A characterization of the identity function
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Abstract. We prove that if a multiplicative function f satisfies the equation f(n®+
m?43)=f(n?4+1)+ f(m? +2) for all positive integers n and m, then either f(n) is the identity
function or f(n?4m?+43)=f(n?+1)=F(m?+2)=0 for all positive integers.

Throughout this paper N denotes the set of positive integers and let M
be the set of complex valued multiplicative functions f such that f(1) = 1.

In 1992, C. Spiro [3] showed that if f € M is a function such that
fp+q) = f(p) + f(¢) for all primes p and ¢, then f(n) = n for all n € N.
Recently, in the paper [2] written jointly with J. M. de Koninck and I. K4tai
we proved that if f € M, f(p+n?) = f(p)+ f(n?) holds for all primes p and
n € N, then f(n) is the identity function. It follows from results of [1] that
a completely multiplicative function f satisfies the equation f(n? + m?) =
f(n?) + f(m?) for all n,m € N if and only if f(2) = 2, f(p) = p for all
primes p = 1 (mod 4) and f(q) = ¢ or f(¢) = —q for all primes p = 3
(mod 4).

The purpose of this note is to prove the following

Theorem. Assume that f € M satisfies the condition
(1) S0+ m?43) = f(n® + 1) + f(m® +2)
for all n,m € N. Then either
2) fER*P+)=fm*+2)=f(rR* +m*+3)=0 forall n,m¢€N,
or f(n) = n for all n € N.

Corollary. If f € M satisfies the condition (1) and f(n} + 1) # 0 for
some ng € N, then f(n) is the identity function.

First we prove the following lemma.

Lemma. Assume that the conditions of Theorem 1 are satisfied. Then
either (2) is satisfied for all n € N or the conditions

3) f(n2—|—1):n2—|—1, f(m2—|—2):m2—|—2 and
f(n2—|—m2—|—3):n2—|—m2—|—3
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simultaneously hold for all n,m € N.

Proof. From (1), we have
f@* +1) 4 f(m* +2) = f(m® +1) + [(n +2)
for all n,m € N, and so
(4) fr*4+2) = f(r* +1) = f(3) — f(2):=D foral neN.
Thus, the last relation together with (1) implies that
(5) J* +m? +3) = f(n® +1) + f(m* +1) + D

holds for all n,m € N. Let S, := f(j2 + 1). It follows from (5) that if k,[, u
and v € N satisfy the condition

k2—|—l2:u2—|—v2,

then
FR+ D)+ fP+10)+ D= fu® +1) + f(0P + 1) + D,

which shows that

(6) B2+ 12=u?+0® implies Sp+ 9 =5,+5,.

We shall prove that

(7) Snt12 = Snto + Snts + Sntr — Sngs — Snga — Sngs + 55

holds for all » € N.
Since
@+ +0G-2=02 -1)*+( +2)
and

2+ D)+ (-7 =2 -5 +(+5)7,
we get from (6) that

(8) S2j+1 + Sj-2 = S2j-1 + Sipa

and

Saj1 + 55-1 = S5 + 5j45.
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These with (8) imply that
Sigs — Sjya + 550 — 57 = S25-1 — 5255
= Sjt1 = Sj-8 + S2j-3 = S2j5 = Siy1 — Fj3 + 55 = Si-a,

which proves (7) with n = j — 7.
By (8), we have
S7 = Sa.341 = 255 — 51,

So = Soaq1 = S7+ 5 — 52 = S + 255 — 52 — 51

and

S11 = S2541 = So + 57— 53 = S + 455 — 53 — 59 — 257.
Finally, by using (6) and the facts
82 +12 =72 +4%, 102 +5° =112+ 22 and 122 +1% = 9% 4 &%,

we have

Sg = S7+ 54 — 51 = 255 + 54 — 251,
S0 = S + 52 — 55 = 96 + 355 — 53 — 253

and

S1a = 89 + S8 — 51 = 96 + 455 + 54 — 52 — 457.

Thus, to complete the proof of the lemma , by using (1), (4), (5) and (7), it
is enough to prove that either 57 = 53 = 53 = 54 = 55 = S =0 or

(9) S:=j*+1 for j=1,2,3,4,5,6.

Repeated use of (1), using the multiplicativity of f, gives S; = f(12 +1) =
f@2),

(10) Sy = (2 +1) = [(5) = [(1* +1* +3) = f(2) + /(3),

(11) S = f(3° +1) = [(10) = f(2)/(5) = [(2)" + [(2)/(3).

and thus

F1) = F(2* +2° 4+ 3) = £(5) + £(6) = f(2) + F(3) + f(2)f(3).
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On the other hand, it follows from (4) that
F(11) = f(3* +2) = f(10) + D = f(2)f(5) + D
= F2° + F2)F(3) + f(3) — f(2),
which, together with the last relation, implies
(12) F2)* = 2/(2),
and
f(18) = f(12 + 3% +3) = f(2) + f(11) = 2f(2) + f(2)/(3) + f(3).
Finally, the relation (10) together with the fact
F8) = F(1* +2° +3) = f(2) + f(6) = f(5) + f(3)
show that
(13) F2)f(3) = 2/(3).

Moreover

(14) S5 = f(5* +1) = f(26) = f(2)f(13) = 4f(2) + 6£(3),

(15) Se = f(6* +1) = f(37) = f(3" +5° +3)
= f(11) + f(26) = 5/(2) + 9/(3),

(16)  2/(1T) = J4> + 4 +3)— D = [(35) = D = [(5)/(7) - D.

and

(17)  f)f(7) = f(21) = f(3% + 3 +3) = 2f(10) + D = 3f(2) + 5/(3).

The equation (12) shows that either f(2) = 0 or f(2) = 2. Assume that
f(2) = 0. Then (13) implies that f(3) = 0 and so, by using (10)—(17) we
have

Sp =8y =83 =2584=55=5s =0,

from which follows that (2) is true.
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Assume now that f(2) = 2. In this case we have f(5) = 2+ f(3),
f(8) = 2+ 2f(3). We shall prove that f(3) = 3. It follows from (15) and
using the fact

f(37) = (12 + 6% +3) — f(3) = f(5)f(8) — f(3) =2/(3)" +5/(3) +4
that
(17) 2f(3)* —4f(3) —6 = 0.
On the other hand, from (4) we infer that
f(6)f(11) — f(3)f(13) = f(66) — f(65) = f(3) — f(2),
consequently
3f(3)2 - 7f(38)—-6=0.
This together with (17) proves that f(3) =3, and so (10)—(17) imply that
S; =j24+1 (j=1,2,3,4,5,6).
This completes the proof of (9) and so the lemma is proved.

Proof of the theorem

In the proof of the theorem, using the lemma, we can assume that (3)
is satisfied, that is

f(n2—|—1):n2—|—1, f(m2—|—2):m2—|—2 and

18
(18) f(n2—|—m2—|—3):n2—|—m2—|—3.

It is clear from (18) that f(n) =n for all n < T.

Assume that f(n) = n for all n < T', where 7" > 7. We shall prove that
f(I')y = T. It is clear that 7" must be a prime power, that is 7' = ¢® with
a € N and some prime ¢ .

It is easily seen that if « = 1, then ¢ > 7 and there are positive integers
n,m < ‘12;1 such that n? + m? +3 = ¢N, (¢, N) = 1 and N < ¢. Thus, we
have f(q) = .

Assume now that a > 2 and ¢ > 3. We consider the congruence

P+ m?+3=0 (mod ¢7).

Let
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Then we have

TR S (1+(=22)) - > (e (757)

[l
N | =
TN
=

|

-1 -3
(5)-2=2(3)
q q
By our assumption, the last relation implies that §.4,(3) > 1. Thus, there

are integers m € {1,...,g—1},1 < mny < ¢* -1, (n1,¢) =1 and 1 <
ne :=q% — ny < ¢ — 1 such that

nf +m?+3= ¢“N; (i =1,2).
It follows from the above relations that
¢"(Ny — N1) = (¢° —m)* = ni = ¢* - 2¢°ny,

that is
N2—N1 :qa—2n1.

Since (n1,¢) = 1, we obtain that at least one of Ny or N, is coprime to ¢. Let
n € {ny,na} and N € {Ny, No} such that n? + m? +3 = ¢°N, (N,q) = 1.
Then « > 2 implies that

1

N <
qO[

(¢° = 1)% + (¢ - 1) +3| < ¢~

Nf(q®) = f(N)f(q%) = f(Ng®) = f(n* + m® + 3) = n® + m* + 3 = N¢°,

which shows that f(¢®) = ¢ as we wanted to establish.

To complete the proof of the theorem, it remains to consider the cases
g=2and g =3. Let ¢ =2 and T = 2%, where a > 3.

Since —7 =1 (mod 8), we have —7 is a quadratic residue modulo 2¢
and therefore there exists n,, € [0,2%71 —1] such that n2+7 = n2+224+3 =0
(mod 2%), and consequently, [n, +2°71]2 + 7 =0 (mod 2%). Define Ny,
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and Ny by n? +7 =2%N; and [n, + 2°71 + 7 = 29 N,. We easily deduce
from these two equation and the fact 7 < T = 2% that

Ny < 2% Ny<2 and Ny— Ny =n,+2972.

It follows from the last relation and the fact 2 does not divide n, that one
of Ny or Ny is odd, and so f(2%) = 2“.
Finally, let ¢ = 3 and T' = 3%, where a > 1. We consider the congruence

n?+2=0 (mod 3%).

Similarly as above, one can deduce that there are positive integers n, N € N
such that n? +2=3°N, (N,3) =1 and N < 3. Thus these together with
(18) implies that f(3%) = 3“.

The theorem is proved.
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