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Abstract. The main aim of this paper is to obtain Maia type fixed
point results for Ciri¢-Presi¢ contraction condition, following Ciri¢ L. B.
and Presi¢ S. B. result proved in [Cirié L. B.; Presi¢ S. B. On Presié type
generalization of the Banach contraction mapping principle, Acta Math.
Univ. Comenian. (N.S.), 2007, v 76, no. 2, 143-147] and Luong N. V.
and Thuan N. X. result in [Luong, N. V., Thuan, N. X., Some fixed point
theorems of Presié¢-Ciri¢ type, Acta Univ. Apulensis Math. Inform., No.
30, (2012), 237-249]. We unified these theorems with Maia’s fixed point
theorem proved in [Maia, Maria Grazia. Un’osservazione sulle contrazioni
metriche. (Italian) Rend. Sem. Mat. Univ. Padova 40 1968 139-143] and
the obtained results are proved is the present paper. An example is also
provided.

1 Introduction and preliminaries

Presi¢ S. B. [11] extended the famous Banach contraction principle [2] to the
case of product spaces in 1965. Recently, in 2007, Ciri¢ and Presi¢ [10], gen-
eralized the Presi¢’s theorem introducing Ciri¢-Presi¢ contraction condition.
Other important Presié¢ fixed point theorem generalizations and some related
results can be found in Pacurar’s papers [7], [8].

The following result was given by M. G. Maia [4] in 1968 and is also a gener-
alization of Banach contraction mapping principle for sets endowed with two
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comparable metrics. Maia type fixed point results for singlevalued or multi-
valued operators have been studied in [9], [12], [13], [14].

Theorem 1 [14], [4]
Let X be a nonempty set, d and p two metrics on X and f : X — X an
operator. We suppose that:
(i) dix,y) < p(x,y) for allx,y € X;
(ii) (X, d) is a complete metric space;
(iii) f: (X,d) — (X, d) is continuous;
(X

(iv) f ,p) — (X, p) is an x-contraction.
Then:

(a) Ff = {X*},

(b) ™ %X as N — oo, for all x € X;

(c) ™ —>x asn—)oo,forallxex

(d) p ) < —p(x, f(x)), for each x € X.

In 2007, Ciri¢ L. B. and Presi¢ S. B. generalized the Presi¢’s theorem in-
troducing Cirié-Presi¢ contraction condition. Their fixed point result can be
stated as follows:

Theorem 2 [10] Let (X,d) be a complete metric space, kK a positive integer
and T : X* — X a mapping satisfying the following contractive type condition:

d(T(X1>X2) .. ')xk))T(XZ)X3) .. ')Xk-H)) < )\maX{d(Xin—‘r]) i1 < i < k}) (1>

where A € (0,1) is constant and X1,...,Xx+1 € X.
Then there exists a point x* € X such that T(x*,...,x*) = x*. Moreover, if
X1,X2,X3y -« -y Xkt1 aT€ arbitrary points in X and forn € N,

Xtk = T(Xny Xni1y .oy Xnik—1)s
then the sequence {xn}s° is convergent and
limx, = T(lim xn, lim xp, ..., limxy).
If, in addition, we suppose that on diagonal A C XX,
d(T(uy...,uw), T(vy...,v)) < d(u,v) (2)

holds for all u,v € X, with u # v, then x* is the unique fired point of T in X
with T(x*, ..., x*) = x*.
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Remark 1 [10] Theorem 2 is a generalization of Presi¢ fized point theorem
(see [11]), as the Presié’s contraction condition implies the conditions 1 and 2.

A(T(x1y X2y e ey Xk)y T(X2, X3y 0o vy Xkt 1)) <

< oqd(xr,x2) + oad(x2,x3) + -+ - + oed (xi, Xkp1) <

< (o + o+ - -+ oq) max{d(x1,x2), d(x2,%3), . . ., d(Xy Xk 1)} <
< Amax{d(xi,xi41): 1 <1<k}

and

d(T(u,u,...,u), T(v,v,...,v)) <

< d(T(uwyuy..oyu), T(uy.ooyuyv)) + d(T(u, ..., wyv), T(uy ..o yu, vy v) )+
+ -4+ d(T(uyvy ey v), T(vyvy .oy v)) <

< ogd(u,v) + o 1d(uw,v) + - - - + ord(u, v) =

= (o + o1 + -+ + 1) d(u, v) < d(u,v).

Following the above result, the next lemma is a generalization of the Presi¢’s
lemma in [11].

Lemma 1 Letk € Nyk # 0 and A € (0,1). If {Antn>1 15 a sequence of positive
numbers satisfying

An+k <A maX{Ana An-‘rh ceey ATH—k—] }) n> 1) (3)
then there exist L >0 and 0 € (0,1) such that
An <L-0% foralln>1. (4)

Proof. Similarly with the proof of the result [10], we have:
Let A1, Ay, ..., Ax be k positive elements of the sequence {An},>1 satisfying

(3)-

Denoting L = max{Ay, Ay,..., Ay}, we obtain
Ak < ?\maX{A1,A2,. ..,Ak} = AL

We assume that (4) holds for n,n+1,...,n+k—1 and we prove that it takes
place for n + k.
A <10, i=nn+1,...,n+k—1
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1 A A A
where @ = Ak, L = max{%", 5%,-.., gt -

Anx < Amax{An, Anyty ..oy Angkt}
< Amax{LO™ Lo™' ... L")

= LAmax{o™, 0™, ... ont T,
As 8 € (0,1), 0™ < 8", we have

Ani <IAO" (0< B0 < 1)
Angr < LA™K,

O

Remark 2 [12] For any operator f : Xk = X, k a positive integer, we can
define its associate operator F: X — X by

F(x) = f(x,...,x), x € X.

x € X is a fized point of f: X* — X if and only if x is a fized point of its
associate operator F.

Remark 3 Particular cases:

1. From Maia’s fixed point theorem when d = p, we get Banach’s fixed point
theorem.

2. A Maia type fixed point theorem for Presié-Kannan operators has been ob-
tained by Balazs M. [1].

Starting from these results, the aim of this paper is to extend Theorem 2 and
Theorem 2.2, Theorem 2.5 from [5], to the case of a set endowed with two
comparable metrics.

2 The main results

Theorem 3 Let X be a nonempty set, d and p two metrics on X, k a positive
integer, A € (0,1) a constant and f : X* — X a mapping satisfying the following
condition:

P(f(x1, X2y« vy Xxi), T(X2, X3y« oy Xig1)) < Amax{p(xi,xiy1) : 1 <1<k} (5)

for any x1,%2, ...y XK1 € X.
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We suppose that:

(i) d(x,y) < p(x,y) for all x,y € X;
(ii) (X, d zs a complete metric space;
(iii) f: (X*,d) — (X, d) is continuous;
(iv) on dzagonal A c Xk

d(f(x,%,...,x), f(y,y,...,y)) < d(x,y) (6)
holds for all x,y € X, with x # y.
Then:
(a) f has a unique fized point x*, Fr = {x*}, f(x*,x*,...,x*) = x*,
(b) the sequence {xnjn>1 with x1,%2,...,xx € X, and
Xntk = f(xn) Xn41y e+ oy Xndk—1 )) n>1

converges to x* w.r.t. d.

Proof. Let {Xnin>1, Xntk = f(Xn, Xnt1y« ooy Xngk—1), > 1, with x7,%2, ..., %k
arbitrary elements in X.

P (Xnsks Xnak+1) = POy Xng1y ooy Xngk—1)y F(Xng 1y Xng2y o oy Xngk))

< Amax{p(Xn, Xnt+1)y P(Xna1y Xnt2)y« + oy P(Xnpk—1y Xnsk )}

Denoting p(Xn, Xn41) = An we have
Ank S Amax{An, Anyty .oy A1, n2>1

The conditions in Lemma 1 are fulfilled and there exist L > 0 and 0 € (0,1)
such that
An < Len, n>1
0 (X Xnskr1) < Amax{LO™ LO™ ... L™+
< ALO™

From [10], A = 6%, 50 p(Xnik, Xnikr1) < LO™TE.
For n,p € N* with p > n, we have

p(Xn>Xn+p) = P(Xny Xnt1) + P(Xng1y Xni2) + -+ p(xn+pf1yxn+p) <
<LOM 4+ LO™T ... LM =

=LO"(1+0+---+0°") =

or
9>T121>P21-

]_
— Lo
61
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Since 0 € (0, 1), it follows that {xn}n>1 is a Cauchy sequence in (X, p). From (i)
it follows that {Xn Jn>1 is a Cauchy sequence in the complete metric space (X, d),
S0 {XnJn>1 is also convergent: there exists x* € X such that limn 0 d(Xntk, X*)
=0.

By the continuity of f and the associate operator F : X — X, F(x) =
f(x,%,...,x), for any x € X, we have:

d(F(X*))X*) = d(f(X*)---)X*)’X*) =

=d(f( im xp,..., lim xpx_1),x") =
n—oo n—oo
= lim (d(f(Xn, coe )XnJrkf])))X*) = lim d(xn+k)X*) =0.
n—oo n—oo

Therefore x* = f(x*,...,x*) = F(x*) is a fixed point of f.
We suppose there exists another fixed point of f, y* = f(y*,...,y*),

d(X*)y*) = d(f(X*> oo )X*))f(y*> RN )U*))

from (iv) we have

d(x*,y") < d(x*,y")

which is a contradiction. The uniqueness of the fixed point is proved. O

Remark 4 We have the following important particular cases of Theorem 3:
1. If k=1, by Theorem 3 we get Maia fixed point theorem.
2. If d = p, by Theorem 3 we get Ciri¢ and Presi¢ fixed point theorem [10].

Following the results in [3], we extend them to the case of a set endowed with
two comparable metrics.

Remark 5 [3]
Let @ denote all functions @ : [0,00) — [0, 00) satisfying
(i) @ is continuous and non-decreasing;
(i) Y2 @'(t) < oo, for all t € (0,00).

Lemma 2 [5] Suppose that ¢ : [0,00) — [0,00) is non-decreasing. Then for
every t > 0, limy_ oo @™(t) = 0, implies @(t) < t.

Remark 6 [3]
Property (ii) from Remark 5 implies limn_,00 @™(t) = O for every t > 0.
Therefore, by Lemma 2, if @ € @ then @(t) < t, for every t > 0.
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Theorem 4 Let X be a nonempty set, d and p two metrics on X, k a positive
integer, @ € @ and f: X* = X a mapping satisfying the following condition:

P(f(x1y%2, .oy Xi), F(X2, X3y . oy Xiq1)) < @(max{p(xi,xix1) : 1 <1<k} (7)

for any x1,%2, ...y XK1 € X.
We suppose that:
(i) d(x,y) < p(x,y) for all x,y € X;
(ii) (X, d zs a complete metric space;
(iii) f: (X*,d) — (X, d) is continuous;
(iv) on dmgonal A c Xk

d(f(x, %, ...,x), f(y,y,...,y)) < d(x,y) (8)

holds for all x,y € X, with x #y.
Then:
(a) f has a unique fized point x*, Fr = {x*}, f(x*,x*,...,x*) = x%;
(b) the sequence {xnin>1 with x1,x2,...,xx € X, and

Xn+tk = f(xn, Xn41y .y Xntk—1 )y n>1
converges to x* w.r.t. d.

Proof. Let {xnJn>1, Xntk = f(Xny Xn41y .+« oy Xngk—1), 0 > T, with x1,X2,..., Xk €
X. For simplicity, we set

0 = max{p(x1,x2), p(x2,%3), - - -, P(XK, Xkc11)}-

Ifx1 =xp =+ =xxp1 = x*, then x* is a fixed point of f, therefore we assume
they are not all equal, i.e., 8 > 0.
We have

P(Xks1y Xkr2) = P(F(X1, X2y v oy Xa)y F(X2y X3y 0oy Xig 1)) <
< @(max{p(x1,%2), P(X2,X3)y -+ oy P(Xxy Xk 11}) <
< @(0)<0.

P(Xk42, Xk43) = P(F(X2, X3y« vy Xar 1)y F(X3, X4y + oy Xi42)) <
< @(max{p(x2,x3), p(x3,Xa)y - - -y P(Xict1, Xk42}) <
< @(max{0, ¢(0)}) = ¢(0) < 0.

P(x2k, Xok41) = P(F(Xay Xac 1y« + oy X2k )y F (Ko 1y Xie2y + - -y X2k)) <
(max{p (X, Xi1)y P(Xit 1y Xir2)y + oy P(X2K—1y X2k }) <

<
< @(max{6, ¢(6),...,¢(6)}) = ¢(0) <.

2
2
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P(X2k+1y X2k+2) = PF(Xka1y Xk 2y - - oy X2k )y T Xk 2y Xic 3y -+ oy X2k 1)) <
< @(max{p(Xit1y Xk+2)y P(Xik42y Xi43)y - + o, P(X2ky X2k41}) <
< @(max{@(0), 9(0),...,0(0)}) = 9*(0) < ¢(0).

By induction, we get

p(xnk-&-lvxnk-i-Z) < (Pn(e)» n> 1

or
o(xnsn xniz) < @l2(0), n > k.

By property (ii) from Remark 5, we have

lim p(Xn41yXn42) =0 9)
n—oo

For n,p € N, n > k, we have

p(Xn>Xn+p) < P(Xny Xng1) + P(Xng 1y Xng2) + -+ p(XnerthTH—p) <

n— n e (10)
<ol o+ oLt @)+ 4+ 0" (0)
Denoting 1 = [“—?] and m = [%ﬂ], 1<m.
From inequality 10, we have
P (X, Xnip) < ©1(0) + @'(0) + - - + @'(0) +
k times
+ (ler](e) + (pl+1 (e) NI (ler](e) +
k times
+9"(0)+™(0)+ -+ ™(0)
k times
and that is
m
p(Xn>Xn+p) < kZ ©'(0) (11)
i=l
By property (ii)
m
i _
3 000
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So we have that p(xn,Xnsp) — 0, when n — oco. The sequence {xn}n>1
is a Cauchy sequence in (X, p). From (i) it follows that {xn}n>1 is a Cauchy
sequence in the complete metric space (X, d), so {xnJn>1 is also convergent:
there exists x* € X such that d(xnik,x*) =0.

By the continuity of f and the associate operator F : X — X, F(x) =

f(x,%,...,x), for any x € X, we have
d(F(x*),x*) = d(f(x*,...,x"),x*) =
=d(f( im xp,..., lim xpx_1),x%) =
n—oo n—oo
= lim (d(f(xn,..- )Xn-‘rk—])))X*) = lim d(xn-‘rk)X*) =0.
n—oo n—oo

Therefore x* = f(x*,...,x*) = F(x*) is a fixed point of f.
We suppose there exists another fixed point of f, y* = f(y*,...,y*), x* # y*,

d(X*)y*) = d(f(X*) oo aX*)) f(9*> see ay*))
from (iv) we have
d(x*,y*) = d(f(x*, ..., x"), fy",...,y")) < d(x*,y")
which is a contradiction. The uniqueness of the fixed point is proved. O
Remark 7 We have the following particular cases of Theorem 4:
1. If (t) = At, for all t € [0,00) and A € (0,1), by Theorem 4 we get

Theorem 3.
2. If d = p, by Theorem 4 we get Theorem 2.2 in [3].

The next theorem is an extension of Theorem 4 to monotone nondecreasing
mappings in ordered metric spaces. First we recall some useful notions [3]:

Let (X, =) be a partially ordered set and we consider the following partial
order on X¥

for x,y € Xk’ X = (X1,X2y ++ oy Xk, Y= (U])UZ)“ -)yk)

xCyYye&xi 2yYnxa 2Yz, .oy Xk = Yk

Definition 1 [3] Let (X, <) be a partially ordered set and f : Xk = X a map-

ping.
f is said to be monotone non-decreasing if for all x,y € XX,

xEy = f(x) = fy),

where X = (X1,X2,...,Xk) and Yy = (Y1,Y2y.. ., Yi)-
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Theorem 5 Let X be a nonempty set, (X, =) a partially ordered set, d and
p two metrics on X, k a positive integer, @ € ® and f: X* — X a mapping
satisfying the following condition:

P(f(x1y X2y« vy Xi), T(X2, X3y ooy Xig1)) < @(max{p(xi,xi41) 1 1 <1< k}) (12)

for any x1,%2, ...y Xkr1 € X and X1 X2 = -0 = X .

We suppose that:

(i) dlx,y) < plx,y) for all x,y € X;

(ii) (X, d) is a complete metric space;

(iii) f: (X*,d) — (X, d) is continuous

or

X has the property: if {xnin>1 is @ monotone non-decreasing sequence, Xn —
X then xn <X, for anyn > 1;

(iv) there exists k elements x1,X2,...,Xx € X such that

X1 Xxp <X 2xgand xg < f(xg, X2, .00 XK );

(v) on diagonal A C X¥

d(f(x, %, ..., x), f(y,y,...,y)) < d(x,y) (13)
holds for all x,y € X, with x # y.
Then:
(a) f has a unique fized point x*, Fr = {x*}, f(x*,x*,...,x*) = x%;
(b) the sequence {xnin>1 with X1,x2,...,xx € X, and
Xn4k :f(xn)XnJr])"')XnJrkf])) n = ]) X1 23xX% X2 X 2l

converges to x* w.r.t. d.

Proof. From (iv), if we denote xy11 = f(x1,X2y. .., Xk) = Xk, Xk42 = f(x2, X3,
.+ oy Xk41) = Xk41 and so on, we obtain the sequence {Xnn>1,

Xnak = F(Xny Xnaty oo oy Xnak—1), 2T, X1 2% 2 - Zxp X

The alternative assumption (iii) is usual in fixed point theory in ordered
metric spaces. The first paper that first considered this assumption is due to
Nieto, Juan J.; Rodriguez-Lépez, Rosana. Existence and uniqueness results for
fuzzy differential equations subject to boundary value conditions. Mathemat-
ical models in engineering, biology and medicine, 264-273, AIP Conf. Proc.,
1124, Amer. Inst. Phys., Melville, NY, 2009.

For the next part of the proof, see the proof of Theorem 4. O
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Corollary 1 Let X be a nonempty set, (X, =) a partially ordered set, d and p
two metrics on X, k a positive integer, A € (0,1) a constant and f: X* = X a
mapping satisfying the following condition:

P(f(x1,%2, .oy Xi), F(X2, X3y ooy Xig1)) < Amax{p(xi, xi41) : 1 <1<k} (14)

for any x1,%x2, ...y xXkr1 € X and x1 X2 2 -0 X Xy -

We suppose that:

(i) dlx,y) < plx,y) for all x,y € X;

(i) (X,d) is a complete metric space;

(iii) f: (X*,d) — (X, d) is continuous

or

X has the property: if {Xnin>1 is a monotone non-decreasing sequence, Xn —
X then xn, < x, for anyn > 1;

(iv) there exists k elements x1,X2,...,xx € X such that

X1 2% 2o 2xand xg = f(x1,X2, .00 Xk)5
(v) on diagonal A C X*
d(f(x,xy...,x), f(y,y,...,y)) < d(x,y) (15)

holds for all x,y € X, with x # y.
Then:
(a) f has a unique fized point x*, Fr = {x*}, f(x*,x*,...,x*) = x%;
(b) the sequence {xnin>1 with x1,x2,...,xx € X, and

Xnak = F(Xny Xnity ooy Xnake1)y, 2> 1, x1 2xp 20 2xp 2
converges to x* w.r.t. d.

Remark 8 We have the following particular cases of Theorem 5:

1. If o(t) = At, for all t € [0,00) and A € (0,1), by Theorem 5 we get
Theorem 3 for ordered metric space, see Corollary 1.

2. If d = p, by Theorem 5 we get Theorem 2.5 in [3].

The following example, adapted after Example 1 in [10], illustrates the result
in this paper.

Example 1 Let d be the euclidean distance and p be the sum-distance, metrics
on X =1[0,11U[2,3]. Fork=2, let f: X2 5 X bea mapping defined by
%’ (X1)X2) S [O>” X [O)”
fx1,x2) = ¢ M2 (% %)) € [2,3] x 2, 3]
M2 (xq,%) € 10,11 % 2,3] ot (x,y) € 12,3] x [0, 1].
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satisfying the condition 14.

d(f(x1,%2), f(x2,%x3)) \/ f(x1,%2) — f(x2,%3))% = |f(x1,x2) — f(x2,%3)|
= p(f(x1,x2), f(x2,%3))

f: (X%, d) = (X,d) is continuous. Hence, the conditions (i) — (iv) from Theo-
rem & are satisfied.

Let {xn}n>1, defined by xni2 = f(xny Xn11).

Forn =1, we have x3 = T(x1,x2).

Then,

for any x1,x2 € [0,1] we have f(x1,x2) = x3 € [0,1], and

for any x1,x2 € [2,3] we have f(x7,x2) = x3 € [2,3].

For x1,x3 € [0,1] or x1,%xy € [2,3] we have

p(f(XhXZ))f(XZ’X3)) = ’)q ZXZ - XZIX3| = ‘X] 4 =2 + = 4 X3| <

< ’X] 4 X2| |X2 4 Xs‘ < % : max{p(x1,x2), p(XZ)X3)}-

For (x1,x2) € [0,1] x [2,3] or (x1,%x2) € [2,3] x [0,1] we have f(x1,x2) =x3 €
[0, 1].

Therefore,

if xo € 2,3], then

X1 +X%x2 X2+%x3
p(f(x1)X2))f(X2)X3)) = | 4 - 4 | <

-max{p(x1,x2), p(x2,x3)}.

B—=

if x2 € [0,1], then

x1+x2—2 x3+x X1 —X T x—x
p(f(x1,%2), flx2,%3)) = |~ 42 - 24 | =] ]4 2_2 24 *| <

X1 —X2 1 X2 —X3 X1 —X2 X2 —X3
<| — 51+ | <] |+ | | <
4 2 4 4 4

1
< 1 max{p(x1,%2), p(x2,%3)}

So f is a Ciric-Presi¢ operator, with A = % e (0,1).

Since A = % € (0,1), it follows that {xnJn>1 is a Cauchy sequence in (X, p).
From (1) we have that {xnJn>1 s a Cauchy sequence in (X, d), which in the
complete metric space (X, d), is also convergent. So there exists x* € [0,1] U
(2,3] such that

: * * * *
lim x, =x*, x* =f(x*,x").
n—oo
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d(X3,0) = d(f(XhXZ))f(O)O)) = \/(f(XhXZ) - f(O)O))Z = ‘f(XhXZ)_f(O)O” =0

d(x3,2) = d(F(x1,%2), £(2,2)) =/ (F(x1,x2) — (2, 2))2 = [f(x1,%2) ~F(2,2)| = 0
From the continuity of f in (X, d), we have

lim f(XhXZ) = f(0,0),

n—oo

and
lim f(X] ) x2) = f(z) 2)3
n—oo

so (0,0) =0 and f(2,2) =2, Fr ={0;2}.
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