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Abstract
Multiindex versions of Khintchine’s and Burkholder’s inequalities are pre-

sented.
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1. Introduction and notation

Burkholder’s inequality is a powerful tool of martingale theory. Let (Z,,F,),
n =1,2,..., be a martingale with difference X,, = Z,, — Z,,_1. Let p > 1. There
exist finite and positive constants C}, and D, depending only on p such that

n 2 P/2 l/p » 1/;0 n 2 P/Q l/p

6 [e(X,xt)"| " <@zl <n, [B(X_x)"] . av
see Burkholder’s classical paper [1] and the textbook [2]. When the random vari-
ables X7, X5,... are independent (1.1) is called the Marcinkiewicz-Zygmund in-
equality (and in this particular case it is valid also for p = 1).

Let g;(t), i = 1,2,..., be the Rademacher system on [0,1]. If X} = eray, then
we obtain Khintchine’s inequality. There exist finite and positive constants A, and
B, depending only on p such that for any real sequence ay, k =1,2,...,

() < [[ o] @] <, (S0 a) a2

*Supported by the Hungarian Foundation of Scientific Researches under Grant No. OTKA
T047067/2004 and Grant No. OTKA T048544/2005.

45



46 1. Fazekas

This inequality is valid for p > 0. Actually, the standard proof of (1.1) is based on
(1.2), see [1]).

The two-index version of (1.1) is obtained in [8], see also [7].

The aim of this paper is to prove a multiindex version of Burkholder’s inequality.
The proof is based on the transform of a single parameter martingale. We also use
the multiindex version of Khintchine’s inequality (for the sake of completeness, we
prove it).

In [9] the second inequality of (3.2) was presented (without proof) for p > 2.
It was applied to obtain a Brunk-Prokhorov type strong law of large numbers for
martingale fields (see [9], Proposition 14). For a recent overview of multiindex
random processes see [6]. In [6] a certain version of the Burkholder inequality was
presented for continuous parameter random fields without the details of the proof
(p. 257, Theorem 4.1.2). We do not use that theorem, we give a simple proof based
on well-known one-parameter results.

Our Burkholder type inequality can be used to prove convergence results for
multiindex autoregressive type martingales (see [5], for the two-index case see [4]).

We use the following notation. Let d be a fixed positive integer. Let N denote
the set of positive integers, Ny the set of non-negative integers. The multidimen-
sional indices will be denoted by k = (ki,...,kq),n = (n1,...,n4),--- € N&. Re-
lations <, min are defined coordinatewise. I.e. k < n means k; < nq,..., ks < ng.
Relation k < n means k < n but k # n.

Let | X]||, = (E|X|p)1/p for p > 0. Then || X||,, < || X|lp, for 0 < p1 < pa.

2. Khintchine’s inequality

Theorem 2.1. Let €;(t), i = 1,2,..., be the Rademacher system on [0,1]. Let
p > 0. There exist finite and positive constants A, 4 and By, q depending only on p
and d such that for any d-index sequence ay, k € N?,

% 1 1 » 1/p
Apyd (Zkgn ak) < |:/0 A ‘Zkgn Ekl (tl)---skd(td)ak‘ dtl ...dtd:|
1/2
< Bpa (Zk@ at) . (2.1)

Proof. First we remark that for d = 1 inequality (2.1) is the original Khintchine’s
inequality.
Denote by €;n,, 7 =1,2,..., 1 =1,2,...,d, independent sequences of inde-
pendent Bernoulli random variables with P(g; ,, = 1) = P(g;,,, = —1) = 1/2 for
1/2
each 7 and n;. Let s, = (Zkgn ai) and S, = Zkgn €1k, ' Edkg0k. Then, by

the Fubini theorem, inequality (2.1) is equivalent to
Ap.asn < ||Snllp < Bp,d Sn. (2.2)

Now we prove that the products €1, - - €ak,, (k1,...,kd) € N?, are pairwise in-
dependent Bernoulli variables. By induction, it is enough to prove that €1 x, €2 k.,



Burkholder’s inequality for multiindex martingales 47

(k1,k2) € N2 are pairwise independent Bernoulli variables if € x,, k1 € N, and
€2,kys k2 € N, are independent sequences of pairwise independent Bernoulli vari-
ables. Indeed, if £; and €9 are independent Bernoulli variables then their product
is Bernoulli: P(e162 = +1) = 1/2. Now turn to the independence. It is obvious
that the independence of €1, €3, €3, and ¢4 implies the independence of 1¢5 and
ese4. Moreover, the independence of €1, 5 and 3 implies the independence of €163
and e9e3:

1
]P(Ep?g = :l:l,5253 = :l:].) = Z = P(Elé'g = :l:l)]P(€2€3 = :tl) .

Therefore || Sy ||3 is the variance of the sum of pairwise indepenent random variables,
so we have s, = ||Snl|2- In particular, (2.2) is true for p = 2.

Now we show that the products €1k, = €a.k,, (k1,-..,ka) € N%, are not (com-
pletely) independent. Indeed, if €1, €9, €3, and &4 are independent Bernoulli vari-
ables, then e1e3, e2e3, €164, and ese4 are not independent:

P(Elfg = 1,6263 = 1,5154 = 175284 = 1) = 1/8 75

7& 1/16 = P(E]_Eg == 1)P(€263 = 1)P(8184 = 1)P(€2€4 = 1) .

So relation (2.2) is really different from its one-index version.

Now we prove the second part of (2.2). We start with the case of p > 2. We
use induction. For d = 1 it is the original Khintchine’s inequality. Assume (2.2)
for d — 1. Let

no Nng
Iy ngyong (t2, -y ta) = Zk2:1 e de:1 €y (t2) -+ - €k (ta) Ay oo, hou -

Then, by the original Khintchine’s inequality,

! n1 p
/ ‘Zk _1Ekl(tl)lkl,nz,...,nd(t%~-~7td)‘ dt1 <
0 1=

ny p/2
< Bg,l (Z -1 Ilgl,nrz,...,nd(t%"'7td)) .

k1
From here
1 1 ny p/2
[Sall < Bg’l/ / (Z I nd(@,...,@)) dty .. .dtg
0 0 \4 =1
ny 1 1 /2 2/pY P/?
< B;l{z [/ / (I gmy(t2s o t2))” dtz...dtd] }
jo=1 LJo 0
2
ni no ng 1/2 2 p/
<l 3 e (35 S )
k=1 ko=1  kq=1
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= (Bp,d sn)p >

where we used the triangle inequality in L, /o and (2.2) for d — 1. So we proved the
second part of (2.2) for p > 2.

As ||Sallp < ||Snll2 for 0 < p < 2, the second part of (2.2) is true for 0 < p.

Now turn to the first part of (2.2). We see that sy = ||Sn|l2 < ||Snllp for p > 2.
Therefore it is enough to prove the inequality for 0 < p < 2. We follow the lines of
[2], p. 367.

Let 0 < p < 2. Choose 11,72 > 0, 711 + 19 = 1, pry + 4ro = 2. By Holder’s
inequality and the second part of (2.2), we have

sp = 1Snll3 < 1Sull2™ [1Salli™ < ISullf™ Bsy™.
From here
I1Sullp™ = (1/B)sy= " = (1/B)si.
Therefore the first part of (2.2) is true for 0 < p < 2. O

3. Burkholder’s inequality

Let (Xn, Fn), n € N9 be a martingale difference. It means that F,,, n € N9 is
an increasing sequence of o-algebras, i.e. Fx C Fy, if k < n; X, is F,-measurable
and integrable; E(Xy|Fx) =0 if k < n.

To obtain Burkholder’s inequality, we shall assume the so called condition (F4).
I e.

E {E(mfm)l}—n} =E {77|-7:min{m7n} (31)

for each integrable random variable 1 and for each m,n € N? (see, e.g., [6] and
(3])-

Denote by (Zn,Fn), n € N¢ the martingale corresponding to the difference
(Xn, Fn), n € N%. More precisely, let Z, = 0 and F, = {0, Q} if n € Ng \ N¢ and
In = Zkgn Xk, n € N4,

Theorem 3.1. Let (Zn,Fn), n € N, be a martingale and (Xpn, Fn), n € N%, the
martingale difference corresponding to it. Assume that (3.1) is satisfied. Let p > 1.
There exist finite and positive constants Cp 4 and D, 4 depending only on p and d
such that

Cra [E(Z,c

X

p/2 1/p p/2 1/p
) <@z < e (5, 32"
(3.2)

Proof. We follow the lines of [8]. Let u; ,, € {0,1}, n;, =1,2,...,i=1,2,...,d.

Let
Th = g Xk = E " Y,
= UL oy * o U = U
n kgn 1,k‘1 d,kd k k1:1 l,k‘l k17
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where

Yi, = Yy na,oma *E — E . L U2ks " Uk X ko -

First we show that
E|Zn|P < MgE|TyP. (3.3)

We use induction. For d = 1 (3.3) is included in [1], p. 1502 (because T, is
a transform of the martingale Z,, and vice versa). Now we assume that (3.3) is
true for d — 1. Let ng,...,ngq be fixed, Fi, = Fiyna,....ny- Then, using (3.1),
we can show that (Yi,,Fi,), k1 = 1,2,..., is a martingale difference. As the
martingale Y, Vi, = 3.7 uik, (urk, Yi,) is a transform of the martingale

ZZ;:l(ul,/ﬁY]ﬁ)v by [1]7 p- 15023

’Zkl . Yi, p<

Now, using (3.1), we can show that for any fixed n; the (d — 1)-index sequence
{2211:1 Xy karekas Fraska,ooka bo (k2o oo kq) € N1 is a martingale difference.
Therefore, using (3.3) for d — 1, we obtain

[ - . " ]
E|Zx| ‘Zkz 1 /cd 1 [Zkl 1Xk1""’kd

’ (3.4)

ME ‘Zk1=1(u1,k1Yk1)

P
<

X

nd ni p
< Mg, E ‘Zkz D _ U2 Ud kg [Zkllekl,...,kd} =
ni P
- My E ‘Zklzl Yi|" < My, MiE ’Z;ﬁ:l(“l”“ly’ﬁ) —  (3.5)
= MyE|T.|".
In (3.5) we applied (3.4). So we proved (3.3).
Because Z,, and T}, are each other’s transforms, (3.3) implies
NG E|T,|P < E|ZnP < MgE|T,|P. (3.6)

Now we prove the first part of (3.2). By (2.1),

p/2
Z X S / / Z er (t)- €kd(td)Xk dty...dtg
ksn k<n
p
I !
- AT/ / E ngl(tl)"'gkd<td)Xk dty...dtg
p,d 70 0 k<n
P
1 /1 /1 1 Z
S ~E Xk dty...dtg
A7 aJo o Na =

1
= AP N IE|Z |p
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In the third step we applied (3.6).
We turn to the second part of (3.2). By (3.6),

p
E|Zal? < MaB[|3, _ nlt1) -2, (ta) Xa| |-

From here, using (2.1),

1 1 P
E|ZaJf < Md/o /0 IEszgnskl(tl)o-~5kd(td)Xk’ } dt ... dtg

< (., 6"

The proof is complete. O

4. Final comments

Burkholder’s inequality is valid for martingales with values in R? (¢ is a fixed

1/p

positive integer). For p > 0 and x = (z1,...,2;) € R* let |[x]|, = (Zle |xi|P) .

Let (Xp,Fn),n € N?, be a martingale difference with values in R?. Assume that

condition (F4) is satisfied. Let (Zn, Fn), n € N be the martingale corresponding
to the difference (X,, Fy), n € N%.

Theorem 4.1. Let (Zn,Fn), n € N% be a martingale with values in R* and
(Xn,Fn), n € N% the martingale difference corresponding to it. Assume that
(8.1) is satisfied. Let p > 1. There exist finite and positive constants C and D
depending only on t, p and d such that

p/2 /p p/2 1/p

2 1 2
CIE (> Il < EIZal5)"" <D |E (3 IXul3 RV

k<n k<n

Proof. It is known that for any p,q > 0 there exist 0 < ¢,d < oo such that
clxll, < lIxll, < dlx]l, for all x € R*. Applying this observation and (3.2) we
obtain (4.1). O

Using this theorem we can prove limit theorems for autoregressive type martin-
gale fields. For details see [5] and [4] including the d-index case and the two-index
case, respectively.
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