 2s2 − 4r2 − 4r
√
4R2 + r2.

From Theorem 2 we obtain

4r
(

3
√

4R2 + r2 − 5r
)

≤ a2 + b2 + c2 + d2 ≤ 8R2.

2) a2b = ab (2s− b− c − d) = 2sab − ab2 − abc − abd or a2b + ab2 =

2sab − abc− abd.

It results that
∑

a2b = 2sσ2 − 3σ3 = 2s3 − sα = s
(

2s2 − α
)

which
implies

∑
a2b = s

(

2s2 − α
)

. We consider the increasing function

f : (0,+∞) → R, f (s) = 2s3 − sα, with f′ (s) = 6s2 − α ≥ 0 as

s2 ≥ 8r
(
√

4R2 + r2 − r
)

≥ α

6
=

2r2 + 2r
√
r2 + 4R2

6
.

The last inequality may be written as:

24
√

4R2 + r2 − 24r ≥ r +
√

4R2 + r2 or 23
√

4R2 + r2 ≥ 25r.

But from inequality of Fejes it results that

23
√

4R2 + r2 ≥ 25
√
9r2 = 75r > 25r.
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From Theorem 2 it results that:

√

8r
(
√

4R2 + r2 − r
)(

16
(
√

4R2 + r2 − r
)

− 2r2 − 2r
√

4R2 + r2
)

≤
∑

a2b ≤
(

r +
√

4R2 + r2
)

(

2r2 + 8R2 + 2r2 + 2r
√

4R2 + r2 − 2r2 − 2r
√

4R2 + r2
)

which is equivalent with the inequality from the statement.

3) σ2 =
∑

ab = s2+α or 8r
(√

4R2 + r2 − r
)

+2r2+2r
√
4R2 + r2 ≤

∑
ab ≤

r2 + 4R2 + r2 + 2r
√
4R2 + r2 + 2r2 + 2r

√
4R2 + r2

which is equivalent with the inequality from the statement.

4) a2bc = a abc = (2s− b− c− d)abc = 2sabc− ab2c− abc2 − abcd or
a2bc + ab2c + abc2 = 2sabc − abcd or

∑
a2bc = 2sσ3 − 4abcd = 2s

sα− 4s2r2 or
∑

a2bc = s2
(

2α − 4r2
)

= s2
(

4r2 + 4r
√
4R2 + r2 − 4r2

)

=

4r
√
4R2 + r2s2.

From Theorem 2 it results the inequality from the statement.

5)
∑

abc = sα.

According to Theorem 2 it results the inequality from the statement.

�

Theorem 8 Let be α,β, γ ∈ R, β ≥ 4 so that s2 ≤ αR2 +βRr+γr2 is true in

all bicentric quadrilateral. Then

4R2 + 4Rr +
(

8− 4
√
2
)

r2 ≤ αR2 + βRr + γr2

is true in all bicentric quadrilateral.

Proof. We consider the case of the bicentric quadrilateral with a = b = c =

d = 1. It results that 4 ≤ α
2 + β

2
√
2
+ γ

4 or 16 ≤ 2α +
√
2β+ γ.

In the case of a = b = 1, c = d = 0 it results that R = 1
2 , r = 0 and α ≥ 4.

But from inequality R ≥
√
2r we have:
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(α− 4)R2 + (β − 4)Rr +
(

γ− 8+ 4
√
2
)

r2

≥ (α− 4) 2r2 +
√
2 (β− 4) r2 +

(

γ − 8+ 4
√
2
)

r2

≥ (α− 4) 2r2 +
√
2 (β− 4) r2 +

(

γ − 8+ 4
√
2
)

r2

=
(

2α +
√
2β+ γ − 16

)

r2 ≥ 0.

�

Theorem 9 In every bicentric quadrilateral ABCD the following inequality

is true:

s2 ≤ 4R2 + 4Rr +
(

8− 4
√
2
)

r2.

Proof. Since s2 ≤
(

r+
√
4R2 + r2

)2
it is sufficient to prove that:

(
√

4x2 + 1+ 1
)2

≤ 4x2 + 4x + 8− 4
√
2 or

4x2 + 1+ 1+ 2
√

4x2 + 1 ≤ 4x2 + 4x+ 8− 4
√
2 or

2
√

4x2 + 1 ≤ 4x + 6− 4
√
2 or

√

4x2 + 1 ≤ 2x+ 3− 2
√
2 or 4x2 + 1 ≤ 4x2 +

(

12 − 8
√
2
)

x+
(

3− 2
√
2
)2

or

x ≥

(

1− 3+ 2
√
2
)(

1+ 3− 2
√
2
)

4
(

3− 2
√
2
) =

(√
2− 1

)(

2−
√
2
)

3− 2
√
2

=
√
2.

�

Theorem 10 In every bicentric quadrilateral ABCD the following inequalities

are true:

1)
∑

abc ≤ 8R2r+ 8Rr2 +
(

16− 8
√
2
)

r3;

2)
∑

ab ≤ 4
[

R2 + 2Rr +
(

4− 2
√
2
)

r2
]

;

3)
∑

a2bc ≤ 32R3r + 16Rr3 +
(

80− 32
√
2
)

R2r2 +
(

32− 16
√
2
)

r4.
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Proof.

1) We proved that
∑

abc ≤ 2r
(

r+
√
4R2 + r2

)2
, and

(

r +
√

4R2 + r2
)2

≤ 4R2 + 4Rr +
(

8− 4
√
2
)

r2.

It results that
∑

abc ≤ 2r
(

4R2 + 4Rr +
(

8− 4
√
2
)

r2
)

.

2) Since
√
4R2 + r2 ≤ 2R+

(

3− 2
√
2
)

r, from Theorem 7 3) it results that:

∑
ab ≤ 4

(

R2 + r2 + r
√

4R2 + r2
)

≤ 4
[

R2 + r2 + r
(

2R +
(

3− 2
√
2
)

r
)]

= 4
[

R2 + r2 + 2Rr +
(

3− 2
√
2
)

r2
]

or
∑

ab ≤ 4
[

R2 + 2Rr +
(

4− 2
√
2
)

r2
]

.

3) From Theorem 7 4) it results that:

∑
a2bc ≤ 4r

√

4R2 + r2
(

r+
√

4R2 + r2
)2

= 4r
√

4R2 + r2
(

r2 + 4R2 + r2 + 2r
√

4R2 + r2
)

= 8r
√

4R2 + r2
(

2R2 + r2 + r
√

4R2 + r2
)

=
(

16R2r+ 8r3
)
√

4R2 + r2 + 8r2
(

4R2 + r2
)

≤
(

16R2r+ 8r3
) [

2R +
(

3− 2
√
2
)

r
]

+ 32R2r2 + 8r4

= 32R3r +
(

48− 32
√
2
)

R2r2 + 16Rr3 +
(

24− 16
√
2
)

r4

+ 32R2r2 + 8r4,

which is equivalent with the inequality from the statement.

�

Theorem 11 In every bicentric quadrilateral ABCD the following inequalities

are true:
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1) 2r

√

8r
(√

4R2 + r2 − r
)(

5
√
4R2 + r2 − 11r

)

≤
∑

a3

≤ 2
(

r+
√
4R2 + r2

) (

4R2 − r2 − r
√
4R2 + r2

)

;

2) 352R2r2 + 208r4 − 240r3
√
4R2 + r2

≤
∑

a3b ≤
(

r+
√
4R2 + r2

)2
(

8R2 − 4r2
)

.

Proof.

1) a3 = a2 (2s− b− c− d) = 2a2s−a2b−a2c−a2d or
∑

a3 = 2s
∑

a2 −∑
a2b = 2s

(

2s2 − 2α
)

− 2s3 + sα.

It results that
∑

a3 = 2s3 − 3αs.

We consider the function f : (0,+∞) → R, f (s) = 2s3 − 3αs, with the
derivate f′ (s) = 6s2 − 3α. We prove that f′ (s) ≥ 0 or s2 ≥ α

2 .

But s2 ≥ 8r
(√

4R2 + r2 − r
)

. It will be sufficient to prove that:

8r
(
√

4R2 + r2 − r
)

≥ r2 + r
√

4R2 + r2 or

8
√

4x2 + 1− 8 ≥ 1+
√

4x2 + 1 or
√

4x2 + 1 ≥ 9

7
,

which is true because
√
4x2 + 1 ≥ 2 according to Fejes inequality.

Since f is an increasing function it results from Theorem 2 that:
√

8r
(
√

4R2 + r2 − r
) [

16
(
√

4R2 + r2 − r
)

− 6r2 − 6r
√

4R2 + r2
]

≤
∑

a3 ≤
(

r +
√

4R2 + r2
)

[

2r2 + 8R2 + 2r2

+ 4r
√

4R2 + r2 − 6r2 − 6r
√

4R2 + r2
]

,

which is equivalent with the inequality from the statement.

2) a3b = ab
(∑

a2 − b2 − c2 − d2
)

= ab
∑

a2 − ab3 − abc2 − abd2 or
a3b+ab3 = ab

∑
a2−abc2−abd2 or

∑
a3b =

∑
ab

∑
a2−

∑
a2bc =

(

s2 + α
) (

2s2 − 2α
)

−
(

2α− 4r2
)

s2 or
∑

a3b = 2s4−
(

2α − 4r2
)

s2−2α2.

We denote s2 = t and consider the function: f : (0,+∞) → R,

f (t) = 2t2 −
(

2a − 4r2
)

t− 2a2
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and

tv =
2a − 4r2

4
=

a − 2r2

2
= r
√

4R2 + r2.

We prove that t ≥ tv.

s2 ≥ r
√
4R2 + r2. But s2 ≥ 8r

(√
4R2 + r2 − r

)

. It will be sufficient to

prove that

8r
(
√

4R2 + r2 − r2
)

≥ r
√

4R2 + r2 or
√

4R2 + r2 ≥ 8

7

which is true because
√
4R2 + r2 ≥ 3.

It results that f is an increasing function which implies:

128r2
(

4R2 + 2r2 − 2r
√

4R2 + r2
)

− 4r
√

4R2 + r28r
(
√

4R2 + r2 − r
)

− 2
(

2r2 + 2r
√

4R2 + r2
)2

≤
∑

a3b ≤ 2
(

r+
√

4R2 + r2
)4

− 4r
√

4R2 + r2
(

r+
√

4R2 + r2
)2

− 2
(

2r2 + 2r
√

4R2 + r2
)2

or

512R2r2 + 256r4 − 256r3
√

4R2 + r2 − 32r2
(

4R2 + r2
)

+ 32r3
√

4R2 + r2

− 8r4 − 8r2
(

4R2 + r2
)

− 16r3
√

4R2 + r2 ≤
∑

a3b ≤ 2
(

r+
√

4R2 + r2
)2

(

r2 + 4R2 + r2 + 2r
√

4R2 + r2 − 2r
√

4R2 + r2
)

− 8r2
(

r+
√

4R2 + r2
)2

or

352R2r2 + 208r4 − 240r3
√

4R2 + r2 ≤
∑

a3b ≤
(

r +
√

4R2 + r2
)2

(

4r2 + 8R2 − 8r2
)

.

�

Theorem 12 In every bicentric quadrilateral ABCD the following inequalities

are true:

1)
∑

a3 ≤ 16R3 +
(

24− 16
√
2
)

R2r − 8Rr2 −
(

16− 8
√
2
)

r3;

2)
∑

a3b ≤ 32R4−16R2r2+32R3r+16Rr3+
(

64− 32
√
2
)

R2r2−
(

32− 16
√
2
)

r4;
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3)
∑

a3b ≥ 352R2r2 +
(

480
√
2− 512

)

r4 − 480Rr3.

Proof.

1) From Theorem 11 it results that:
∑

a3 ≤
(

r+
√

4R2 + r2
)(

8R2 − 2r2 − 2r
√

4R2 + r2
)

= 8R2r− 2r3 − 2r2
√

4R2 + r2 + 8R2
√

4R2 + r2

− 2r2
√

4R2 + r2 − 8R2r − 2r3

=
(

8R2 − 4r2
)
√

4R2 + r2 − 4r3

≤
(

8R2 − 4r2
) [

2R +
(

3− 2
√
2
)

r
]

− 4r3

= 16r3 +
(

24− 16
√
2
)

R2r− 8Rr2 −
(

12− 8
√
2
)

r3 − 4r3,

which is equivalent with inequality from the statement.

2) From Theorem 11 it results that

∑
a3b ≤

(

r +
√

4R2 + r2
)2 (

8R2 − 4r2
)

and
(

r +
√

4R2 + r2
)2

≤ 4R2 + 4Rr +
(

8− 4
√
2
)

r2.

It results that:
∑

a3b ≤
[

4R2 + 4Rr +
(

8− 4
√
2
)

r2
] (

8R2 − 4r2
)

= 32R4 − 16R2r2 + 32R3r− 16Rr3 +
(

64− 32
√
2
)

R2r2

−
(

32− 16
√
2
)

r4,

which is equivalent with the inequality from the statement.

3) We prove that:
∑

a3b ≥ 352R2r2 + 208r4 − 240r3
√

4R2 + r2

≥ 352R2r2 + 208r4 − 240r3
[

2R +
(

3− 2
√
2
)

r
]

= 352R2r2 + 208r4 − 480Rr3 −
(

720 − 480
√
2
)

r4,

which is equivalent with the inequality from the statement.

�
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References

[1] W. J. Blundon, R. H. Eddy, Problem 488, Nieuw Arch. Wiskunde, 26
(1978).
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