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Abstract

A general method is presented to obtain strong laws of large numbers.
Then it is applied for certain dependent random variables to obtain some
strong laws.

1. Introduction

It is well-known that the Hájek–Rényi inequality (see [7]) is a generalization of
the Kolmogorov inequality. In this paper we show (Theorem 2.1) that Kolmogorov’s
inequality implies a certain Hájek–Rényi type inequality. Using this fact we give
a general method to obtain strong laws of large numbers (Theorem 2.4). Actually
our method is the same as the one applied in Fazekas and Klesov [5] and Fazekas
et al. [6] but here we use probabilities instead of moments. In the proof we follow
the lines of [5].

Our theorem offers a general tool: if a maximal inequality is known for a certain
sequence of random variables then one can easily obtain a strong law of large
numbers. Our scheme helps to find the conditions and the normalizing constants.

In section 3 we apply our theorem to give alternative proofs for some known
strong laws of large numbers. We deal with associated, negatively associated ran-
dom variables and demimartingales.
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2. Results

Let N be the set of the positive integers and R the set of real numbers. If
a1, a2, . . . ∈ R then in case A = ∅ let maxk∈A ak = 0 and

∑

k∈A ak = 0. Let
{Xk, k ∈ N} be a sequence of random variables defined on some probability space

(Ω,F ,P) and Sk =
∑k

i=1
Xi for all k ∈ N.

Theorem 2.1. Let {αk, k ∈ N} be a sequence of nonnegative real numbers and
r > 0. Then the following two statements are equivalent.

(i) There exists c > 0 such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk| > ε
)

6 cε−r
n

∑

k=1

αk.

(ii) There exists c > 0 such that for any nondecreasing sequence {βk, k ∈ N} of
positive real numbers, any n ∈ N and any ε > 0

P
(

max
k6n

|Sk|β−1

k > ε
)

6 cε−r
n

∑

k=1

αkβ−r
k .

Proof. The proof is based on the idea of the proof of Theorem 1.1 in Fazekas
and Klesov [5]. It is clear that (ii) implies (i). Now we turn to (i) ⇒ (ii). Let
0 < β1 6 β2 6 . . ., n ∈ N and ε > 0 are fixed. Without loss of generality we can
assume that β1 = 1. Introduce the following notation

Ai = {m : 1 6 m 6 n and 2i
6 βr

m < 2i+1}, i = 0, 1, 2, . . . ,

I = max{i : Ai 6= ∅},

mi =

{

max Ai, if Ai 6= ∅,
mi−1, if Ai = ∅, i = 0, 1, 2, . . . and m−1 = 0.

Then we have

P
(

max
k6n

|Sk|β−1

k > ε
)

6

I
∑

i=0

P
(

max
k∈Ai

|Sk| > ε2i/r
)

6

I
∑

i=0

P
(

max
k6mi

|Sk| > ε2i/r
)

6

I
∑

i=0

cε−r2−i
mi
∑

k=1

αk

= cε−r
I

∑

k=0

∑

j∈Ak

αj

I
∑

i=k

2−i
6 2cε−r

I
∑

k=0

2−k
∑

j∈Ak

αj

6 2cε−r
I

∑

k=0

∑

j∈Ak

αj2β−r
j = 4cε−r

n
∑

k=1

αkβ−r
k .

Thus the theorem is proved. �
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The following two lemmas are due to Fazekas and Klesov (see [4, Lemma 2.1
and Lemma 2.2]).

Lemma 2.2. Let {λk, k ∈ N} be a sequence of nonnegative real numbers. Assume
that

∑

∞

k=1
λk2−k < ∞. Then there exists a nondecreasing unbounded sequence

{γk, k ∈ N} of positive real numbers such that

∞
∑

k=1

λkγ−1

k < ∞ and lim
k→∞

γk2−k = 0. (2.1)

Proof. If finitely many λk are positive then the statements are obvious. Suppose
that there are infinitely many positive λk. Let z =

∑

∞

k=1
λk2−k and let ni be the

smallest integer such that

∞
∑

k=ni

λk2−k
6 z2−i, i = 0, 1, . . . .

Let q−1 = 0, qi = min{nj : j = 0, 1, . . . and nj > qi−1} (i = 0, 1, . . . ),

Bi = {k ∈ N : qi 6 k < qi+1} (i = 0, 1, . . . )

and γk = 2k−i/2 for k ∈ Bi. Property γk 6 γk+1 has to be verified only for k =
qi+1 − 1, i = 0, 1, . . . . In this case γk+1/γk =

√
2 so {γk, k ∈ N} is nondecreasing.

This equality implies limi→∞ γqi
= ∞, so {γk, k ∈ N} is unbounded. Now we turn

to (2.1).

∞
∑

k=1

λkγ−1

k =
∞
∑

i=0

∑

k∈Bi

λkγ−1

k 6

∞
∑

i=0

2i/2

∞
∑

k=ni

λk2−k
6 z

∞
∑

i=0

2−i/2 < ∞.

The last statement follows from the definition of γk. �

Lemma 2.3. Let {αk, k ∈ N} be a sequence of nonnegative real numbers, {bk, k ∈
N} a nondecreasing unbounded sequence of positive real numbers and r > 0. Assume
that

∑

∞

k=1
αkb−r

k < ∞. Then there exists a nondecreasing unbounded sequence
{βk, k ∈ N} of positive real numbers such that

∞
∑

k=1

αkβ−r
k < ∞ and lim

k→∞

βkb−1

k = 0. (2.2)

Proof. Let w0 = 0, wi = max{k ∈ N : br
k 6 2i} (i ∈ N),

Ci = {k ∈ N : wi−1 + 1 6 k 6 wi} (i ∈ N)

and λi =
∑

k∈Ci
αk. Since

∞
∑

k=1

αkb−r
k =

∞
∑

i=1

∑

k∈Ci

αkb−r
k >

∞
∑

i=1

λi2
−i
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we get that
∑

∞

i=1
λi2

−i < ∞. So all conditions of Lemma 2.2 are satisfied. Let
{γk, k ∈ N} be fixed by Lemma 2.2. Now we put

βk = γ
1/r
i for k ∈ Ci.

Then

∞ >

∞
∑

i=1

λiγ
−1

i

∞
∑

i=1

∑

k∈Ci

αkγ−1

i =

∞
∑

k=1

αkβ−r
k .

The other statements are obvious. �

Theorem 2.4. Let {αk, k ∈ N} be a sequence of nonnegative real numbers, r > 0
and {bk, k ∈ N} a nondecreasing unbounded sequence of positive real numbers.
Assume that

∞
∑

k=1

αkb−r
k < ∞

and there exists c > 0 such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk| > ε
)

6 cε−r
n

∑

k=1

αk. (2.3)

Then
lim

n→∞

Snb−1
n = 0 almost surely (a.s.).

Proof. The proof is based on the idea of the proof of Theorem 2.1 in Fazekas and
Klesov [4]. Let {βk, k ∈ N} be fixed by Lemma 2.3. Then (2.3) and Theorem 2.1
imply that there exists c > 0 such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk|β−1

k > ε
)

6 cε−r
n

∑

k=1

αkβ−r
k .

By this fact we get for any fixed m ∈ N

P
(

sup
k

|Sk|β−1

k > εm

)

6 lim
n→∞

P
(

max
k6n

|Sk|β−1

k > εm

)

6 cε−r
m

∞
∑

k=1

αkβ−r
k ,

where {εm, m ∈ N} a nondecreasing unbounded sequence of positive real numbers.
So we have by (2.2)

lim
m→∞

P
(

sup
k

|Sk|β−1

k > εm

)

= 0.

Hence, using continuity of probability, we have

P
(

sup
k

|Sk|β−1

k > εm for all m ∈ N

)

= 0.

Consequently supk |Sk|β−1

k < ∞ a.s. Thus by (2.2) we get

lim
k→∞

|Sk(ω)| b−1

k = lim
k→∞

(

|Sk(ω)|β−1

k

) (

βkb−1

k

)

= 0

for almost every ω ∈ Ω. Thus the theorem is proved. �
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3. Some applications

We shall prove that some known results (i.e. Theorem 3.3, Theorem 3.4, Theo-
rem 3.7, Theorem 3.8 and Theorem 3.12) are special cases of Theorem 2.4.

Associated random variables

Definition 3.1 (Esary et al. [3]). A finite family {X1, . . . ,Xn} of random vari-
ables is called associated if

cov
(

f(X1, . . . ,Xn), g(X1, . . . ,Xn)
)

> 0

for any real coordinatewise nondecreasing functions f , g on R
n such that the above

covariance exists. An infinite family of random variables is associated if its every
finite subfamily is associated.

Lemma 3.2 (Matuła [11], Lemma 1). Assume that X1, . . . ,Xn are associated ze-
ro mean random variables with finite second moments. Then for every ε > 0

P
(

max
k6n

|Sk| > ε
)

6 8ε−2 ES2
n.

Theorem 3.3 (Matuła [11], Theorem 1). Let {Xk, k ∈ N} be a sequence of asso-
ciated random variables with finite second moments and {ak, k ∈ N} a sequence of
positive real numbers satisfying

∑

∞

k=1
ak = ∞. Let bn =

∑n
i=1

ai. Assume that

∞
∑

j=1

j
∑

i=1

aiaj cov(Xi,Xj)b
−2

j < ∞.

Then
lim

n→∞

(S∗

n − ES∗

n)b−1
n = 0 a.s.,

where S∗

n =
∑n

i=1
aiXi.

Proof. Without loss of generality we can assume that EXk = 0 for all k ∈ N. Let
αk = ES∗2

k − ES∗2
k−1

, where S∗

0 = 0. Then for all k ∈ N

0 6 αk 6 2

k
∑

i=1

aiak cov(Xi,Xk),

so we have
∞
∑

k=1

αkb−2

k 6

∞
∑

k=1

k
∑

i=1

2aiak cov(Xi,Xk)b−2

k < ∞.

It is easy to see that {akXk, k ∈ N} is associated thus, by Lemma 3.2,

P
(

max
k6n

|S∗

k | > ε
)

6 8ε−2 ES∗2
n = 8ε−2

n
∑

k=1

αk

for any ε > 0. Consequently, by Theorem 2.4, we get limn→∞ S∗

nb−1
n = 0 a.s. �
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Theorem 3.4 (Birkel [1], Theorem 2 and Christofides [2], Corollary 2.2). Let
{Xk, k ∈ N} be a sequence of associated random variables with finite second mo-
ments. If

∞
∑

k=1

k−2 cov(Xk, Sk) < ∞

then
lim

n→∞

(Sn − ESn)n−1 = 0 a.s.

Proof. Without loss of generality we can assume that EXk = 0 for all k ∈ N. Let
αk = cov(Xk, Sk), bk = k and S0 = 0. Then, by Lemma 3.2, we have

P
(

max
k6n

|Sk| > ε
)

6 8ε−2 ES2
n = 8ε−2

n
∑

k=1

(

ES2
k − ES2

k−1

)

6 16ε−2

n
∑

k=1

αk.

Thus Theorem 2.4 implies the statement. �

Negatively associated random variables

Definition 3.5 (Joag-Dev and Proschan [8]). A finite family {X1, . . . ,Xn} of ran-
dom variables is called negatively associated if for any disjoint nonempty subsets
A,B ⊂ {1, . . . , n}, A = {i1, . . . , il}, B = {il+1, . . . , in} and any real coordinatewise
nondecreasing functions f on R

l and g on R
n−l

cov
(

f(Xi1 , . . . ,Xil
), g(Xil+1

, . . . ,Xin
)
)

6 0.

An infinite family of random variables is negatively associated if every finite sub-
family is negatively associated.

The following lemma is a special case of Theorem 2.1 of Liu et al. [9]. (See
Lemma 1 of Matuła [10], too.)

Lemma 3.6. Assume that X1, . . . ,Xn are negatively associated zero mean random
variables with finite second moments. Then for every ε > 0

P
(

max
k6n

|Sk| > ε
)

6 32ε−2

n
∑

k=1

EX2
k .

Theorem 3.7 (Matuła [11], Theorem 2). Let {Xk, k ∈ N} be a sequence of neg-
atively associated random variables with finite second moments and {ak, k ∈ N}
a sequence of positive real numbers satisfying

∑

∞

k=1
ak = ∞. Let bn =

∑n
i=1

ai.
Assume that

∞
∑

k=1

a2
kb−2

k D2 Xk < ∞.

Then
lim

n→∞

(S∗

n − ES∗

n)b−1
n = 0 a.s.,

where S∗

n =
∑n

i=1
aiXi.
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Proof. Without loss of generality we can assume that EXk = 0 for all k ∈ N.
Let αk = a2

k EX2
k . It is clear that {akXk, k ∈ N} is negatively associated, so by

Lemma 3.6 we have

P
(

max
k6n

|S∗

k | > ε
)

6 32ε−2

n
∑

k=1

αk

for any ε > 0. Thus Theorem 2.4 implies the statement. �

Theorem 3.8 (Liu et al. [9], Theorem 3.1). Let {Xk, k ∈ N} be a sequence of
negatively associated random variables with finite second moments and {bk, k ∈ N}
a nondecreasing and unbounded sequence of positive real numbers. Assume that

∞
∑

k=1

b−2

k D2 Xk < ∞.

Then
lim

n→∞

(Sn − ESn)b−1
n = 0 a.s.

Proof. Without loss of generality we can assume that EXk = 0 for all k ∈ N. Let
αk = EX2

k . Then Lemma 3.6 and Theorem 2.4 imply the statement. �

Demimartingales

We shall use the following notations:

X+ = max{0,X} and X− = −min{0,X}.

Definition 3.9 (Newman and Wright [12]). Let {Sk, k ∈ N} be an L1 sequence
of random variables. Assume that for j ∈ N

E
(

(Sj+1 − Sj) f (S1, . . . , Sj)
)

> 0

for all coordinatewise nondecreasing functions f on R
j such that the expectation

is defined. Then {Sk, k ∈ N} is called a demimartingale. If in addition the
function f is assumed to be nonnegative, the sequence {Sk, k ∈ N} is called a
demisubmartingale.

Lemma 3.10 (Christofides [2], Theorem 2.1). Let {Sk, k ∈ N∪{0}} be a demisub-
martingale with S0 = 0. Let {bk, k ∈ N} be a nondecreasing sequence of positive
real numbers. Then for all ε > 0

P
(

max
k6n

Skb−1

k > ε
)

6 ε−1

n
∑

k=1

b−1

k E
(

S+

k − S+

k−1

)

.

The following lemma is a corollary of Lemma 2.1 and Corollary 2.1 of Christofi-
des [2].
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Lemma 3.11. If {Sk, k ∈ N} is demimartingale then {(S+

k )r, k ∈ N} and
{(S−

k )r, k ∈ N} are demisubmartingales for all r > 1.

Theorem 3.12 (Christofides [2], Theorem 2.2). Let {Sk, k ∈ N∪{0}} be a demi-
martingale with S0 = 0. Let {bk, k ∈ N} be a nondecreasing and unbounded
sequence of positive real numbers. Let r > 1 and E |Sk|r < ∞ for each k ∈ N.
Assume that

∞
∑

k=1

b−r
k E (|Sk|r − |Sk−1|r) < ∞.

Then
lim

n→∞

Snb−1
n = 0 a.s.

Proof. Let αk = E (|Sk|r − |Sk−1|r) for all k ∈ N and ε > 0. By Lemma 3.11 and
3.10

P
(

max
k6n

|Sk| > ε
)

6 P
(

max
k6n

(S+

k )r
> εr/2

)

+ P
(

max
k6n

(S−

k )r
> εr/2

)

6 2ε−r
n

∑

k=1

E
(

(S+

k )r + (S−

k )r − (S+

k−1
)r − (S−

k−1
)r

)

= 2ε−r
n

∑

k=1

αk.

Thus Theorem 2.4 implies the statement. �
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