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Abstract

Tomacs in [6] proved a general convergence rate theorem in the law of
large numbers for arrays of Banach space valued random elements. We shall
study this theorem in case Banach space of type ¢ and for two special arrays.
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1. Introduction and notation

Let N be the set of the positive integers and R the set of real numbers. Let @
denote the set of functions f: [0,00) — [0, 00), that are nondecreasing. A function
f € ®g is said to satisfy the As-condition (f ~ Ay) if there exists a constant ¢ > 0
such that f(2t) < cf(¢t) for all £ > 0.

Let B be a real separable Banach space with norm ||.| and zero element 0. If
X is a B-valued random variable (r.v.) and E | X]|| < co then EX stands for the
Bochner integral of X.

Throughout the paper let {k,,n € N} be a strictly increasing sequence of
positive integers. Let {X,x,n € Nk = 1,...,k,} be an array of B-valued r.v.’s.
It is rowwise independent, if X,i,..., Xk, are independent r.v.’s for any fixed
n € N. Let Sg, = 2221 Xnk. If kyp, =n for all n, then we denote Sy, by S,. This
corresponds to the case of ordinary sequences.

The array {Xpr,n € Nk = 1,...,k,} is said to be bounded in probability if
for all € > 0 there exists A > 0 such that P(||X,x|| > A) < € for all n € N and
kE=1,...,kn.

The following remark give a sufficient condition for the boundedness in proba-
bility.
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Remark 1.1. If there exists a constant M > 0 such that E | X,;|| < M for every
n € Nk = 1,...,k,, then the array {X,x,n € Nk = 1,...,k,} is bounded in
probability. (The reader can readily verify this statement.)

Definition 1.2 (Gut [2]). We say that the array {X,x,n € Nk = 1,...,k,} is
weakly mean dominated (w.m.d.) by the r.v. X, if for some v > 0,

kn

1
k—ZP(||Xnk||>t)<7P(\X|>t) forall +>0 and n€N.
" k=1

The following theorem a general convergence rate theorem, which is proved in

[6].
Theorem 1.3 (Tomécs [6], Theorem 3.1). Let {Xnx,n € NJk = 1,...,n} be an
array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. As-
sume that there exists a sequence {yn,n € N} of positive real numbers such that
{1Snll /¥nsn € N} is bounded in probability. Let o, 9, ¢ € ®¢, and assume that o is
not bounded, ¥, ~ Ag, ¥ 0. Let f(n) = p(a(n+1)) —p(a(n)), n=10,1,2,....
Assume that E ¢(|X|) < 0o, EY(|X|) < 00 and lim,, oo a(n) /v, = 00.

Let either u(n) = B(n — 1) for allmn € N or u(n) = B(n) for allm € N. In
second case assume that there exists a constant ¢ > 0 such that for n € N large
enough ¢f(n) < B(n —1).

Let ng € N be such that 9(a(n)) > 0 for all n > ng. If there exist j € N and

r > 0 such that N
X0 un) [+ 9(h) ) -
2, (ma(n))) =

n=ngo

then -
Z @P(HS,LH >ea(n)) <oo forall &>0.
n=1

In the following two corollaries of Theorem 1.3 we use some special notations:
Following Gut [1], introduce the functions ¢ and M, with

Y(t) =Card{n e N: k, <t} for ¢t>0,

and
[t]
Mo(t)=> k™" if t>1 and M.(t)=ki ' if 0<t<1,
i=1
where r € R, CardA is the cardinality of the set A and [.] denotes the integer
function. Let M = Ms. Let f o g be the composite function of functions f and g.

Remark 1.4. M, oy € $y and
S KT =Mo(n), if k<t <kng,

(M o) (t) = My ((t) = =1
kit = M,(1), if 0<t<k.
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The following corollary is a generalization of Theorem 6.2 of Fazekas [5].

Corollary 1.5 (Tomécs [6], Corollary 3.2). Let {X,r,n € Nk =1,...,k,} be an
array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let
Mo ~ Ag, r,5,t >0, rs > t. Assume that {||Sk, || /k,l/s,n € N} is bounded
in probability. Furthermore, if r > 2 we assume that {M(n)/M(n —1),n € N} is

bounded. If EM™2(4(|X|"")) < 0o and E|X|* < oo, then

(M(n))r/zflP (||Skﬂ|| > sk;/t> <oo forall &>0.

n=1

The following corollary is a version of Corollary 4.1 of Hu et al. [3].

Corollary 1.6 (Tomécs [6], Corollary 3.3). Let {Xpk,n € Nk =1,...,k,} be an
array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let
reR, 0<t<sand M,o ~ Ay. Assume that {||Sk,, || /k,l/s,n € N} is bounded
in probability. If EM,(¢(|X|")) < co and E|X|* < co, then

i kr—2P (||Skn|| > ak}/t) <oo foral e>0.

n=1

In Section 2 we give a sufficient condition for the boundedness in probability
and in Section 3 we study two concrete sequences k,, in Corollary 1.5 and 1.6.

2. The boundedness in probability in case Banach
space of type ¢

If B has an appropriate geometric property, then a moment condition can imply
the boundedness of {||Sk, || /V,.,n € N}.

n?

Definition 2.1. A function ¢: [0,00) — [0,00) is said to be an Orlicz function if
it is continuous, convex, ¢(0) = 0, ¢(t) > 0 for ¢ > 0 and lim;_. ¢(t) = co. For
an Orlicz function ¢ the Orlicz space l,(B) consists of those B-valued sequences
{un,n € N} for which

oo
ng(||un||/a)<oo for some a > 0.

n=1

Let €1, €9, ... be independent r.v.’s with P(e,, = 1) = P(e, = —1) = 1/2 for all
n € N. B is said to be of type ¢, if Y " £,u, converges in probability for all
{tun,n € N} € [,(B).
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Definition 2.2. An Orlicz function ¢ is said to satisfy the A3-condition (¢ ~ AY)
if there exist constants ¢ > 0 and ¢p > 0 such that p(2t) < cp(t) is satisfied for all
0 <t <.

Lemma 2.3. Let ¢ be an Orlicz function and ¢ ~ AY. B is of type ¢ iff there
exists a constant ¢ > 0 such that

cElnf{ <1+Z<pkall)>}
v LY k=1

for all n € N and every independent B-valued r.v.” Xq,...,X, with EX; = 0,
k=1,...,n

n

E ZXk

k=1

For the proof see Fazekas [4].
The following lemma is a generalization of Lemma 2.1 of Gut [2] and Lemma 2.7
(b) of Fazekas [5].

Lemma 2.4 (Témacs [6], Lemma 4.4). Let {X,x,n € NNk =1,...,k,} be an ar-
ray of B-valued r.v.’s which is w.m.d. by the r.v. X and constant v. If ¢ € ®q
then
1
3 Bl Xal) < max{1l, 7} B o(|X]).
n k=1

The following theorem show that in Theorem 1.3 we can write moment condi-
n € N} if B is of type ¢.

n )

Theorem 2.5. Let ¢ € ®q be a submultiplicative Orlicz function, ¢ ~ AY and let
B be a space of type . Let {X,i,n € Nk =1,...,k,} be an array of rowwise
independent B-valued r.v.’s which is w.m.d. by the r.v. X. Assume that the sequence
{kne(1/k, ),n € N} is bounded for some sequence {y,,n € N} of positive real
numbers. If EX,, = 0 for everyn € N, k =1,...,k, and E o(|X|) < oo, then
{ISk, |l /7K, -1 € N} is bounded in probability.

Proof. By Lemma 2.3 and 2.4 there exists a constant ¢ > 0 such that

k
[ c .1 "
E—— < —FEimnf{-[1+ Do
Ve Ve, ¥>0 |y Z‘P(CUH k)

k=1

krn
< cE (1 + Z o ([ Xkl /%J)

k=1
¢(1+ ¢ (1/7,) max{1, 7} kn B (| X]).

Thus Remark 1.1 implies the statement. O
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3. Convergence rate theorems for two concrete se-
quences k,
Lemma 3.1. f ~ Ay iff there exist constants k > 1 and ¢ > 0 such that
f(kt) <cf(t) forall t>0. (3.1

Proof. If f ~ A, then in case k = 2 we get (3.1). Now suppose that there exist
constants k > 1 and ¢ > 0 such that the inequality (3.1) is true for all ¢ > 0. Then
we can obtain with induction that

f(E"t) < c"f(t) forall ¢>0 andforall neN.
It follows that there exists ng € N such that
f2t) < f(k™t) < " f(t) forall ¢>0.
Thus we get f ~ As. O

The reader can readily verify the following lemma.

Lemma 3.2. Let g: [k1,00) — R be a nondecreasing function which has the prop-
erty that g(kyn) = M,.(n) for alln € N. Then M, (¢(x)) < g(z) for all x > k.

Lemma 3.3. Let r € R. Assume that there exists strictly increasing sequence
{an,n € N} of positive integers and there exist constants k > 1, ¢ > 0 such that

k—n < 1 and M, (an)

b, Sk mgc for all neN.
Then M, o) ~ As.
Proof. Assume that &k, <t < k1. Then Remark 1.4 implies
My (P(kt)) < My ((kkni1)) < Mp(§(ka, ) = Mr(ang1) < eMp(n) = M (4()).
Similarly if 0 < ¢t < k1 then
M ((kt)) < My (vp(kk1)) < My (d(kay)) = My(a1) < M (0) = M, (1(2)).

It follows that M, (¢(kt)) < c¢M,(¢(t)) for all t > 0. Thus, by Lemma 3.1 we get
the statement. t

Lemma 3.4. Letl € N. Then

i e R o (A7) LN (0 L 7 S T
nﬂoolk_;'_zk_;’_..._t,_(n_l)ki 1, if k<-—1.
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Proof. It is easy to see that

(- DM (kD)2 < (e + )P — 2P forall 2> 1,620
and
(x4 DFF — b (ke + DaP <2 — (- DF forall 2>1,-1<k<0.
Apply these inequalities for x = 1,2,...,n. Then we have

B L e 1
nh—>Holo ) :k+1 for all k> —1,

which implies the statement for k£ > —1.
It is well known that % + 2% + - # is convergent if ¢ > 1. It follows that the
statement is true in case k < —1 as well.

Finally in case k = —1 the inequalities
-1 1 1
1 T4 24+ 44 l
L+ 1 : i < 12 l? <1+ 1 i
I+s5+ -+ 1+5++= 1+s5+-+:3
imply the statement. O

Lemma 3.5. Let ky,d € N, ¢ € N\ {1}. If k, = k1¢""! or k, = kyn? then
M, o) ~ Ay for all v € R.

Proof. In the first case, when k, = k1¢" !, let a, =n + 1 and k = ¢q. Then

kn o qunil

1
ka,, kg™ q

X

| =

Let Q = ¢"~! and assume that r > 1. In this case |1/Q| < 1, thus we get

My(an)  My(n+1)  14Q+---+Q" @~ gar
M,(n—1) My,(n—-1) 1+Q+ ---+Q"2 17%

If r <1 then 1/Q > 1, thus

M.(a,) @~ got
M.(n—1) 1

1
- Qr-1

If r=1then Q =1, so
M, (an) n—+1
= — 1.
M,(n—-1) n-1

Thus we get that A%T(Sf_"f) is bounded for all € R. Hence conditions of Lemma 3.3

are satisfied, which implies the statement.
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In the second case, when k,, = klnd, let a,, = 2n and k = 2¢. Then

ky, kin® 1 1
= = — g —.
kan kl (2n)d 2d k
On the other hand it follows from Lemma 3.4 that ]\JX T(gla_"l)) is bounded for all r € R.
So Lemma 3.3 implies the statement. O

Theorem 3.6. Let {X,1,n € Nk =1,... . kn?} (ki,d €N are fized) be an array
of rowwtise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Lett > 0,
r>2d/(d+1), s >t/r and v =max{s,t(d+1)/(2d)}. If {||Sk,nell /n¥*,n € N}
is bounded in probability and E|X|" < oo, then

3 n(@e/2-) p (||sk1nd|| > Endr/t) <oo foral &3>0

n=1

Proof. We shall prove that conditions of Corollary 1.5 are satisfied. Let k, =
kin?. Then by Lemma 3.4 {M(n)/M(n — 1),n € N} is bounded. Let Y =

MT2((|X]"")). Now we turn to the proof of EY < co. It is well known that
1d—|—~~—|—nd:alnd+1+a2nd+~~+ad+2
for some ay,asg,...,a412 € R. Let

d+2
g: [k1,00) = R, g(x) = Z || (ki*zmd+2—i)1/d-

i=1
Then g is nondecreasing, g(k,) > M(n) and g(x) < const.z(¥t1V/4 for all z > k.
Therefore by Lemma 3.2 we have
MT/? <¢(xt/7")> < const.z!4HD/CD for all 27 > k.
It follows that
Y = YI(X|'/" < ki) + YI(|X[Y" > ky) < &}/ + const.| X [f(4+1/(2d)

where I(A) denotes the indicator function of the set A. So EY < co. By Lemma 3.5
M op ~ Ay. Tt is easy to see that the other conditions of Corollary 1.5 hold true
as well, on the other hand M (n) > const.n?*1. So this theorem is consequence of
Corollary 1.5. O

Theorem 3.7. Let {X,1,n € Nk =1,...,ki¢q" '} (k1 € N,g € N\ {1} are fived)
be an array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X.
Letw>0,t>0, s>t and v =max{s,t(w+1)}. If {||Sk,qgn—1|| /q"%,n € N} is
bounded in probability and E|X|" < co, then

Z P <||Squn71” > 5q”/t> < oo forall €>0.
n=1
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Proof. We shall prove that conditions of Corollary 1.6 are satisﬁed.n Let &k, =
kg™t r = w+2and Y = M.(¢(1X|). Then M.(n) = ki~ "%, where
Q=q ' Let

- k,'r‘—l Q1+log(x/k1)/logq -1
=k Q 7

Then g is nondecreasing, g(k,) = M,(n) and g(z) < const.x™! for all x > k.
Therefore by Lemma 3.2 we have

g: [k1,00) = R, g(z)

M, (¢(2")) < const.z'™ V) for all ' > k.
It follows that
Y = YI(|X[" < ki) +YI(X[" > ki) < k{™" + const. | X[“(FD.

So EY < co. By Lemma 3.5 M,. o1 ~ Ay. The other conditions of Corollary 1.6
hold true as well. Thus Corollary 1.6 implies the statement. O
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