Pure powers In recurrence sequences
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Abstract. Let G be a linear recursive sequence of order k satisfying the recursion
Gr=A1Gp_1++A; Gp_g. In the case k=2 it is known that there are only finitely many
perfect powers in such a sequence.

Ribenboim and McDaniel proved for sequences with k=2, G¢=0 and G;=1 that in
general for a term G,, there are only finitely many terms G, such that G, G, is a perfect
square. P. Kiss proved that for any n there exists a number g0, depending on G and n,
such that the equation G,G,=w? in positive integers z,w,g has no solution with z>n
and ¢>q¢. We show that for any n there are only finitely many z;,zs,...,2,2,w,q positive

integers such that G, G, Gy Ge=w! and some conditions hold.

Let R = R(A, B, Ry, R1) be a second order linear recursive sequence
defined by
R, = ARn_l + BR, _» (n > 1),

where A, B, Ry and R; are fixed rational integers. In the sequel we assume
that the sequence is not a degenerate one, i.e. o/ is not a root of unity,
where a and /3 denote the roots of the polynomial z? — Az — B.

The special cases R(1,1,0,1) and R(2,1,0,1) of the sequence R is called
Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and per-
fect powers. For the Fibonacci sequence Cohn [2] and Wylie [23] showed
that a Fibonacci number F), is a square only when n = 0,1,2 or 12. Petho
[12], furthermore London and Finkelstein [9,10] proved that F), is full cube
only if n = 0,1,2 or 6. From a result of Ljunggren [8] it follows that a Pell
number is a square only if n = 0,1 or 7 and Peth6 [12] showed that these
are the only perfect powers in the Pell sequence. Similar, but more gene-
ral results was showed by McDaniel and Ribenboim [11], Robbins [19,20]
Cohn [3,4,5] and Pethé [15]. Shorey and Stewart [21] showed, that any non
degenerate binary recurrence sequence contains only finitely many perfect
powers which can be effictively determined. This results follows also from a
result of Petho [14].
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Another type of problems was studied by Ribenboim and McDaniel. For
a sequence R we say that the terms R,,, R, are in the same square-class if
there exist non zero integers z,y such that

Rm$2 = Rny27
or equivalently

R, R, =12,

where { is a positive rational integer.

A square-class is called trivial if it contains only one element. Riben-
boim [16] proved that in the Fibonacci sequence the square-class of a Fibo-
nacci number F, is trivial, if m # 1,2,3,6 or 12 and for the Lucas sequence
L(1,1,2,1) the square-class of a Lucas number L,, is trivial if m # 0,1,3
or 6. For more general sequences R(A, B,0,1), with (A, B) = 1, Ribenboim
and McDaniel [17] obtained that each square class is finite and its elements
can be effectively computed (see also Ribenboim [18]).

Further on we shall study more general recursive sequences.

Let G = G(A1,..., Ak, Go,...,Gr_1) be a k™ order linear recursive

sequence of rational integers defined by
Gn :AlGn—l ‘|’A2Gn—2 ‘|"|‘Aan—k (n > k—]_),

where Ay,..., Ay and Gy,...,Gp_1 are not all zero integers. Denote by

a = ai,as,...,a, the distinct zeros of the polynomial 2% — A;z*~1 —
AgzF~2 — ... — A,. Assume that a,as, ..., a, has multiplicity 1,ma, ..., m,
respectively and |a| > |a;| for i = 2,...,s. In this case, as it is known, the

terms of the sequence can be written in the form
(1) G, =aa” +re(n)ay +-- -+ rs(n)ay (n>0),

where r;(i = 2,...,s) are polynomials of degree m; — 1 and the coeffici-
ents of the polynomials and « are elements of the algebraic number field
Q(a,as,...,a,). Shorey and Stewart [21] prowed that the sequence (7 does
not contain ¢'" powers if ¢ is large enough. This result follows also from [7]
and [22], where more general theorems where showed.

Kiss [6] generalized the square-class notion of Ribenboim and McDaniel.
For a sequence (¢ we say that the terms (7,, and (7, are in the same ¢'-
power class if GG, = w?, where w, ¢ rational integers and ¢ > 2.

In the above mentioned paper Kiss proved that for any term G, of the
sequence (v there is no terms (,, such that m > n and G, G, are elements
of the same ¢''-power class if ¢ sufficiently large.
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The purpose of this paper to generalize this result. We show that the
under certain conditions the number of the solutions of equation

GGy Gy Gy, Gy = 0

where n is fixed, are finite.
We use a well known result of Baker [1].

Lemma. Let vq,...,7, be non-zero algebraic numbers. Let M, ..., M,
be upper bounds for the heights of 71, ...,7,, respectively. We assume that
M, is at least 4. Further let by,...,b,_1 be rational integers with absolute
values at most B and let b, be a non-zero rational integer with absolute
value at most B'. We assume that B’ is at least three. Let I defined by

L:b110g71+"'+bv10g7vv

where the logarithms are assumed to have their principal values. If . # 0,
then
|L| > exp(—C(log B'log M, + B/B")),

where (' is an effectively computable positive number depending on only
the numbers My,...,My_1, Y1,...,7, and v (see Theorem 1 of [1] with
6=1/B").

Theorem. Let (G be a k'" order linear recursive sequence satisfying
the above conditions. Assume that a # 0 and G; # aa® for i > ng. Then
for any positive integer n,k and K there exists a number ¢y, depending on
n,G., K and k, such that the equation

(2) GnGy Gy Gy Gy = w1 (n <y < - <y <a)
in positive integer xy,xs,...,2, &, w,q has no solution with z; < Kn and
9> qo-

Proof of the theorem. We can assume, without loss of generality,
that the terms of the sequence (G are positive. We can also suppose that
n > ng and n sufficiently large since otherwise our result follows from [20]
and [7].

Let 21,2q,...,2k, %, w,q positive integers satisfying (2) with the above
conditions. Let ¢,, be defined by

Em = %rz(m)(%)m—l— l7‘3(772)(%)”%4—- 4 %rs(m)(%)m (m > 0).

(8% a
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By (1) we have

k
(1t en) (1 +ea) [T (1 +er,)alHPartrtrtoton = g
i=1

from which

k
qlogw = (k +2)loga + (n—l—x—l— le) log o+ log (1+¢,)

i=1

3) )

+log (1+¢,)+ Zlog (1+ez,)

i=1

k
follows. It is obvious that < n4+2+ > 2; < (k+2)z. Using that log |1 + ¢, |

=1
is bounded and lLim Llri(m)(2)" =0 (i =2,...,s), we have
4) 01£<logw<c2£
q q
where ¢; and ¢4 are constants.
Let L be defined by
wq

L=l = |log (1 2 -
8 GG G Goaat log (1 + €.

By the definition of ¢, and the properties of logarithm function there exists
a constant cs that

(5) L < e 7,
On the other hand, by the Lemma with v = £+ 4, My 4 = w, B’ = ¢ and
B = 2 we obtain the estimation
k
(6) L=|qlog w—log G, —Z log G, —log a—zlog o >e~Cllog alogwtas/q)

1=1

where C' depends on heights. By x; < Kn heights depend on G, ..., Gxnx,
ie. on n, K,k and on the parameters of the recurrence. By (4), (5) and (6)
we have ¢z < C'(log qlog w 4 ©/q) < cq4log qlog w, i.e.

(7) z < c5log qlogw
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with some c3, ¢4, c5. Using (4) and (7) we get cgqlog w < = < ¢5log qlog w,
ie. g < ¢rlog g, where ¢g and ¢7 are constants. But this inequality does not
bold if ¢ > qo = qo(G, n, K, k), which proves the theorem.
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