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Abstract. The main aim of this paper is to obtain Maia type fixed
point results for Ćirić-Prešić contraction condition, following Ćirić L. B.
and Prešić S. B. result proved in [Ćirić L. B.; Prešić S. B. On Prešić type
generalization of the Banach contraction mapping principle, Acta Math.
Univ. Comenian. (N.S.), 2007, v 76, no. 2, 143–147] and Luong N. V.
and Thuan N. X. result in [Luong, N. V., Thuan, N. X., Some fixed point
theorems of Prešić-Ćirić type, Acta Univ. Apulensis Math. Inform., No.
30, (2012), 237–249]. We unified these theorems with Maia’s fixed point
theorem proved in [Maia, Maria Grazia. Un’osservazione sulle contrazioni
metriche. (Italian) Rend. Sem. Mat. Univ. Padova 40 1968 139–143] and
the obtained results are proved is the present paper. An example is also
provided.

1 Introduction and preliminaries

Prešić S. B. [11] extended the famous Banach contraction principle [2] to the
case of product spaces in 1965. Recently, in 2007, Ćirić and Prešić [10], gen-
eralized the Prešić’s theorem introducing Ćirić-Prešić contraction condition.
Other important Prešić fixed point theorem generalizations and some related
results can be found in Păcurar’s papers [7], [8].

The following result was given by M. G. Maia [4] in 1968 and is also a gener-
alization of Banach contraction mapping principle for sets endowed with two
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18



Maia type fixed point theorems for Ćirić-Prešić operators 19

comparable metrics. Maia type fixed point results for singlevalued or multi-
valued operators have been studied in [9], [12], [13], [14].

Theorem 1 [14], [4]
Let X be a nonempty set, d and ρ two metrics on X and f : X → X an

operator. We suppose that:
(i) d(x, y) ≤ ρ(x, y) for all x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) f : (X, d) → (X, d) is continuous;
(iv) f : (X, ρ) → (X, ρ) is an α-contraction.

Then:
(a) Ff = {x∗};

(b) fn(x)
d−→ x∗ as n→ ∞, for all x ∈ X;

(c) fn(x)
ρ−→ x∗ as n→ ∞, for all x ∈ X;

(d) ρ(x, x∗) ≤ 1
1−αρ(x, f(x)), for each x ∈ X.

In 2007, Ćirić L. B. and Prešić S. B. generalized the Prešić’s theorem in-
troducing Ćirić-Prešić contraction condition. Their fixed point result can be
stated as follows:

Theorem 2 [10] Let (X, d) be a complete metric space, k a positive integer
and T : Xk → X a mapping satisfying the following contractive type condition:

d(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk+1)) ≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k}, (1)

where λ ∈ (0, 1) is constant and x1, . . . , xk+1 ∈ X.
Then there exists a point x∗ ∈ X such that T(x∗, . . . , x∗) = x∗. Moreover, if

x1, x2, x3, . . . , xk+1 are arbitrary points in X and for n ∈ N,

xn+k = T(xn, xn+1, . . . , xn+k−1),

then the sequence {xn}
∞
n=1 is convergent and

lim xn = T(lim xn, lim xn, . . . , lim xn).

If, in addition, we suppose that on diagonal ∆ ⊂ Xk,

d(T(u, . . . , u), T(v, . . . , v)) < d(u, v) (2)

holds for all u, v ∈ X, with u 6= v, then x∗ is the unique fixed point of T in X
with T(x∗, . . . , x∗) = x∗.
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Remark 1 [10] Theorem 2 is a generalization of Prešić fixed point theorem
(see [11]), as the Prešić’s contraction condition implies the conditions 1 and 2.

d(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk+1)) ≤
≤ α1d(x1, x2) + α2d(x2, x3) + · · ·+ αkd(xk, xk+1) ≤
≤ (α1 + α2 + · · ·+ αk)max{d(x1, x2), d(x2, x3), . . . , d(xk, xk+1)} ≤
≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k}

and

d(T(u, u, . . . , u), T(v, v, . . . , v)) ≤
≤ d(T(u, u, . . . , u), T(u, . . . , u, v)) + d(T(u, . . . , u, v), T(u, . . . , u, v, v))+
+ · · ·+ d(T(u, v, . . . , v), T(v, v, . . . , v)) ≤
≤ αkd(u, v) + αk−1d(u, v) + · · ·+ α1d(u, v) =
= (αk + αk−1 + · · ·+ α1)d(u, v) < d(u, v).

Following the above result, the next lemma is a generalization of the Prešić’s
lemma in [11].

Lemma 1 Let k ∈ N, k 6= 0 and λ ∈ (0, 1). If {∆n}n≥1 is a sequence of positive
numbers satisfying

∆n+k ≤ λmax{∆n, ∆n+1, . . . , ∆n+k−1}, n ≥ 1, (3)

then there exist L > 0 and θ ∈ (0, 1) such that

∆n ≤ L · θn, for all n ≥ 1. (4)

Proof. Similarly with the proof of the result [10], we have:
Let ∆1, ∆2, . . . , ∆k be k positive elements of the sequence {∆n}n≥1 satisfying

(3).
Denoting L = max{∆1, ∆2, . . . , ∆k}, we obtain

∆k ≤ λmax{∆1, ∆2, . . . , ∆k} = λL

We assume that (4) holds for n,n+1, . . . , n+k−1 and we prove that it takes
place for n+ k.

∆i ≤ Lθi, i = n,n+ 1, . . . , n+ k− 1
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where θ = λ
1
k , L = max{∆1

θ ,
∆2

θ2
, . . . , ∆k

θk
}.

∆n+k ≤ λmax{∆n, ∆n+1, . . . , ∆n+k−1}

≤ λmax{Lθn, Lθn+1, . . . , Lθn+k−1}

= Lλmax{θn, θn+1, . . . , θn+k−1}.

As θ ∈ (0, 1), θn+1 < θn, we have

∆n+k ≤ Lλθn (0 < θ < 1)

∆n+k ≤ Lθn+k.

�

Remark 2 [12] For any operator f : Xk → X, k a positive integer, we can
define its associate operator F : X→ X by

F(x) = f(x, . . . , x), x ∈ X.

x ∈ X is a fixed point of f : Xk → X if and only if x is a fixed point of its
associate operator F.

Remark 3 Particular cases:
1. From Maia’s fixed point theorem when d ≡ ρ, we get Banach’s fixed point
theorem.
2. A Maia type fixed point theorem for Prešić-Kannan operators has been ob-
tained by Balazs M. [1].

Starting from these results, the aim of this paper is to extend Theorem 2 and
Theorem 2.2, Theorem 2.5 from [5], to the case of a set endowed with two
comparable metrics.

2 The main results

Theorem 3 Let X be a nonempty set, d and ρ two metrics on X, k a positive
integer, λ ∈ (0, 1) a constant and f : Xk → X a mapping satisfying the following
condition:

ρ(f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)) ≤ λmax{ρ(xi, xi+1) : 1 ≤ i ≤ k} (5)

for any x1, x2, . . . , xk+1 ∈ X.
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We suppose that:
(i) d(x, y) ≤ ρ(x, y) for all x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) f : (Xk, d̄) → (X, d) is continuous;
(iv) on diagonal ∆ ⊂ Xk

d(f(x, x, . . . , x), f(y, y, . . . , y)) < d(x, y) (6)

holds for all x, y ∈ X, with x 6= y.
Then:
(a) f has a unique fixed point x∗, Ff = {x∗}, f(x∗, x∗, . . . , x∗) = x∗;
(b) the sequence {xn}n≥1 with x1, x2, . . . , xk ∈ X, and

xn+k = f(xn, xn+1, . . . , xn+k−1), n ≥ 1

converges to x∗ w.r.t. d.

Proof. Let {xn}n≥1, xn+k = f(xn, xn+1, . . . , xn+k−1), n ≥ 1, with x1, x2, . . . , xk
arbitrary elements in X.

ρ(xn+k, xn+k+1) = ρ(f(xn, xn+1, . . . , xn+k−1), f(xn+1, xn+2, . . . , xn+k))

≤ λmax{ρ(xn, xn+1), ρ(xn+1, xn+2), . . . , ρ(xn+k−1, xn+k)}

Denoting ρ(xn, xn+1) = ∆n we have

∆n+k ≤ λmax{∆n, ∆n+1, . . . , ∆n+k−1}, n ≥ 1

The conditions in Lemma 1 are fulfilled and there exist L > 0 and θ ∈ (0, 1)
such that

∆n ≤ Lθn, n ≥ 1
ρ(xn+k, xn+k+1) ≤ λmax{Lθn, Lθn+1, . . . , Lθn+k−1}

≤ λLθn

From [10], λ = θk, so ρ(xn+k, xn+k+1) ≤ Lθn+k.
For n, p ∈ N∗ with p > n, we have

ρ(xn, xn+p) = ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · ·+ ρ(xn+p−1, xn+p) ≤
≤ Lθn + Lθn+1 + · · ·+ Lθn+k−1 =
= Lθn(1+ θ+ · · ·+ θp−1) =

= Lθn
1− θp

1− θ
, n ≥ 1, p ≥ 1.
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Since θ ∈ (0, 1), it follows that {xn}n≥1 is a Cauchy sequence in (X, ρ). From (i)
it follows that {xn}n≥1 is a Cauchy sequence in the complete metric space (X, d),
so {xn}n≥1 is also convergent: there exists x∗ ∈ X such that limn→∞ d(xn+k, x∗)
= 0.

By the continuity of f and the associate operator F : X → X, F(x) =
f(x, x, . . . , x), for any x ∈ X, we have:

d(F(x∗), x∗) = d(f(x∗, . . . , x∗), x∗) =

= d(f( lim
n→∞ xn, . . . , lim

n→∞ xn+k−1), x∗) =
= lim
n→∞(d(f(xn, . . . , xn+k−1)), x

∗) = lim
n→∞d(xn+k, x∗) = 0.

Therefore x∗ = f(x∗, . . . , x∗) = F(x∗) is a fixed point of f.
We suppose there exists another fixed point of f, y∗ = f(y∗, . . . , y∗),

d(x∗, y∗) = d(f(x∗, . . . , x∗), f(y∗, . . . , y∗))

from (iv) we have

d(x∗, y∗) < d(x∗, y∗)

which is a contradiction. The uniqueness of the fixed point is proved. �

Remark 4 We have the following important particular cases of Theorem 3:
1. If k = 1, by Theorem 3 we get Maia fixed point theorem.
2. If d = ρ, by Theorem 3 we get Ćirić and Prešić fixed point theorem [10].

Following the results in [3], we extend them to the case of a set endowed with
two comparable metrics.

Remark 5 [3]
Let Φ denote all functions ϕ : [0,∞) → [0,∞) satisfying
(i) ϕ is continuous and non-decreasing;
(ii)

∑∞
i=lϕ

i(t) <∞, for all t ∈ (0,∞).

Lemma 2 [5] Suppose that ϕ : [0,∞) → [0,∞) is non-decreasing. Then for
every t > 0, limn→∞ϕn(t) = 0, implies ϕ(t) < t.

Remark 6 [3]
Property (ii) from Remark 5 implies limn→∞ϕn(t) = 0 for every t > 0.

Therefore, by Lemma 2, if ϕ ∈ Φ then ϕ(t) < t, for every t > 0.
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Theorem 4 Let X be a nonempty set, d and ρ two metrics on X, k a positive
integer, ϕ ∈ Φ and f : Xk → X a mapping satisfying the following condition:

ρ(f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)) ≤ ϕ(max{ρ(xi, xi+1) : 1 ≤ i ≤ k}) (7)

for any x1, x2, . . . , xk+1 ∈ X.
We suppose that:
(i) d(x, y) ≤ ρ(x, y) for all x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) f : (Xk, d̄) → (X, d) is continuous;
(iv) on diagonal ∆ ⊂ Xk

d(f(x, x, . . . , x), f(y, y, . . . , y)) < d(x, y) (8)

holds for all x, y ∈ X, with x 6= y.
Then:
(a) f has a unique fixed point x∗, Ff = {x∗}, f(x∗, x∗, . . . , x∗) = x∗;
(b) the sequence {xn}n≥1 with x1, x2, . . . , xk ∈ X, and

xn+k = f(xn, xn+1, . . . , xn+k−1), n ≥ 1

converges to x∗ w.r.t. d.

Proof. Let {xn}n≥1, xn+k = f(xn, xn+1, . . . , xn+k−1), n ≥ 1, with x1, x2, . . . , xk ∈
X. For simplicity, we set

θ = max{ρ(x1, x2), ρ(x2, x3), . . . , ρ(xk, xk+1)}.

If x1 = x2 = · · · = xk+1 = x∗, then x∗ is a fixed point of f, therefore we assume
they are not all equal, i.e., θ > 0.

We have

ρ(xk+1, xk+2) = ρ(f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)) ≤
≤ ϕ(max{ρ(x1, x2), ρ(x2, x3), . . . , ρ(xk, xk+1}) ≤
≤ ϕ(θ) < θ.

ρ(xk+2, xk+3) = ρ(f(x2, x3, . . . , xk+1), f(x3, x4, . . . , xk+2)) ≤
≤ ϕ(max{ρ(x2, x3), ρ(x3, x4), . . . , ρ(xk+1, xk+2}) ≤
≤ ϕ(max{θ,ϕ(θ)}) = ϕ(θ) < θ.

. . .

ρ(x2k, x2k+1) = ρ(f(xk, xk+1, . . . , x2k−1), f(xk+1, xk+2, . . . , x2k)) ≤
≤ ϕ(max{ρ(xk, xk+1), ρ(xk+1, xk+2), . . . , ρ(x2k−1, x2k}) ≤
≤ ϕ(max{θ,ϕ(θ), . . . , ϕ(θ)}) = ϕ(θ) < θ.
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ρ(x2k+1, x2k+2) = ρ(f(xk+1, xk+2, . . . , x2k), f(xk+2, xk+3, . . . , x2k+1)) ≤
≤ ϕ(max{ρ(xk+1, xk+2), ρ(xk+2, xk+3), . . . , ρ(x2k, x2k+1}) ≤
≤ ϕ(max{ϕ(θ), ϕ(θ), . . . , ϕ(θ)}) = ϕ2(θ) < ϕ(θ).

By induction, we get

ρ(xnk+1, xnk+2) ≤ ϕn(θ), n ≥ 1

or

ρ(xn+1, xn+2) ≤ ϕ
[
n
k

]
(θ), n ≥ k.

By property (ii) from Remark 5, we have

lim
n→∞ ρ(xn+1, xn+2) = 0 (9)

For n, p ∈ N, n > k, we have

ρ(xn, xn+p) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · ·+ ρ(xn+p−1, xn+p) ≤

≤ ϕ
[
n−1
k

]
(θ) +ϕ

[
n
k

]
(θ) + · · ·+ϕ

[
n+p−2

k

]
(θ)

(10)

Denoting l =
[
n−1
k

]
and m =

[
n+p−2
k

]
, l ≤ m.

From inequality 10, we have

ρ(xn, xn+p) ≤ ϕl(θ) +ϕl(θ) + · · ·+ϕl(θ)︸ ︷︷ ︸
k times

+

+ϕl+1(θ) +ϕl+1(θ) + · · ·+ϕl+1(θ)︸ ︷︷ ︸
k times

+

+ · · ·+
+ϕm(θ) +ϕm(θ) + · · ·+ϕm(θ)︸ ︷︷ ︸

k times

and that is

ρ(xn, xn+p) ≤ k
m∑
i=l

ϕi(θ). (11)

By property (ii)

lim
l→∞

m∑
i=l

ϕi(θ) = 0.
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So we have that ρ(xn, xn+p) → 0, when n → ∞. The sequence {xn}n≥1
is a Cauchy sequence in (X, ρ). From (i) it follows that {xn}n≥1 is a Cauchy
sequence in the complete metric space (X, d), so {xn}n≥1 is also convergent:
there exists x∗ ∈ X such that d(xn+k, x

∗) = 0.
By the continuity of f and the associate operator F : X → X, F(x) =

f(x, x, . . . , x), for any x ∈ X, we have

d(F(x∗), x∗) = d(f(x∗, . . . , x∗), x∗) =

= d(f( lim
n→∞ xn, . . . , lim

n→∞ xn+k−1), x∗) =
= lim
n→∞(d(f(xn, . . . , xn+k−1)), x

∗) = lim
n→∞d(xn+k, x∗) = 0.

Therefore x∗ = f(x∗, . . . , x∗) = F(x∗) is a fixed point of f.
We suppose there exists another fixed point of f, y∗ = f(y∗, . . . , y∗), x∗ 6= y∗,

d(x∗, y∗) = d(f(x∗, . . . , x∗), f(y∗, . . . , y∗))

from (iv) we have

d(x∗, y∗) = d(f(x∗, . . . , x∗), f(y∗, . . . , y∗)) < d(x∗, y∗)

which is a contradiction. The uniqueness of the fixed point is proved. �

Remark 7 We have the following particular cases of Theorem 4:
1. If ϕ(t) = λt, for all t ∈ [0,∞) and λ ∈ (0, 1), by Theorem 4 we get

Theorem 3.
2. If d = ρ, by Theorem 4 we get Theorem 2.2 in [3].

The next theorem is an extension of Theorem 4 to monotone nondecreasing
mappings in ordered metric spaces. First we recall some useful notions [3]:

Let (X,�) be a partially ordered set and we consider the following partial
order on Xk

for x, y ∈ Xk, x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk)

x v y⇔ x1 � y1, x2 � y2, . . . , xk � yk.

Definition 1 [3] Let (X,�) be a partially ordered set and f : Xk → X a map-
ping.
f is said to be monotone non-decreasing if for all x, y ∈ Xk,

x v y⇒ f(x) � f(y),
where x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk).
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Theorem 5 Let X be a nonempty set, (X,�) a partially ordered set, d and
ρ two metrics on X, k a positive integer, ϕ ∈ Φ and f : Xk → X a mapping
satisfying the following condition:

ρ(f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)) ≤ ϕ(max{ρ(xi, xi+1) : 1 ≤ i ≤ k}) (12)

for any x1, x2, . . . , xk+1 ∈ X and x1 � x2 � · · · � xk+1.
We suppose that:
(i) d(x, y) ≤ ρ(x, y) for all x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) f : (Xk, d̄) → (X, d) is continuous
or
X has the property: if {xn}n≥1 is a monotone non-decreasing sequence, xn →

x then xn � x, for any n ≥ 1;
(iv) there exists k elements x1, x2, . . . , xk ∈ X such that

x1 � x2 � · · · � xk and xk � f(x1, x2, . . . , xk);

(v) on diagonal ∆ ⊂ Xk

d(f(x, x, . . . , x), f(y, y, . . . , y)) < d(x, y) (13)

holds for all x, y ∈ X, with x 6= y.
Then:
(a) f has a unique fixed point x∗, Ff = {x∗}, f(x∗, x∗, . . . , x∗) = x∗;
(b) the sequence {xn}n≥1 with x1, x2, . . . , xk ∈ X, and

xn+k = f(xn, xn+1, . . . , xn+k−1), n ≥ 1, x1 � x2 � · · · � xn � . . .

converges to x∗ w.r.t. d.

Proof. From (iv), if we denote xk+1 = f(x1, x2, . . . , xk) � xk, xk+2 = f(x2, x3,
. . . , xk+1) � xk+1 and so on, we obtain the sequence {xn}n≥1,

xn+k = f(xn, xn+1, . . . , xn+k−1), n ≥ 1, x1 � x2 � · · · � xn � . . .

The alternative assumption (iii) is usual in fixed point theory in ordered
metric spaces. The first paper that first considered this assumption is due to
Nieto, Juan J.; Rodŕıguez-López, Rosana. Existence and uniqueness results for
fuzzy differential equations subject to boundary value conditions. Mathemat-
ical models in engineering, biology and medicine, 264–273, AIP Conf. Proc.,
1124, Amer. Inst. Phys., Melville, NY, 2009.

For the next part of the proof, see the proof of Theorem 4. �
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Corollary 1 Let X be a nonempty set, (X,�) a partially ordered set, d and ρ
two metrics on X, k a positive integer, λ ∈ (0, 1) a constant and f : Xk → X a
mapping satisfying the following condition:

ρ(f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)) ≤ λmax{ρ(xi, xi+1) : 1 ≤ i ≤ k} (14)

for any x1, x2, . . . , xk+1 ∈ X and x1 � x2 � · · · � xk+1.
We suppose that:
(i) d(x, y) ≤ ρ(x, y) for all x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) f : (Xk, d̄) → (X, d) is continuous
or
X has the property: if {xn}n≥1 is a monotone non-decreasing sequence, xn →

x then xn � x, for any n ≥ 1;
(iv) there exists k elements x1, x2, . . . , xk ∈ X such that

x1 � x2 � · · · � xk and xk � f(x1, x2, . . . , xk);

(v) on diagonal ∆ ⊂ Xk

d(f(x, x, . . . , x), f(y, y, . . . , y)) < d(x, y) (15)

holds for all x, y ∈ X, with x 6= y.
Then:
(a) f has a unique fixed point x∗, Ff = {x∗}, f(x∗, x∗, . . . , x∗) = x∗;
(b) the sequence {xn}n≥1 with x1, x2, . . . , xk ∈ X, and

xn+k = f(xn, xn+1, . . . , xn+k−1), n ≥ 1, x1 � x2 � · · · � xn � . . .

converges to x∗ w.r.t. d.

Remark 8 We have the following particular cases of Theorem 5:
1. If ϕ(t) = λt, for all t ∈ [0,∞) and λ ∈ (0, 1), by Theorem 5 we get

Theorem 3 for ordered metric space, see Corollary 1.
2. If d = ρ, by Theorem 5 we get Theorem 2.5 in [3].

The following example, adapted after Example 1 in [10], illustrates the result
in this paper.

Example 1 Let d be the euclidean distance and ρ be the sum-distance, metrics
on X = [0, 1] ∪ [2, 3]. For k = 2, let f : X2 → X be a mapping defined by

f(x1, x2) =


x1+x2
4 ; (x1, x2) ∈ [0, 1]× [0, 1]

x1+x2+4
4 ; (x1, x2) ∈ [2, 3]× [2, 3]

x1+x2−2
4 ; (x1, x2) ∈ [0, 1]× [2, 3] or (x, y) ∈ [2, 3]× [0, 1].
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satisfying the condition 14.

d(f(x1, x2), f(x2, x3)) =
√
(f(x1, x2) − f(x2, x3))2 = |f(x1, x2) − f(x2, x3)|

= ρ(f(x1, x2), f(x2, x3))

f : (X2, d) → (X, d) is continuous. Hence, the conditions (i) − (iv) from Theo-
rem 3 are satisfied.

Let {xn}n≥1, defined by xn+2 = f(xn, xn+1).
For n = 1, we have x3 = f(x1, x2).
Then,
for any x1, x2 ∈ [0, 1] we have f(x1, x2) = x3 ∈ [0, 1], and
for any x1, x2 ∈ [2, 3] we have f(x1, x2) = x3 ∈ [2, 3].
For x1, x2 ∈ [0, 1] or x1, x2 ∈ [2, 3] we have

ρ(f(x1, x2), f(x2, x3)) = |
x1 + x2
4

−
x2 + x3
4
| = |x1 − x2

4
+
x2 − x3
4
| ≤

≤ |x1 − x2
4
|+ |x2 − x3

4
| ≤ 1

4
·max{ρ(x1, x2), ρ(x2, x3)}.

For (x1, x2) ∈ [0, 1] × [2, 3] or (x1, x2) ∈ [2, 3] × [0, 1] we have f(x1, x2) = x3 ∈
[0, 1].

Therefore,
if x2 ∈ [2, 3], then

ρ(f(x1, x2), f(x2, x3)) = |
x1 + x2
4

−
x2 + x3
4
| ≤ 1

4
·max{ρ(x1, x2), ρ(x2, x3)}.

if x2 ∈ [0, 1], then

ρ(f(x1, x2), f(x2, x3)) = |
x1 + x2 − 2

4
−
x2 + x3
4
| = |x1 − x2

4
−
1

2
+
x2 − x3
4
| ≤

≤ |x1 − x2
4

−
1

2
|+ |x2 − x3

4
| < |x1 − x2

4
|+ |x2 − x3

4
| ≤

≤ 1
4
·max{ρ(x1, x2), ρ(x2, x3)}

So f is a Ciric-Prešić operator, with λ = 1
4 ∈ (0, 1).

Since λ = 1
4 ∈ (0, 1), it follows that {xn}n≥1 is a Cauchy sequence in (X, ρ).

From (i) we have that {xn}n≥1 is a Cauchy sequence in (X, d), which in the
complete metric space (X, d), is also convergent. So there exists x∗ ∈ [0, 1] ∪
[2, 3] such that

lim
n→∞ xn = x∗, x∗ = f(x∗, x∗).
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d(x3, 0) = d(f(x1, x2), f(0, 0)) =
√
(f(x1, x2) − f(0, 0))2 = |f(x1, x2)−f(0, 0)| = 0

d(x3, 2) = d(f(x1, x2), f(2, 2)) =
√

(f(x1, x2) − f(2, 2))2 = |f(x1, x2)−f(2, 2)| = 0

From the continuity of f in (X, d), we have

lim
n→∞ f(x1, x2) = f(0, 0),

and
lim
n→∞ f(x1, x2) = f(2, 2),

so f(0, 0) = 0 and f(2, 2) = 2, Ff = {0; 2}.
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ators, Miskolc Math. Notes, 18 (1) (2017), 71–81.
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[7] M. Păcurar, Approximating common fixed points of Prešić-Kannan type
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