

Pointwise very strong approximation as a generalization of Fejér's summation theorem

Włodzimierz Łenski

University of Zielona Góra
 Faculty of Mathematics, Informatics and Econometry
 W.Lenski@wmie.uz.zgora.pl

Abstract

We will present an estimation of the $H_{k,r}^q f$ mean as a approximation versions of the Totik type generalization(see [6]) of the result of G. H. Hardy, J. E. Littlewood. Some results on the norm approximation will also given.

Key Words: very strong approximation, rate of pointwise strong summability

AMS Classification Number: 42A24

1. Introduction

Let L^p ($1 < p < \infty$) [resp. C] be the class of all 2π –periodic real–valued functions integrable in the Lebesgue sense with p –th power [continuous] over $Q = [-\pi, \pi]$ and let $X = X^p$ where $X^p = L^p$ when $1 < p < \infty$ or $X^p = C$ when $p = \infty$. Let us define the norm of $f \in X^p$ as

$$\|f\|_{X^p} = \|f(x)\|_{X^p} = \begin{cases} \left(\int_Q |f(x)|^p dx \right)^{1/p} & \text{when } 1 < p < \infty, \\ \sup_{x \in Q} |f(x)| & \text{when } p = \infty. \end{cases}$$

Consider the trigonometric Fourier series

$$Sf(x) = \frac{a_o(f)}{2} + \sum_{k=0}^{\infty} (a_k(f) \cos kx + b_k(f) \sin kx) = \sum_{k=0}^{\infty} C_k f(x)$$

and denote by $S_k f$, the partial sums of Sf . Let

$$H_{k_r}^q f(x) := \left\{ \frac{1}{r+1} \sum_{\nu=0}^r |S_{k_\nu} f(x) - f(x)|^q \right\}^{\frac{1}{q}}, \quad (q > 0)$$

where $0 \leq k_0 < k_1 < k_2 < \dots < k_r \ (\geq r)$.

The pointwise characteristic

$$\overline{w}_x f(\delta)_p := \sup_{0 < h \leq \delta} \left\{ \frac{1}{h} \int_0^h |\varphi_x(t)|^p dt \right\}^{1/p},$$

where $\varphi_x(t) := f(x+t) + f(x-t) - 2f(x)$

constructed on the base of definition of Lebesgue points ($L^1 - points$) was firstly used as a measure of approximation, by S.Aljančić, R.Bojanic and M.Tomić [1]. This characteristic was very often used, but it appears that such approximation cannot be comparable with the norm approximation beside when $X = C$. In [5] there was introduced the slight modified function:

$$w_x f(\delta)_p := \left\{ \frac{1}{\delta} \int_0^\delta |\varphi_x(t)|^p dt \right\}^{1/p}.$$

We can observe that for $p \in [1, \infty)$ and $f \in C$

$$w_x f(\delta)_p \leq \overline{w}_x f(\delta)_p \leq \omega_C f(\delta)$$

and also, with $\tilde{p} > p$ for $f \in X^{\tilde{p}}$, by the Minkowski inequality

$$\|w_x f(\delta)_p\|_{X^{\tilde{p}}} \leq \omega_{X^{\tilde{p}}} f(\delta),$$

where $\omega_X f$ is the modulus of continuity of f in the space $X = X^{\tilde{p}}$ defined by the formula

$$\omega_X f(\delta) := \sup_{0 < |h| \leq \delta} \|f(\cdot + h) - f(\cdot)\|_X.$$

It is well-known that $H_n^q f(x) -$ means tend to 0 at the $L^p - points$ of $f \in L^p$ ($1 < p \leq \infty$). In [3] this fact was by G. H. Hardy, J. E. Littlewood proved as a generalization of the Fejér classical result on the convergence of the $(C, 1)$ - means of Fourier series. Here we present an estimation of the $H_{k_r}^q f(x)$ means as a approximation version of the Totik type (see [6]) generalization of the result of G. H. Hardy, J. E. Littlewood. We also give some corollaries on norm approximation.

By K we shall designate either an absolute constant or a constant depending on the indicated parameters, not necessarily the same of each occurrence.

2. Statement of the results

Theorem 2.1. *If $f \in L^p$ ($1 < p \leq 2$) , then, for indices $0 \leq k_0 < k_1 < k_2 < \dots < k_r$ ($\geq r$),*

$$H_{k_r}^q f(x) \leq 2 \left\{ \sum_{k=r}^{k_r} \frac{w_x f(\frac{\pi}{k+1})_1}{k+1} \right\} + 6 \left\{ \frac{1}{(r+1)^{p-1}} \sum_{k=0}^r \frac{\left(w_x f(\frac{\pi}{k+1})_p \right)^p}{(k+1)^{2-p}} \right\}^{1/p},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Applying the inequality for the norm of the modulus of continuity of f we can immediately derive from the above theorem the next one.

Theorem 2.2. *If $f \in L^p$ ($1 < p \leq 2$) , then for indices $0 \leq k_0 < k_1 < k_2 < \dots < k_r$ ($\geq r$),*

$$\|H_{k_r}^q f(\cdot)\|_{L^p} \leq 2 \left\{ \sum_{k=r}^{k_r} \frac{\omega_{L^p} f(\frac{\pi}{k+1})}{k+1} \right\} + 6 \left\{ \frac{1}{(r+1)^{p-1}} \sum_{k=0}^r \frac{\left(\omega_{L^p} f(\frac{\pi}{k+1}) \right)^p}{(k+1)^{2-p}} \right\}^{1/p},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Remark 2.3. In the special case $k_\nu = \nu$ for $\nu = 0, 1, 2, \dots, r$, the first term in the above estimates is superfluous.

Next, we consider a function w_x of modulus of continuity type on the interval $[0, +\infty)$, i.e. a nondecreasing continuous function having the following properties: $w_x(0) = 0$, $w_x(\delta_1 + \delta_2) \leq w_x(\delta_1) + w_x(\delta_2)$ for any $0 \leq \delta_1 \leq \delta_2 \leq \delta_1 + \delta_2$ and let

$$L^p(w_x) = \left\{ g \in L^p : w_x g(\delta)_p \leq w_x(\delta) \right\}.$$

In this class we can derive the following

Theorem 2.4. *Let $f \in L^p(w_x)$ ($1 < p \leq 2$) and $0 \leq k_0 < k_1 < k_2 < \dots < k_r$ ($\geq r$). If w_x satisfy , for some $A > 1$ the condition $\limsup_{\delta \rightarrow 0+} \left(\frac{w_x(A\delta)}{w_x(\delta)} \right)^p < A^{p-1}$, then*

$$H_{k_r}^q f(x) \leq K w_x \left(\frac{\pi}{r+1} \right) \log \frac{k_r + 1}{r+1}.$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

In the same way for subclass

$$L^p(\omega) = \{ g \in L^p : \omega_{L^p} f(\delta) \leq \omega(\delta), \text{ with modulus of continuity } \omega \}$$

we can obtain

Theorem 2.5. Let $f \in L^p(\omega)$ ($1 < p \leq 2$) and $0 \leq k_0 < k_1 < k_2 < \dots < k_r$ ($\geq r$). If ω satisfy, for some $A > 1$ and an integer $s \geq 1$, the condition $\limsup_{\delta \rightarrow 0+} \frac{\omega(A\delta)}{\omega(\delta)} < A^s$, then

$$\|H_{k_r}^q f(\cdot)\|_{L^p} \leq K \omega \left(\frac{\pi}{r+1} \right) \log \frac{k_r+1}{r+1},$$

where $\frac{1}{p} + \frac{1}{q} = 1$

For the proof of Theorem 2.2 we will need the following lemma of N. K. Bari and S. B. Stechkin [2].

Lemma 2.6. If a continuous and non-decreasing on $[0, \infty)$ function w satisfies conditions: $w(0) = 0$ and $\limsup_{\delta \rightarrow 0+} \frac{w(A\delta)}{w(\delta)} < A^s$ for some $A > 1$ and an integer $s \geq 1$, then

$$u^s \int_u^\pi \frac{w(t)}{t^{s+1}} dt \leq Kw(u) \quad \text{for } u \in (0, \pi],$$

where the constant K depend only on w and in other way the fulfillment of the above inequality for all $u \in (0, \pi]$ imply the existence of a constant $A > 1$ for which $\limsup_{\delta \rightarrow 0+} \frac{w(A\delta)}{w(\delta)} < A^s$ with some integer $s \geq 1$.

3. Proofs of the results

We only prove Theorems 2.1 and 2.4.

Proof of Theorem 2.1. Let as usually

$$\begin{aligned} H_{k_r}^q f(x) &= \left\{ \frac{1}{r+1} \sum_{\nu=0}^r \left| \frac{1}{\pi} \int_0^\pi \varphi_x(t) D_{k_\nu}(t) dt \right|^q \right\}^{1/q} \\ &\leq A_{k_r} + B_{k_r} + C_{k_r}, \end{aligned}$$

where $D_{k_\nu}(t) = \frac{\sin \frac{(2k_\nu+1)t}{2}}{2 \sin \frac{t}{2}}$,

$$A_{k_r}(\delta) = \left\{ \frac{1}{r+1} \sum_{\nu=0}^r \left| \frac{1}{\pi} \int_0^\delta \varphi_x(t) D_{k_\nu}(t) dt \right|^q \right\}^{1/q},$$

$$B_{k_r}(\gamma, \delta) = \left\{ \frac{1}{r+1} \sum_{\nu=0}^r \left| \frac{1}{\pi} \int_\delta^\gamma \varphi_x(t) D_{k_\nu}(t) dt \right|^q \right\}^{1/q}$$

and

$$C_{k_r}(\gamma) = \left\{ \frac{1}{r+1} \sum_{\nu=0}^r \left| \frac{1}{\pi} \int_\gamma^\pi \varphi_x(t) D_{k_\nu}(t) dt \right|^q \right\}^{1/q},$$

with $\delta = \frac{\pi}{k_r+1}$ and $\gamma = \frac{\pi}{r+1}$.

Since $k_\nu \leq k_r$, for $\nu = 0, 1, 2, \dots, r$, we conclude that $|D_{k_\nu}(t)| \leq k_r + 1$ and $|D_{k_\nu}(t)| \leq \frac{\pi}{2|t|}$. Hence

$$A_{k_r}(\delta) \leq \left\{ \frac{1}{r+1} \sum_{\nu=0}^r \left[\frac{k_r+1}{\pi} \int_0^\delta |\varphi_x(t)| dt \right]^q \right\}^{1/q} = w_x f(\delta)_1$$

and

$$B_{k_r}(\gamma, \delta) = \left\{ \frac{1}{r+1} \sum_{\nu=0}^r \left[\frac{1}{2} \int_\delta^\gamma \frac{|\varphi_x(t)|}{t} dt \right]^q \right\}^{1/q} = \frac{1}{2} \int_\delta^\gamma \frac{|\varphi_x(t)|}{t} dt.$$

Integrating by parts, we obtain

$$\begin{aligned} B_{k_r}(\gamma, \delta) &= \frac{1}{2} \left\{ w_x f(t)_1 \Big|_{t=\delta}^\gamma + \int_\delta^\gamma \frac{w_x f(t)_1}{t} dt \right\} \\ &= \frac{1}{2} w_x f(\gamma)_1 - \frac{1}{2} w_x f(\delta)_1 + \frac{1}{2} \int_{r+1}^{k_r+1} \frac{w_x f(\pi/u)_1}{u} du \end{aligned}$$

and by simple calculation we have

$$\begin{aligned} B_{k_r}(\gamma, \delta) &\leq \frac{1}{2} w_x f(\gamma)_1 - \frac{1}{2} w_x f(\delta)_1 + \frac{1}{2} \sum_{k=r+1}^{k_r} \int_k^{k_r+1} \frac{w_x f(\pi/u)_1}{u} du \\ &\leq \frac{1}{2} w_x f(\gamma)_1 - \frac{1}{2} w_x f(\delta)_1 + \frac{1}{2} \sum_{k=r+1}^{k_r} \frac{k+1}{k} \frac{w_x f(\pi/k)_1}{k} \\ &\leq \frac{1}{2} w_x f(\gamma)_1 - \frac{1}{2} w_x f(\delta)_1 + \frac{1}{2} \left(1 + \frac{1}{r+1} \right) \sum_{k=r}^{k_r-1} \frac{w_x f(\pi/k)_1}{k} \\ &\leq w_x f(\gamma)_1 + 2 \sum_{k=r}^{k_r-1} \frac{w_x f(\pi/k)_1}{k}. \end{aligned}$$

Putting $D_{k_\nu}(t) = \frac{1}{2} \sin(k_\nu t) \cot \frac{t}{2} + \frac{1}{2} \cos(k_\nu t)$, by the Hausdorff–Young inequality,

$$\begin{aligned} C_{k_r}(\gamma) &= \\ &\leq \frac{1}{2(r+1)^{1/q}} \left\{ \sum_{\nu=0}^r \left| \frac{1}{\pi} \int_\gamma^\pi \varphi_x(t) \cot \frac{t}{2} \sin(k_\nu t) dt \right|^q \right\}^{1/q} \\ &\quad + \frac{1}{2(r+1)^{1/q}} \left\{ \sum_{\nu=0}^r \left| \frac{1}{\pi} \int_\gamma^\pi \varphi_x(t) \cos(k_\nu t) dt \right|^q \right\}^{1/q} \end{aligned}$$

$$\begin{aligned}
&\leq \frac{1}{2(r+1)^{1/q}} \left\{ \frac{1}{\pi} \int_{\gamma}^{\pi} \left| \varphi_x(t) \cot \frac{t}{2} \right|^p dt \right\}^{1/p} \\
&\quad + \frac{1}{2(r+1)^{1/q}} \left\{ \frac{1}{\pi} \int_{\gamma}^{\pi} |\varphi_x(t)|^p dt \right\}^{1/p} \\
&\leq \frac{1}{2(r+1)^{1/q}} \left\{ \left[\int_{\gamma}^{\pi} \left| \frac{\varphi_x(t)}{t/\pi} \right|^p dt \right]^{1/p} + \pi^{1/p} w_x f(\pi)_p \right\}
\end{aligned}$$

and by partial integration,

$$\begin{aligned}
&C_{k_r}(\gamma) \\
&\leq \frac{1}{2(r+1)^{1/q}} \left\{ \left[\frac{[w_x f(t)_p]^p}{t^{p-1}} \Big|_{t=\gamma}^{\pi} + p \int_{\gamma}^{\pi} \left| \frac{w_x f(t)_p}{t} \right|^p dt \right]^{1/p} \right. \\
&\quad \left. + \pi^{1/p} w_x f(\pi)_p \right\} \\
&\leq \frac{1}{2(r+1)^{1/q}} \left\{ \left[\pi^{1-p} [w_x f(\pi)_p]^p + p \int_1^{r+1} \left| \frac{w_x f(\pi/u)_p}{\pi/u} \right|^p \frac{\pi}{u} du \right]^{1/p} \right. \\
&\quad \left. + \pi^{1/p} w_x f(\pi)_p \right\}.
\end{aligned}$$

Therefore, analogously as before,

$$\begin{aligned}
&C_{k_r}(\gamma) \\
&\leq \frac{1}{2(r+1)^{1/q}} \left\{ \left[\pi^{1-p} [w_x f(\pi)_p]^p + p \pi^{1-p} \sum_{k=1}^r \int_k^{k+1} \frac{[w_x f(\pi/u)_p]^p}{u^{2-p}} du \right]^{1/p} \right. \\
&\quad \left. + \pi^{1/p} w_x f(\pi)_p \right\} \\
&\leq \frac{1}{2(r+1)^{1/q}} \left\{ \left[\pi^{1-p} [w_x f(\pi)_p]^p + p \pi^{1-p} \sum_{k=1}^r \frac{k+1}{k} \frac{[w_x f(\pi/k)_p]^p}{k^{2-p}} \right]^{1/p} \right. \\
&\quad \left. + \pi^{1/p} w_x f(\pi)_p \right\} \\
&\leq \frac{1}{2(r+1)^{1/q}} \left\{ \left[(1+p) \pi^{1-p} \sum_{k=1}^r \frac{[w_x f(\pi/k)_p]^p}{k^{2-p}} \right]^{1/p} + \pi^{1/p} w_x f(\pi)_p \right\} \\
&\leq K \left\{ \frac{1}{(r+1)^{p-1}} \sum_{k=1}^r \frac{[w_x f(\pi/(k+1))_p]^p}{(k+1)^{2-p}} \right\}^{1/p}.
\end{aligned}$$

Finally, since

$$w_x f(\gamma)_1 \leq w_x f(\gamma)_p \left\{ \frac{p}{(r+1)^p} \sum_{k=0}^r \frac{1}{(k+1)^{1-p}} \right\}^{1/p}$$

$$\leq \left\{ \frac{p}{(r+1)^{p-1}} \sum_{k=1}^r \frac{[w_x f(\pi/(k+1))_p]^p}{(k+1)^{2-p}} \right\}^{1/p},$$

our result follows. \square

Proof of Theorem 2.4. It is clear that if $f \in L^p(w_x)$ ($1 < p \leq 2$) then $w_x f(\delta)_1 \leq w_x f(\delta)_p \leq w_x(\delta)$. Thus, by Theorem 2.1,

$$H_{k_r}^q f(x) \leq 2 \left\{ \sum_{k=r}^{k_r} \frac{w_x(\frac{\pi}{k+1})}{k+1} \right\} + 6 \left\{ \frac{1}{(r+1)^{p-1}} \sum_{k=0}^r \frac{\left(w_x(\frac{\pi}{k+1})\right)^p}{(k+1)^{2-p}} \right\}^{1/p}$$

and, by the monotonicity of w_x and simple inequality $w_x(\pi) \leq 2w_x(\frac{\pi}{2})$, we obtain

$$\begin{aligned} H_{k_r}^q f(x) &\leq 2 \left\{ \sum_{k=r}^{k_r} \frac{w_x(\frac{\pi}{k+1})}{k+1} \right\} \\ &\quad + 6 \left\{ \frac{1}{(r+1)^{p-1}} \left((w_x(\pi))^p + \sum_{k=1}^r \frac{\left(w_x(\frac{\pi}{k+1})\right)^p}{(k+1)^{2-p}} \right) \right\}^{1/p} \\ &\leq 2 \left\{ \sum_{k=r}^{k_r} \frac{w_x(\frac{\pi}{k+1})}{k+1} \right\} + 6 \left\{ \frac{5}{(r+1)^{p-1}} \sum_{k=1}^r \frac{\left(w_x(\frac{\pi}{k+1})\right)^p}{(k+1)^{2-p}} \right\}^{1/p} \\ &\leq 2 \left\{ w_x(\frac{\pi}{r+1}) \sum_{k=r}^{k_r} \frac{1}{k+1} \right\} \\ &\quad + 6 \left\{ \frac{5}{(r+1)^{p-1}} \sum_{k=1}^r \int_k^{k+1} \frac{\left(w_x(\frac{\pi}{t})\right)^p}{t^{2-p}} dt \right\}^{1/p} \\ &\leq 2 \left\{ w_x(\frac{\pi}{r+1}) \int_r^{k_r+1} \frac{1}{t} dt \right\} \\ &\quad + 6 \left\{ \frac{5}{(r+1)^{p-1}} \pi^{p-1} \int_{\frac{\pi}{r+1}}^{\pi} \frac{(w_x(u))^p}{u^{p-2}} \frac{du}{u^2} \right\}^{1/p} \\ &\leq 2w_x(\frac{\pi}{r+1}) \log \frac{k_r+1}{r} \\ &\quad + 6 \left\{ 5 \left(\frac{\pi}{r+1} \right)^{p-2} \frac{\pi}{r+1} \int_{\frac{\pi}{r+1}}^{\pi} \frac{(w_x(u))^p u^{2-p}}{u^2} du \right\}^{1/p} \end{aligned}$$

Now, we observe that, by our assumption , the function $(w_x(u))^p u^{2-p}$ satisfy the condition

$$\limsup_{\delta \rightarrow 0+} \frac{(w_x(A\delta))^p (A\delta)^{2-p}}{(w_x(\delta))^p (\delta)^{2-p}} = A^{2-p} \limsup_{\delta \rightarrow 0+} \frac{(w_x(A\delta))^p}{(w_x(\delta))^p} < A^{2-p} A^{p-1} = A$$

i.e. the condition of Lemma 2.6 with $s = 1$. Therefore

$$\frac{\pi}{r+1} \int_{\frac{\pi}{r+1}}^{\pi} \frac{(w_x(u))^p u^{2-p}}{u^2} du \leq \left(w_x\left(\frac{\pi}{r+1}\right) \right)^p \left(\frac{\pi}{r+1} \right)^{2-p}.$$

Hence

$$\begin{aligned} H_{k_r}^q f(x) &\leq 2w_x\left(\frac{\pi}{r+1}\right) \log \frac{k_r + 1}{r} \\ &\quad + 6 \left\{ 5 \left(\frac{\pi}{r+1} \right)^{p-2} \left(w_x\left(\frac{\pi}{r+1}\right) \right)^p \left(\frac{\pi}{r+1} \right)^{2-p} \right\}^{1/p} \\ &\leq \left(2 + 6 \cdot 5^{1/p} \right) w_x\left(\frac{\pi}{r+1}\right) \log \frac{k_r + 1}{r}, \end{aligned}$$

and our result is proved. \square

References

- [1] S. Aljančić, R. Bojanic and M. Tomić, On the degree of convergence of Fejér–Lebesgue sums, *L’Enseignement Mathématique*, Geneve, Tome XV (1969) 21–28.
- [2] N. K. Bari, S. B. Stečkin, Best approximation and differential properties of two conjugate functions, (in Russian) ,*Trudy Moscovscgo Mat. o-va*, 1956, T.5, 483–522.
- [3] G. H. Hardy, J. E. Littlewood, Sur la série de Fourier d’une fonction a caré sommable, *Comptes Rendus*, Vol.28,(1913), 1307–1309.
- [4] L. Leindler, Strong approximation by Fourier series, *Akadémiai Kiadó*, Budapest, 1985.
- [5] W. Łenski, On the rate of pointwise strong (C, α) summability of Fourier series, *Colloquia Math. Soc. János Bolyai*, 58 Approx. Theory, Kecskemét (Hungary),(1990), 453–486.
- [6] V. Totik, On the strong approximation of Fourier series, *Acta Math. Acad. Hungar.*35 (1-2), (1980), 151–172.

Włodzimierz Łenski

University of Zielona Góra

Faculty of Mathematics, Informatics and Econometry

65-516 Zielona Góra, ul. Szafrana 4a

Poland