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Abstract

A general method is presented to obtain strong laws of large numbers.
Then it is applied for certain dependent random variables to obtain some
strong laws.

1. Introduction

It is well-known that the Hajek—Rényi inequality (see [7]) is a generalization of
the Kolmogorov inequality. In this paper we show (Theorem 2.1) that Kolmogorov’s
inequality implies a certain Hajek—Rényi type inequality. Using this fact we give
a general method to obtain strong laws of large numbers (Theorem 2.4). Actually
our method is the same as the one applied in Fazekas and Klesov [5] and Fazekas
et al. [6] but here we use probabilities instead of moments. In the proof we follow
the lines of [5].

Our theorem offers a general tool: if a maximal inequality is known for a certain
sequence of random variables then one can easily obtain a strong law of large
numbers. Our scheme helps to find the conditions and the normalizing constants.

In section 3 we apply our theorem to give alternative proofs for some known
strong laws of large numbers. We deal with associated, negatively associated ran-
dom variables and demimartingales.
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2. Results

Let N be the set of the positive integers and R the set of real numbers. If
ai,ag,... € R then in case A = ) let maxpeaar = 0 and >, ar = 0. Let
{Xk, k € N} be a sequence of random variables defined on some probability space

(Q,F,P) and S, = > X, for all k € N.

Theorem 2.1. Let {ay, k € N} be a sequence of nonnegative real numbers and
r > 0. Then the following two statements are equivalent.

(i) There exists ¢ > 0 such that for any n € N and any & > 0

n
P(I;1<aX|Sk\ > E) < ca_T'kZ_lak.

IN

(ii) There exists ¢ > 0 such that for any nondecreasing sequence {8k, k € N} of
positive real numbers, any n € N and any € > 0

n
-1 _ _
P(rglgz(\Ska > z—:) < ce T};—l apf, "

Proof. The proof is based on the idea of the proof of Theorem 1.1 in Fazekas
and Klesov [5]. It is clear that (ii) implies (i). Now we turn to (i) = (ii). Let
0< B <P2<...,neNande >0 are fixed. Without loss of generality we can
assume that §; = 1. Introduce the following notation

Ai={m : 1<m<nand 2° <G, <2}, i=0,1,2,...,
I'=max{i : A; #0},

{maXAi, if A; £ 0,
m; =

1=0,1,2,... and m_; =0.
mi—1, if A; =0, '

Then we have

P(Ilglgiiwk‘/@;;l > ) ZP(max|Sk| > 521/r)

kEA;

I m;
ZP(max [Sk| > 621/T> < ch_TZ_i Zak

<m
\ i
=0

Z Z 04322 Z<2¢:€7TZQ k ZOLJ

k= OJEAk i=k JEAL
n
—r —r _ —r —r
< 2ce E E ;26" = dee E a3, "
k=0j€ Ay k=1

Thus the theorem is proved. O
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The following two lemmas are due to Fazekas and Klesov (see [4, Lemma 2.1
and Lemma 2.2]).

Lemma 2.2. Let {\;, k € N} be a sequence of nonnegative real numbers. Assume
that Y32, M27% < co. Then there exists a nondecreasing unbounded sequence
{vk, k € N} of positive real numbers such that

o0

> vt < oo and Jim v27F = 0. (2.1)
— 00

k=1

Proof. If finitely many Ay are positive then the statements are obvious. Suppose
that there are infinitely many positive \;. Let z = 220:1 A2~ % and let n; be the
smallest integer such that

oo
doa2TF<27 =01,

k=n;
Let g1 =0, ¢; =min{n; : j=0,1,... and n; > g1} (1=0,1,...),
Bi={keN : ¢ <k<gqgu} (i=0,1,...)
and v, = 2°7%/2 for k € B;. Property % < 7x41 has to be verified only for k =
gis1—1,i=0,1,.... In this case vz 11/7% = V2 50 {1, k € N} is nondecreasing.

This equality implies lim; . 74, = 00, so {x, k € N} is unbounded. Now we turn
to (2.1).

o0 oo oo o0 o0

YIETTEN S5 SRS SELD SRR TS SPREPI
k=1 i=0 keB; i=0 k=n, i=0

The last statement follows from the definition of 4. O

Lemma 2.3. Let {ax, k € N} be a sequence of nonnegative real numbers, {by, k €
N} a nondecreasing unbounded sequence of positive real numbers and r > 0. Assume
that > "7~ axby” < oo. Then there exists a nondecreasing unbounded sequence
{Br, k € N} of positive real numbers such that

iakﬁgr < oo and klir{)lo Biby ' = 0. (2.2)
k=1
Proof. Let wy =0, w; = max{k € N : b} <2} (i € N),
Ci={keN:w_1+1<k<w} (ieN)
and \; = Zkeci . Since

oo

Dapb" =33 b =) M2
k=1 i=1

i=1 keC;
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we get that Y oo, ;27" < co. So all conditions of Lemma 2.2 are satisfied. Let
{7, k € N} be fixed by Lemma 2.2. Now we put

ﬁk:fyil/r for ke C;.

Then
oo o0 o0
o> IAY T o = Sl
i=1 i=1keC; k=1
The other statements are obvious. O

Theorem 2.4. Let {ay, k € N} be a sequence of nonnegative real numbers, r > 0
and {by, k € N} a nondecreasing unbounded sequence of positive real numbers.
Assume that

oo
Z ab, " < o0
k=1

and there exists ¢ > 0 such that for anyn € N and any e > 0
n
P(glg}f [Sk| = e) <cee™" ; Q. (2.3)

Then
lim S,b,' =0 almost surely (a.s.).

Proof. The proof is based on the idea of the proof of Theorem 2.1 in Fazekas and
Klesov [4]. Let {0k, k € N} be fixed by Lemma 2.3. Then (2.3) and Theorem 2.1
imply that there exists ¢ > 0 such that for any n € N and any € > 0

n
-1 _ —
P(rglg;dSkmk > 5) <ce™ " E apf; "
k=1
By this fact we get for any fixed m € N
o0

-1 : -1 —r —r

< > <
P(s%p |Sk| B, > Em) < JE&PO;?SZ‘ |Sk| By~ > sm) < ce)) ;—1 aRfB, ",

where {¢,,, m € N} a nondecreasing unbounded sequence of positive real numbers.
So we have by (2.2)
lim P(sup S| Bt > Em) =0.
m— 00 k
Hence, using continuity of probability, we have

P(st;p 1Sk| Byt > em for all m € N) =0.

Consequently supy, |Sk| ﬂ,;l < o0 a.s. Thus by (2.2) we get
Jim (S (w)| bt = lim (|Sp(@)[ 8 7) (Bidy ') =0

for almost every w € 2. Thus the theorem is proved. O
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3. Some applications

We shall prove that some known results (i.e. Theorem 3.3, Theorem 3.4, Theo-
rem 3.7, Theorem 3.8 and Theorem 3.12) are special cases of Theorem 2.4.

Associated random variables

Definition 3.1 (Esary et al. [3]). A finite family {X;,...,X,} of random vari-
ables is called associated if

COV(f(AX'l7 e ,Xn),g(Xl, N 7Xn)) 2 0

for any real coordinatewise nondecreasing functions f, g on R™ such that the above
covariance exists. An infinite family of random variables is associated if its every
finite subfamily is associated.

Lemma 3.2 (Matula [11], Lemma 1). Assume that X1,...,X,, are associated ze-
ro mean random variables with finite second moments. Then for every € > 0

P<r£1<ax|5’k| > 5) <8 2ES2

Theorem 3.3 (Matuta [11], Theorem 1). Let {X, k € N} be a sequence of asso-
ciated random variables with finite second moments and {ax, k € N} a sequence of
positive real numbers satisfying > poq ar = 0o. Let by, =Y a;. Assume that

Za a; cov(X;, X; )b < 00.

j=1i=1

Then
lim (S —ESHb,' =0 a.s.,

where S; =" a; X;.
Proof. Without loss of generality we can assume that E X = 0 for all £ € N. Let
ap =ES;2 —ES;2,, where S; = 0. Then for all k € N

k
0<ar < QZaiak cov(X;, Xg),

i=1

so we have

iakblf ZZQa,akcov X“Xk)b < 0.
k=1

k=11i=1
It is easy to see that {a; X%, k € N} is associated thus, by Lemma 3.2,

n
P( S > )<8*2E5*2:8*2
r&aid wl =€ € i 5 ;ak

for any ¢ > 0. Consequently, by Theorem 2.4, we get lim,, . Sib,! =0as. O
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Theorem 3.4 (Birkel [1], Theorem 2 and Christofides [2], Corollary 2.2). Let
{Xk, k € N} be a sequence of associated random variables with finite second mo-
ments. If

Z k2 COV(Xk, Sk) < o0
k=1
then
lim (S, —ES,)n"' =0 a.s.

n—oo

Proof. Without loss of generality we can assume that E X = 0 for all £ € N. Let
ay = cov(Xg, Sk), bp = k and Sy = 0. Then, by Lemma 3.2, we have

n n

-2 2 -2 2 2 -2
P(r]?gidsk\}s) <8 ?ES: =8¢ Z(ESk—ESkfl) < 16¢ Zak.
k=1 k=1
Thus Theorem 2.4 implies the statement. O

Negatively associated random variables

Definition 3.5 (Joag-Dev and Proschan [8]). A finite family { X1, ..., X,,} of ran-
dom variables is called negatively associated if for any disjoint nonempty subsets
A,Bc{l,...,n}, A= {i1,..., i1}, B={i41,...,in} and any real coordinatewise
nondecreasing functions f on R! and g on R~

COV(f(Xil,...,Xil),g(X 7Xin)) < 0.

(NS I

An infinite family of random variables is negatively associated if every finite sub-
family is negatively associated.

The following lemma is a special case of Theorem 2.1 of Liu et al. [9]. (See
Lemma 1 of Matuta [10], too.)

Lemma 3.6. Assume that X1, ..., X, are negatively associated zero mean random
variables with finite second moments. Then for every e > 0

-2 2
P(r]?gidsk\ 25) < 32¢ ;EXk.

Theorem 3.7 (Matula [11]|, Theorem 2). Let {Xy, k € N} be a sequence of neg-
atively associated random variables with finite second moments and {a, k € N}
a sequence of positive real numbers satisfying > po, ar = 0o. Let b, = Y I | a;.

Assume that -
Zaib;z D? X} < cc.
k=1
Then
lim (S; —~ESH)b,' =0 as.,

n—0o0

where Sf =S a; X;.
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Proof. Without loss of generality we can assume that E X; = 0 for all £ € N.
Let a = a? EX?. It is clear that {ay Xy, k € N} is negatively associated, so by
Lemma 3.6 we have

* —2
P(glg}l( ISkl = 5) < 32¢ Zak
k=1
for any € > 0. Thus Theorem 2.4 implies the statement. (|

Theorem 3.8 (Liu et al. [9], Theorem 3.1). Let {Xj, k € N} be a sequence of
negatively associated random variables with finite second moments and {by, k € N}
a nondecreasing and unbounded sequence of positive real numbers. Assume that

(o)
> b DXy < oo
k=1
Then
lim (S, —ES,)b,' =0 a.s.

Proof. Without loss of generality we can assume that E X, = 0 for all £k € N. Let
ap = EX,%. Then Lemma 3.6 and Theorem 2.4 imply the statement. O
Demimartingales

We shall use the following notations:
Xt =max{0, X} and X~ = —min{0, X}.

Definition 3.9 (Newman and Wright [12]). Let {Sk, k¥ € N} be an L' sequence
of random variables. Assume that for j € N

E((S;41— ;) f (S1,..-,5;)) =0

for all coordinatewise nondecreasing functions f on R’ such that the expectation
is defined. Then {Sk, k& € N} is called a demimartingale. If in addition the
function f is assumed to be nonnegative, the sequence {Sy, k& € N} is called a
demisubmartingale.

Lemma 3.10 (Christofides [2], Theorem 2.1). Let {Sy, k € NU{0}} be a demisub-
martingale with So = 0. Let {by, k € N} be a nondecreasing sequence of positive
real numbers. Then for all e > 0

P(I’?S;{Skbgl > E) <e ! I;bgl E (Sk+ — S’,j_l) .

The following lemma is a corollary of Lemma 2.1 and Corollary 2.1 of Christofi-
des [2].
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Lemma 3.11. If {S,, k € N} is demimartingale then {(S;})", k € N} and
{(Sy)", k € N} are demisubmartingales for all r > 1.

Theorem 3.12 (Christofides [2], Theorem 2.2). Let {S;, k € NU{0}} be a demi-
martingale with So = 0. Let {by, k € N} be a nondecreasing and unbounded
sequence of positive real numbers. Let v > 1 and E|Si|" < oo for each k € N.
Assume that

Zb;TEﬂSkr — |Sk,1|r) < 00.
k=1

Then

lim S,b,' =0 a.s.
Proof. Let ay = E (|Sk|" — |Sk—1]") for all k € N and € > 0. By Lemma 3.11 and
3.10

k<

P(I;1<ax |Sk| = 5) < P(I;lgx(S;)r > 572) + P(max(Sk_)T > 5’72)
<27 Y B (S0 H (50 = (i) = (50)7) =267 Y Jone
k=1 k=1
Thus Theorem 2.4 implies the statement. O
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