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Abstract

Tómács in [6] proved a general convergence rate theorem in the law of
large numbers for arrays of Banach space valued random elements. We shall
study this theorem in case Banach space of type ϕ and for two special arrays.
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1. Introduction and notation

Let N be the set of the positive integers and R the set of real numbers. Let Φ0

denote the set of functions f : [0,∞) → [0,∞), that are nondecreasing. A function
f ∈ Φ0 is said to satisfy the ∆2-condition (f ∼ ∆2) if there exists a constant c > 0
such that f(2t) 6 cf(t) for all t > 0.

Let B be a real separable Banach space with norm ‖.‖ and zero element 0. If
X is a B-valued random variable (r.v.) and E ‖X‖ < ∞ then EX stands for the
Bochner integral of X.

Throughout the paper let {kn, n ∈ N} be a strictly increasing sequence of
positive integers. Let {Xnk, n ∈ N, k = 1, . . . , kn} be an array of B-valued r.v.’s.
It is rowwise independent, if Xn1, . . . , Xnkn are independent r.v.’s for any fixed
n ∈ N. Let Skn =

∑kn

k=1 Xnk. If kn = n for all n, then we denote Skn by Sn. This
corresponds to the case of ordinary sequences.

The array {Xnk, n ∈ N, k = 1, . . . , kn} is said to be bounded in probability if
for all ε > 0 there exists A > 0 such that P (‖Xnk‖ > A) < ε for all n ∈ N and
k = 1, . . . , kn.

The following remark give a sufficient condition for the boundedness in proba-
bility.
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Remark 1.1. If there exists a constant M > 0 such that E ‖Xnk‖ 6 M for every
n ∈ N, k = 1, . . . , kn, then the array {Xnk, n ∈ N, k = 1, . . . , kn} is bounded in
probability. (The reader can readily verify this statement.)

Definition 1.2 (Gut [2]). We say that the array {Xnk, n ∈ N, k = 1, . . . , kn} is
weakly mean dominated (w.m.d.) by the r.v. X, if for some γ > 0,

1
kn

kn∑

k=1

P (‖Xnk‖ > t) 6 γP (|X| > t) for all t > 0 and n ∈ N.

The following theorem a general convergence rate theorem, which is proved in
[6].

Theorem 1.3 (Tómács [6], Theorem 3.1). Let {Xnk, n ∈ N, k = 1, . . . , n} be an
array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. As-
sume that there exists a sequence {γn, n ∈ N} of positive real numbers such that
{‖Sn‖ /γn, n ∈ N} is bounded in probability. Let α, ϑ, ϕ ∈ Φ0, and assume that α is
not bounded, ϑ, ϕ ∼ ∆2, ϑ 6≡ 0. Let β(n) = ϕ(α(n + 1))− ϕ(α(n)), n = 0, 1, 2, . . ..
Assume that E ϕ(|X|) < ∞, E ϑ(|X|) < ∞ and limn→∞ α(n)/γn = ∞.

Let either µ(n) = β(n − 1) for all n ∈ N or µ(n) = β(n) for all n ∈ N. In
second case assume that there exists a constant c > 0 such that for n ∈ N large
enough cβ(n) 6 β(n− 1).

Let n0 ∈ N be such that ϑ(α(n)) > 0 for all n > n0. If there exist j ∈ N and
r > 0 such that

∞∑
n=n0

µ(n)
n

(
rn + ϑ(γn)

ϑ(α(n))

)2j

< ∞,

then ∞∑
n=1

µ(n)
n

P
(‖Sn‖ > εα(n)

)
< ∞ for all ε > 0.

In the following two corollaries of Theorem 1.3 we use some special notations:
Following Gut [1], introduce the functions ψ and Mr with

ψ(t) = Card{n ∈ N : kn 6 t} for t > 0,

and

Mr(t) =
[t]∑

i=1

kr−1
i if t > 1 and Mr(t) = kr−1

1 if 0 6 t < 1,

where r ∈ R, CardA is the cardinality of the set A and [.] denotes the integer
function. Let M = M2. Let f ◦ g be the composite function of functions f and g.

Remark 1.4. Mr ◦ ψ ∈ Φ0 and

(Mr ◦ ψ)(t) = Mr(ψ(t)) =





n∑
i=1

kr−1
i = Mr(n), if kn 6 t < kn+1,

kr−1
1 = Mr(1), if 0 6 t < k1.
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The following corollary is a generalization of Theorem 6.2 of Fazekas [5].

Corollary 1.5 (Tómács [6], Corollary 3.2). Let {Xnk, n ∈ N, k = 1, . . . , kn} be an
array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let
M ◦ ψ ∼ ∆2, r, s, t > 0, rs > t. Assume that {‖Skn

‖ /k
1/s
n , n ∈ N} is bounded

in probability. Furthermore, if r > 2 we assume that {M(n)/M(n − 1), n ∈ N} is
bounded. If EMr/2(ψ(|X|t/r)) < ∞ and E |X|s < ∞, then

∞∑
n=1

(
M(n)

)r/2−1
P

(
‖Skn

‖ > εkr/t
n

)
< ∞ for all ε > 0.

The following corollary is a version of Corollary 4.1 of Hu et al. [3].

Corollary 1.6 (Tómács [6], Corollary 3.3). Let {Xnk, n ∈ N, k = 1, . . . , kn} be an
array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let
r ∈ R, 0 < t < s and Mr ◦ ψ ∼ ∆2. Assume that {‖Skn

‖ /k
1/s
n , n ∈ N} is bounded

in probability. If EMr(ψ(|X|t)) < ∞ and E |X|s < ∞, then

∞∑
n=1

kr−2
n P

(
‖Skn‖ > εk1/t

n

)
< ∞ for all ε > 0.

In Section 2 we give a sufficient condition for the boundedness in probability
and in Section 3 we study two concrete sequences kn in Corollary 1.5 and 1.6.

2. The boundedness in probability in case Banach
space of type ϕ

If B has an appropriate geometric property, then a moment condition can imply
the boundedness of {‖Skn‖ /γkn , n ∈ N}.
Definition 2.1. A function ϕ : [0,∞) → [0,∞) is said to be an Orlicz function if
it is continuous, convex, ϕ(0) = 0, ϕ(t) > 0 for t > 0 and limt→∞ ϕ(t) = ∞. For
an Orlicz function ϕ the Orlicz space lϕ(B) consists of those B-valued sequences
{un, n ∈ N} for which

∞∑
n=1

ϕ (‖un‖ /a) < ∞ for some a > 0.

Let ε1, ε2, . . . be independent r.v.’s with P (εn = 1) = P (εn = −1) = 1/2 for all
n ∈ N. B is said to be of type ϕ, if

∑∞
n=1 εnun converges in probability for all

{un, n ∈ N} ∈ lϕ(B).
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Definition 2.2. An Orlicz function ϕ is said to satisfy the ∆0
2-condition (ϕ ∼ ∆0

2)
if there exist constants c > 0 and t0 > 0 such that ϕ(2t) 6 cϕ(t) is satisfied for all
0 6 t 6 t0.

Lemma 2.3. Let ϕ be an Orlicz function and ϕ ∼ ∆0
2. B is of type ϕ iff there

exists a constant c > 0 such that

E

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥ 6 cE inf
y>0

{
1
y

(
1 +

n∑

k=1

ϕ(y ‖Xk‖)
)}

for all n ∈ N and every independent B-valued r.v.’ X1, . . . , Xn with EXk = 0,
k = 1, . . . , n.

For the proof see Fazekas [4].
The following lemma is a generalization of Lemma 2.1 of Gut [2] and Lemma 2.7

(b) of Fazekas [5].

Lemma 2.4 (Tómács [6], Lemma 4.4). Let {Xnk, n ∈ N, k = 1, . . . , kn} be an ar-
ray of B-valued r.v.’s which is w.m.d. by the r.v. X and constant γ. If ϕ ∈ Φ0

then
1
kn

kn∑

k=1

E ϕ(‖Xnk‖) 6 max{1, γ}E ϕ(|X|).

The following theorem show that in Theorem 1.3 we can write moment condi-
tions instead of the boundedness of {‖Skn‖ /γkn , n ∈ N} if B is of type ϕ.

Theorem 2.5. Let ϕ ∈ Φ0 be a submultiplicative Orlicz function, ϕ ∼ ∆0
2 and let

B be a space of type ϕ. Let {Xnk, n ∈ N, k = 1, . . . , kn} be an array of rowwise
independent B-valued r.v.’s which is w.m.d. by the r.v. X. Assume that the sequence
{knϕ(1/γkn), n ∈ N} is bounded for some sequence {γn, n ∈ N} of positive real
numbers. If EXnk = 0 for every n ∈ N, k = 1, . . . , kn and E ϕ(|X|) < ∞, then
{‖Skn‖ /γkn , n ∈ N} is bounded in probability.

Proof. By Lemma 2.3 and 2.4 there exists a constant c > 0 such that

E
‖Skn‖
γkn

6 c

γkn

E inf
y>0

{
1
y

(
1 +

kn∑

k=1

ϕ(y ‖Xnk‖)
)}

6 cE

(
1 +

kn∑

k=1

ϕ (‖Xnk‖ /γkn)

)

6 c
(
1 + ϕ (1/γkn) max{1, γ}knE ϕ(|X|)).

Thus Remark 1.1 implies the statement. ¤
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3. Convergence rate theorems for two concrete se-
quences kn

Lemma 3.1. f ∼ ∆2 iff there exist constants k > 1 and c > 0 such that

f(kt) 6 cf(t) for all t > 0. (3.1)

Proof. If f ∼ ∆2 then in case k = 2 we get (3.1). Now suppose that there exist
constants k > 1 and c > 0 such that the inequality (3.1) is true for all t > 0. Then
we can obtain with induction that

f(knt) 6 cnf(t) for all t > 0 and for all n ∈ N.

It follows that there exists n0 ∈ N such that

f(2t) 6 f(kn0t) 6 cn0f(t) for all t > 0.

Thus we get f ∼ ∆2. ¤

The reader can readily verify the following lemma.

Lemma 3.2. Let g : [k1,∞) → R be a nondecreasing function which has the prop-
erty that g(kn) > Mr(n) for all n ∈ N. Then Mr(ψ(x)) 6 g(x) for all x > k1.

Lemma 3.3. Let r ∈ R. Assume that there exists strictly increasing sequence
{an, n ∈ N} of positive integers and there exist constants k > 1, c > 0 such that

kn

kan

6 1
k

and
Mr(an)

Mr(n− 1)
6 c for all n ∈ N.

Then Mr ◦ ψ ∼ ∆2.

Proof. Assume that kn 6 t < kn+1. Then Remark 1.4 implies

Mr(ψ(kt)) 6 Mr(ψ(kkn+1)) 6 Mr(ψ(kan+1)) = Mr(an+1) 6 cMr(n) = cMr(ψ(t)).

Similarly if 0 < t < k1 then

Mr(ψ(kt)) 6 Mr(ψ(kk1)) 6 Mr(ψ(ka1)) = Mr(a1) 6 cMr(0) = cMr(ψ(t)).

It follows that Mr(ψ(kt)) 6 cMr(ψ(t)) for all t > 0. Thus, by Lemma 3.1 we get
the statement. ¤

Lemma 3.4. Let l ∈ N. Then

lim
n→∞

1k + 2k + · · ·+ (ln)k

1k + 2k + · · ·+ (n− 1)k
=

{
lk+1, if k > −1,
1, if k 6 −1.
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Proof. It is easy to see that

xk+1 − (x− 1)k+1 6 (k + 1)xk 6 (x + 1)k+1 − xk+1 for all x > 1, k > 0

and

(x + 1)k+1 − xk+1 6 (k + 1)xk 6 xk+1 − (x− 1)k+1 for all x > 1,−1 < k < 0.

Apply these inequalities for x = 1, 2, . . . , n. Then we have

lim
n→∞

1k + 2k + · · ·+ nk

nk+1
=

1
k + 1

for all k > −1,

which implies the statement for k > −1.
It is well known that 1

1c + 1
2c + · · · 1

nc is convergent if c > 1. It follows that the
statement is true in case k < −1 as well.

Finally in case k = −1 the inequalities

1 +
l−1

l

1 + 1
2 + · · ·+ 1

n−1

<
1 + 1

2 + · · ·+ 1
ln

1 + 1
2 + · · ·+ 1

n−1

< 1 +
l

1 + 1
2 + · · ·+ 1

n−1

imply the statement. ¤

Lemma 3.5. Let k1, d ∈ N, q ∈ N \ {1}. If kn = k1q
n−1 or kn = k1n

d then
Mr ◦ ψ ∼ ∆2 for all r ∈ R.

Proof. In the first case, when kn = k1q
n−1, let an = n + 1 and k = q. Then

kn

kan

=
k1q

n−1

k1qn
=

1
q

6 1
k

.

Let Q = qr−1 and assume that r > 1. In this case |1/Q| < 1, thus we get

Mr(an)
Mr(n− 1)

=
Mr(n + 1)
Mr(n− 1)

=
1 + Q + · · ·+ Qn

1 + Q + · · ·+ Qn−2
=

Q2 − 1
Qn−1

1− 1
Qn−1

→ Q2.

If r < 1 then 1/Q > 1, thus

Mr(an)
Mr(n− 1)

=
Q2 − 1

Qn−1

1− 1
Qn−1

→ 1.

If r = 1 then Q = 1, so
Mr(an)

Mr(n− 1)
=

n + 1
n− 1

→ 1.

Thus we get that Mr(an)
Mr(n−1) is bounded for all r ∈ R. Hence conditions of Lemma 3.3

are satisfied, which implies the statement.
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In the second case, when kn = k1n
d, let an = 2n and k = 2d. Then

kn

kan

=
k1n

d

k1(2n)d
=

1
2d

6 1
k

.

On the other hand it follows from Lemma 3.4 that Mr(an)
Mr(n−1) is bounded for all r ∈ R.

So Lemma 3.3 implies the statement. ¤

Theorem 3.6. Let {Xnk, n ∈ N, k = 1, . . . , k1n
d} (k1, d ∈ N are fixed) be an array

of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let t > 0,
r > 2d/(d + 1), s > t/r and v = max{s, t(d + 1)/(2d)}. If {‖Sk1nd‖ /nd/s, n ∈ N}
is bounded in probability and E |X|v < ∞, then

∞∑
n=1

n(d+1)(r/2−1)P
(
‖Sk1nd‖ > εndr/t

)
< ∞ for all ε > 0.

Proof. We shall prove that conditions of Corollary 1.5 are satisfied. Let kn =
k1n

d. Then by Lemma 3.4 {M(n)/M(n − 1), n ∈ N} is bounded. Let Y =
Mr/2(ψ(|X|t/r)). Now we turn to the proof of EY < ∞. It is well known that

1d + · · ·+ nd = a1n
d+1 + a2n

d + · · ·+ ad+2

for some a1, a2, . . . , ad+2 ∈ R. Let

g : [k1,∞) → R, g(x) =
d+2∑

i=1

|ai|
(
ki−2
1 xd+2−i

)1/d
.

Then g is nondecreasing, g(kn) > M(n) and g(x) 6 const.x(d+1)/d for all x > k1.
Therefore by Lemma 3.2 we have

Mr/2
(
ψ(xt/r)

)
6 const.xt(d+1)/(2d) for all xt/r > k1.

It follows that

Y = Y I(|X|t/r < k1) + Y I(|X|t/r > k1) 6 k
r/2
1 + const.|X|t(d+1)/(2d),

where I(A) denotes the indicator function of the set A. So EY < ∞. By Lemma 3.5
M ◦ ψ ∼ ∆2. It is easy to see that the other conditions of Corollary 1.5 hold true
as well, on the other hand M(n) > const.nd+1. So this theorem is consequence of
Corollary 1.5. ¤

Theorem 3.7. Let {Xnk, n ∈ N, k = 1, . . . , k1q
n−1} (k1 ∈ N,q ∈ N \ {1} are fixed)

be an array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X.
Let w > 0, t > 0, s > t and v = max{s, t(w + 1)}. If {∥∥Sk1qn−1

∥∥ /qn/s, n ∈ N} is
bounded in probability and E |X|v < ∞, then

∞∑
n=1

qnwP
(∥∥Sk1qn−1

∥∥ > εqn/t
)

< ∞ for all ε > 0.
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Proof. We shall prove that conditions of Corollary 1.6 are satisfied. Let kn =
k1q

n−1, r = w + 2 and Y = Mr(ψ(|X|t)). Then Mr(n) = kr−1
1

Qn−1
Q−1 , where

Q = qr−1. Let

g : [k1,∞) → R, g(x) = kr−1
1

Q1+log(x/k1)/ log q − 1
Q− 1

.

Then g is nondecreasing, g(kn) = Mr(n) and g(x) 6 const.xr−1 for all x > k1.
Therefore by Lemma 3.2 we have

Mr

(
ψ(xt)

)
6 const.xt(w+1) for all xt > k1.

It follows that

Y = Y I(|X|t < k1) + Y I(|X|t > k1) 6 kr−1
1 + const.|X|t(w+1).

So EY < ∞. By Lemma 3.5 Mr ◦ ψ ∼ ∆2. The other conditions of Corollary 1.6
hold true as well. Thus Corollary 1.6 implies the statement. ¤
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